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Colorectal cancer (CRC) is one of the most commonmalignancies, with the third

highest incidence and the second highest mortality in the world. To improve the

therapeutic outcome, the risk stratification and prognosis predictions would help

guide clinical treatment decisions. Achieving these goals have been facilitated by

the fast development of artificial intelligence (AI) -based algorithms using

radiological and pathological data, in combination with genomic information.

Among them, features extracted from pathological images, termed pathomics,

are able to reflect sub-visual characteristics linking to better stratification and

prediction of therapeutic responses. In this paper, we review recent advances in

pathological image-based algorithms in CRC, focusing on diagnosis of benign

and malignant lesions, micro-satellite instability, as well as prediction of

neoadjuvant chemoradiotherapy and the prognosis of CRC patients.
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1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second-

leading cause of cancer-related deaths globally, according to the Global Cancer Statistics

2020 (1). The 5-year survival rate for CRC varies from 14% for distant-stage patients to

90% for localized-stage patients (2). As such, accurate diagnosis and prognosis prediction

are crucial for improving the survival rate of patients (3–6). Despite recent advances of our

understanding on the mechanisms driving CRC tumorigenesis, using multi-omics data for

accurately predicting the CRC prognosis with high accuracy are still far reaching.

After years of rapid development, Artificial intelligence (AI) based algorithms have

evolved from traditional machine learning (7, 8) to complex deep learning (9–11), with the

latter being especially adept at identifying complex features in medical images, including

radiology images (such as those from CT and MRI scans) and pathology images (10).

Thanks to whole slide image (WSI) scanners, digital pathology is now possible, allowing

traditional pathological slides to be converted into digital images for permanent storage.

WSIs contain complex information – large sizes (10,000 x 10,000 pixels), color information
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(H&E and immunohistochemistry), and multiple magnifications

(10X, 20X, 40X) (12). The digitalization of pathological images has

facilitated the transmission of image-rich pathological data between

distant locations (13) and has been widely used in digital diagnosis,

remote consultation, education, and research (14). The

performance of computer-based algorithms for digital WSIs

diagnoses of cancer has almost reached that of experienced

pathologists (15, 16). Furthermore, some algorithms can predict

the status of molecular markers (17, 18), identify genetic mutations

responsible for cancer (19, 20), determine treatment responses (21,

22), and predict survivals (23, 24). These researches highlight the

potential of AI to extract comprehensive and sub-visual

information from routine pathological images. On the basis of

these studies, the concept of pathomics has emerged (25), which

converts pathological images into mineable datasets based on AI

algorithms and links these extracted and quantified pathological

features to clinically related indicators. Researchers have explored

applications of AI-based pathological image analyses and achieved

satisfactory results in many cancers, especially in CRC.

In this review, we will discuss the workflow of pathomics and

their advances in CRC.
2 Pathomics workflow

The pathomics analysis workflow consists of three main steps:

the selection of regions of interest (ROIs), color normalization, and

the extraction and analysis of pathomics features. Figure 1

illustrates a typical pathomics workflow.
2.1 Selection of ROIs

The initial step in pathomics analysis involves outlining regions

of interest (ROIs) on a whole slide image (WSI) to identify areas

that require processing or analysis, such as tumor and interstitial
Frontiers in Oncology 02
regions. Processing the whole WSI is computationally intensive,

time-consuming, and may incorporate irrelevant or confusing

information. Only defining the ROI enables narrowing down the

image analysis to the most pertinent parts, which reduces

computational costs and enhances the quality of analysis.

Furthermore, defining the ROI allows the extraction of

representative and distinctive features, which assists with

identifying, classifying, or predicting disease states. Defining the

ROI allows for the extraction of representative and distinctive

features, leading to improved model performance. Thus, effective

ROI outlining and appropriate tile extraction are significant factors

to be considered in the analysis of pathological images.

ROI outlining methods include manual or automatic

delineation. Professional pathologists generally use dedicated

software such as Qupath (26) and ASAP (27) for manual

delineation, which is accurate and flexible but time-consuming,

labor-intensive, subjective, and not repeatable. As such, auxiliary

tools have been developed to enhance the efficiency and accuracy of

manual methods. Automatic methods involve using algorithms to

achieve automatic or semi-automatic ROI drawing. This method

involves pre-processing the image, identifying and locating ROIs

using specific algorithms. Automation can save human resources,

enhance consistency and repeatability, and adapt to large-scale data

processing. However, automatic methods may not effectively handle

image quality differences, complex backgrounds, and varied target

morphology. To improve the performance and robustness of

automatic methods, tissue classifiers (28–30) have been proposed

for automatic classification, which have shown reasonable overall

performance. Public databases such as NCT-CRC-HE-100K (31)

(100,000 image tiles) and CRC-VAL-HE-7K(7180 image tiles) (31)

are available for training CRC classification models. There are

various ROI outlining schemes that have their own advantages

and disadvantages. Selecting appropriate methods based on various

scenarios and needs, combining artificial intelligence and

professional knowledge, is crucial to achieve efficient and accurate

ROI delineation.
FIGURE 1

The pathomics workflow. Firstly, after collecting and scanning pathological images, the ROI (region of interest) is manually or automatically labeled.
Secondly, deep learning features (low-level, mid-level, and high-level features) and hand-crafted features (morphology, texture, statistics, and other
features) are extracted from these images through a series of images pre-processing such as ROI segmentation, gridding, tile extraction, and color
normalization. Finally, meaningful features are analyzed by machine learning or deep learning algorithms and classified or predicted according to
different tasks.
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2.2 Color normalization

During the preparation of colorectal tissue sections, there are

inevitable color variations in WSIs, even with the same staining

protocol, among different laboratories, which limits the

generalization power of an algorithm. Factors causing color

variations include the difference in dyeing time, concentration

and pH of staining solutions, staining platforms, and scanner

models (32). Several CRC-related studies (28, 33) evaluated the

impact of color variations on model efficiency and found that

models built with color normalization achieved higher efficacy

than those without normalization. Therefore, researchers have

proposed various normalization techniques to reduce the impact

of image color variations on the training models. Currently, there

are two main categories of color normalization methods: statistics-

based and physical model-based. Statistics-based methods aim to

match the color space of images to the statistical features of a target

image or standard image. For example, Reinhard et al. (34) put

forward a linear normalization method in lab color space by

balancing the mean and standard deviation of each dimension.

However, this method ignores the color difference in different areas

of the image (such as the background and different dyes). To solve

this problem, Khan et al. (35) proposed an automatic segmentation

and Gaussian mixture model method for normalizing the color of

each region. Physical model-based methods establish mathematical

models of the color formation process in pathological images and

use inversion or optimization techniques to calculate dye

concentration or absorption coefficients. For example, Ruifrok

and Johnston (36) proposed a method based on Lambert-Beer

law and matrix decomposition, which transformed RGB images

into dye concentration space, and normalized or de-stained them.

This method can better retain information on tissue structure, but it

is necessary to know or estimate the absorption spectrum of dyes in

advance. Recently, some researchers have explored the use of neural

networks, such as Cycle-GAN (37) for normalizing the color of

pathological images, which adapts automatically to different types

and sources of images and generates realistic and diverse results.
2.3 Extraction and analysis of
pathomics features

The objective of pathomics feature extraction is to transform

complex, high-dimensional, and diverse image data into simplified,

low-dimensional feature vectors. There are traditional and deep

learning methods for feature extraction. Traditional methods

require expert knowledge to design and select suitable feature

descriptors, including first-order features (such as shape, size,

texture, and color distribution) and second-order features

(features obtained by calculating intermediate matrices and

defining a series of statistics, such as the color histogram and the

gray co-occurrence matrix).

These hand-crafted features are utilized in machine learning

models, such as Support Vector Machine (SVM) and random

forests, for tumor classification and prognosis analysis (38–40).
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However, these techniques are dependent upon pre-existing

knowledge and expertise, and may not be able to capture high-

level and abstract information. In recent years, deep learning

methods have gained popularity due to their ability to

automatically learn feature representation based on neural

network models, such as convolutional neural networks (CNN).

These methods adaptively extract abstract and high-level features

from a large number of pathological images and optimize features

and classifiers simultaneously. The deep learning method has been

shown to outperform traditional methods in pathological image

analysis (41, 42), discovering features that have not been recognized

by humans. However, as network layers become deeper, extracted

features are more heavily abstracted and frequently lack

explanations surrounding individual dimensions (13). Some

studies (43–45) have presented a method that combines

traditional and deep learning features. The combination of these

features has been shown to produce improved detection accuracies

than traditional or deep learning features utilized separately.

Over-fitting may occur due to the high dimensionality and

potential redundancy of features extracted from pathological

images. Therefore, feature selection and dimension reduction

techniques can be leveraged to identify the most representative

and predictive features. Standard dimension reduction techniques

include Principal Component Analysis (PCA) and Linear

Discriminant Analysis (LDA). PCA is an unsupervised learning

method used to project high-dimensional data into a lower-

dimensional space while preserving the variance of the original

data. Conversely, LDA is a supervised learning method that maps

samples to a low-dimensional space to maximize the differences

between categories. Once feature selection and dimension reduction

are complete, machine learning algorithms such as logistic

regression, decision trees, support vector machines, and deep

learning algorithms can be implemented to model pathological

images and predict disease risk or diagnosis. The choice of

algorithm is dependent on the data’s nature and the target task

requirements, with decision trees being suitable for models that

need to be explained and deep learning algorithms for high-

precision models. Apart from predicting disease risk and

diagnosis, analyzing the relationship between selected features

and diseases can also shed light on the pathogenesis and

treatment methods of diseases. Correlation analysis, cluster

analysis, factor analysis, and machine learning algorithms are

commonly used analytical methods for this purpose. By

identifying relevant characteristics and biomarkers, we can better

understand the disease’s pathogenesis and develop effective

treatment plans.
3 Recent advances of pathomics in
CRC diagnosis

3.1 Identification of CRC cells

The early detection and accurate diagnosis of CRC are crucial

for reducing mortality rates. Numerous studies have demonstrated
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the diagnostic potential of pathomics in detecting CRC, and the

summary of these studies is presented in Table 1. The data used in

the current research are from The Cancer Genome Atlas (TCGA)

Program’s public database and private datasets of hospitals. The

Area Under the ROC Curve (AUC) and Accuracy (ACC) were the

primary parameters used to evaluate the model’s performance.

For example, Wang et al. (46) developed an AI approach using

transfer learning and the Inception-V3 CNN architecture to classify

normal and cancerous tiles. The group collected 14,234 CRC WSIs

from 6,876 patients in multiple institutions across China, the USA,

and Germany, dividing them into four datasets for training and

evaluation. This model achieved an AUC of 0.998 and an ACC of

0.981 at the tile-level prediction, reaching the highest ACC of 0.990

and AUC of 0.991 at the patient-level prediction. Meanwhile, the

performance of the AI approach is comparable to professional

pathologists with an AUC of 0.988 and 0.970, respectively. Based

on the Inception V3 CNN architecture, Noorbakhsh et al. (47)

trained a deep learning model for pan-cancer classification with an

AUC of 0.995 and ACC of 0.910. 19 cancer subtypes can be

classified, with AUCs ranging from 0.600 to 0.980. In addition to

the model established based on the Inception architecture, some

studies used VGG (48) and Res-Net (49) network to construct deep

learning models for identifying benign and malignant lesions, with

improved ACCs and AUCs. For example, the VGG-16 (48) model

has achieved an AUC of 1 on the online test dataset of 250 HE-

stained WSIs from 150 patients. In addition to the above-

mentioned transfer learning, training an entire network from
Frontiers in Oncology 04
scratch can improve the performance of the model. For instance,

Togacar et al. (50) used the DarkNet-19 model trained from scratch

and the SVM method to detect the benign, malignant, and

histological lung and colon cancer types, and utilized Equilibrium

and Manta Ray Foraging optimization algorithms to choose

efficient features. The ACC of the model after feature screening

was higher than that of the model without feature screening.

For the small amount of labeled data, Yu et al. (51) proposed

mixing training with a large amount of unlabeled data. Specifically,

they used 13,111 WSIs collected from 8,803 CRC patients from 13

independent centers to develop a semi-supervised learning model

(SSL, based on the mean teacher method, where the student and

teacher models both used the Inception-V3 structure). They

evaluated the SSL by comparing the performance of the SSL with

SL (the supervised learning model, based on Inception-V3) and six

professional pathologists. The performance levels of SSL and SL are

similar at the tile level, with the AUCs of 0.980 and 0.987,

respectively. The performance of SSL was comparable to that of

the pathologists with the AUC of SSL, SL, and pathologists being

0.974, 0.980 and 0.969, respectively. In addition, the SSL was also

confirmed in two other cancer types (lung cancer and lymphoma),

indicating that the SSL can achieve similar performance as SL with

massive annotations.

Su et al. (52) proposed a method to train the model for

classification in overlapping pathological images using IHC as

molecular markers of tumor regions on HE images. They

developed an H&E molecular neural network (HEMnet)
TABLE 1 Literature overview of AI-based algorithms for CRC identification using histopathological images.

Reference Number of
cases

Number of
classes

Ground truth ROIs
annotated
method

Color
Normalization

Modeling
method

Result

Wang et al.
(46)

N=14,234
(Patient n=6,876)

2 Cancer vs. non-
cancer

manually The color of each pixel
was centered by the mean
of each image and its
range was converted/
normalized from [0, 255]
to [− 1, 1].

Inception V3 patch-level:
ACC: 0.948-0.961
AUC: 0.983-0.985
patient-level:
ACC: 0.934-0.990AUC:
0.911-0.992

Noorbakhs
et al. (47)

N=27,815
(including 23
cancer types)

2 Cancer vs.
normal tissue

manually NA Inception V3 ACC: 0.910
AUC:0.60-0.98

Feng et al.
(48)

N=1,000 (patient
n=600)

2 Benign vs.
malignant

manually NA U-Net, VGG Online test dataset:
DSC:79.45%
AUC: 1

Menon et al.
(49)

N=9,297
(including 11
cancer types)

2 Cancer vs.
normal tissue

NA The mean and standard
deviation of all RGB
channels on the training
set were calculated for
normalization

ResNet-18 Self-organ:
ACC: 0.920-0.99
Cross-organ:
ACC: 0.530-0.980
AUC:0.525-0.998

Togacar
et al. (50)

N=25,000
(including lung
and colon
cancers)

2 Adenocarcinoma
vs. benign tissue

manually NA DarkNet-19 ACC: 0.997

Yu et al. (51) N=13,111 (patient
n=8,803)

2 Cancer vs. non-
cancer

manually The grayscale of each pixel
was normalized to [-1,1]

Inception V3 Patch level:
AUC:0.980
Patient level:
AUC:0.974
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approach for automatically aligning HE images with corresponding

IHC images. They used transfer learning to establish a VGG16-

based CNN for classifying tiles as cancer or non-cancer. They

selected TP53 as a biomarker from IHC, a critical tumor

suppressor gene highly positive for staining in 74% of CRCs.

TP53 positive regions in IHC images were labeled as tumor

regions and registered with HEMnet at the same location in HE

images, trained, and tested the model’s efficacy. Finally, the AUC

for predicting p53 staining status was 0.730, and the AUC for

predicting tumor regions annotated by pathologists was 0.840.

Convolutional neural networks are one of the commonly used

deep learning algorithms among researchers diagnosing colorectal

cancer using AI. AI has the potential to significantly enhance the

accuracy of colorectal cancer diagnosis. This accuracy is consistent

and unbiased and is not influenced by the experience of

pathologists. In summary, AI-based colorectal cancer diagnosis

holds great promise in the analysis of pathological images, with

numerous avenues for exploration in the future, such as employing

more advanced algorithms like deep reinforcement learning or

performing comparisons and validation on multiple datasets.
3.2 Prediction of gene mutations

Mutation in several genes, including APC, TP53, RAS, BRAF,

MLH1, MSH2, and MSH6, are associated with CRC (53). Among

them, MLH1, MSH2, and MSH6 belong to the Mismatch Repair

(MMR) system. When the MMR system is defective, the length of

the microsatellite changes, resulting in microsatellite instability

(MSI) (54). The MSI is a clinically important tumor marker and

an essential molecular biomarker in almost all solid tumors (55),

present in 10%-20% of CRC patients (56). The status of the MSI can

provide information on prognosis and guide treatment. At present,

most of the studies on pathological images are focused on the

assessment of the microsatellite status, and some are involved in the

prediction of other gene mutations.

Table 2 summarizes the publications that report using different

deep learning methods to predict microsatellite states. These models

exhibit robust performance, with area under the curve (AUC)

values ranging from 0.74 to 0.96 (28, 33, 57–62), and many

outperform professional pathologists. For instance, Yamashita

et al. (57) established MSINet, a model based on modified

MobileNetV2, which produced stable performance. MSINet

achieved an AUC of 0.865 on a TCGA dataset of 40 cases,

compared to the average AUC of 0.605 of five pathologists. This

indicates that the deep learning model is fully capable of reaching or

even surpassing the human level.

The construction of most models relies on large sample

datasets. Echle et al. (33) collected 8,836 HE-stained WSI of

colorectal adenocarcinoma patients from five centers, including

the TCGA database, to establish a deep learning classifier. To assess

the impact of the number of training samples on performance,

models were trained with samples ranging from 500 to 5500. The

findings show that the robustness of the model increases as the

number of training samples grows, reaching a stable level at 5000.

More training data increases the number of features incorporated
Frontiers in Oncology 05
into the model, leading to better performance. Notably, this

experiment also highlights that biopsy samples with limited tissue

can be used to predict MSI. The classifier was tested using 1,557

biopsy samples, and the AUC was reduced to 0.780 compared with

the surgical sample of 0.960. 2 years later, the same research team

(62) established AI-based MSI/dMMR detectors based on surgical

specimens, and the AUC of biopsy samples increased to 0.890.

In addition to predicting MSIs, there are models to predict

polygenic states. For example, Bilal et al. (58) reported algorithms,

based on Resnet34, to predict multiple gene expression status

simultaneously, including the chromosome status, CpG island

methylation, and BRAF, TP53, and KRAS gene mutational

statutes. All models exhibited AUCs exceeding 0.900 at internal

datasets. Still, all had decreased AUCs when validated on external

datasets. A report (59) also establishes a model to predict APC,

KRAS, PIK3CA, SMAD4, and TP53 gene mutations. Frozen and

paraffin sections showed AUC values of 0.693-0.809 and 0.645-

0.783, respectively, indicating the potential of deep learning in gene

mutation prediction.

In summary, models can serve as an automatic screening tool to

triage patients in predicting gene mutations, especially in MSI/MSS

detection, ultimately resulting in significant cost and labor savings

related to testing.
4 Recent advances of pathomics in
CRC prognosis

4.1 Prediction of responses to
neoadjuvant treatment

Neoadjuvant chemoradiotherapy is a common treatment

modality for CRC and it has a vital role in improving surgery

rates and survival in patients with resectable CRC (63). However,

only 30% of patients achieve pathological complete response (pCR)

(64). Some studies have demonstrated that radiomic features can

predict the response to neoadjuvant chemoradiotherapy in

preoperative CRC patients (65, 66). In 2020, the first paper using

WSIs to predict the efficacy of neoadjuvant chemoradiotherapy was

reported. Zhang et al. (67) used preoperative biopsy digital

pathology images to predict the response to neoadjuvant

chemoradiotherapy in patients with locally advanced rectal

cancer. The authors extracted 104 texture features from selected

tumor region tiles based on a machine learning approach and

screened 17 potential predictors using the LASSO method. SVM-

based classifiers distinguished these predictors. The AUCs of the

classifiers were 0.887 and 0.797 for PR and non-PR at the tile level,

and 0.930 and 0.877 for the model at the WSI level respectively. In

the same year, Shao et al. (68) combined radiomic features with

pathomics features to predict the efficacy of neoadjuvant therapy.

They extracted 702 quantitative features from T2WI and ADC

sequences, and together with a total of 770 image features extracted

from WSIs, including pixel intensity, morphology, and nuclear

texture based on the XGBoost method to construct the model

radiopathomics signature (RPS), the accuracy of RPS reached
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TABLE 2 Literature overview of AI-based algorithms for gene mutations using histopathological images.

Reference Number
of
cases

Number
of
classes

Ground truth ROIs
annotated
method

Color
Normalization

Modeling method Result(AUC)

Echle et al.
(33)

N=8,836 2 dMMR or MSI vs.
pMMR

manually Macenko method ShuffleNet Training:0.920
Validation:0.950(without
color normalization)
0.960(after color
normalization)
Biopsy samples:0.780
AUPRC:0.790

Jiang et al.
(28)

N=1,215 2 MSI vs. MSS Densnet121
model
automatic
classification

Color
augmentation

Densenet-IBM Fully supervised:Cohort
1: 0.883; Cohort 2:
0.841; Cohort 3: 0.813;
Cohort 4: 0.746
Weakly supervised:
Cohort 1: 0.889; Cohort
2: 0.881; Cohort 3:
0.846; Cohort 4: 0.768

Yamashita
et al. (57)

N=837
(patient
n=599)

2 MSI vs. MSS automatic
classification

Macenko method MobileNetV2 Internal dataset: 0.931;
External dataset: 0.779
Compared to
pathologists:
Model:0.865; Mean
AUC performance of
the five pathologists:
0.605

Bilal et al.
(58)

N=499
(patient
n=502)

2 High mutation
density vs. low
mutation density;
MSI vs. MSS;
Chromosomal
instability vs.
genomic stability;
CIMP-high vs.
CIMP-low;BRAF
mutation vs. BRAF
wild-type;TP53
mutation vs. TP53
wild type; KRAS
mutation vs. KRAS
wild type

Resnet18
model
automatic
classification

NA Resnet34 Multiple task prediction:
Hypermutation:0.810;
MSI: 0.860;
Chromosomal
instability: 0.830;
BRAF:0.790; TP53:
0.730; KRAS: 0.600;
CIMP-high status: 0.790

Schirris et al.
(59)

N=360 2 automatic
detection of
tumor

Macenko method DeepSMILE(from Self-
supervised Heterogeneity-
aware Multiple Instance
Learning)

MSI: 0.870; HRD
(homologous
recombination
deficiency): 0.810

Ghaffari
Laleh et al.
(60)

N=2,980 2 MSI vs. MSS No annotation Macenko method Compared six methods Classical weakly-
supervised:Resnet:0.917;
EfficientNet:0.930;
ViT:0.906
Multiple-instance
learning-based:
MIL:0.709;
AttMIL:0.880;
CLAM:0.795

Cao et al.
(61)

NA 2 MSI vs. MSS manually z-score
normalization on
RGB channels

Ensemble Patch Likelihood
Aggregation(EPLA) model
(Resnet18 was used for each
patch prediction, PALHI
and BoW pipelines
integrated the multiple
patch-level into WSI-level

Test: 0,885; External
validation:0.850

Echle et al.
(62)

N=8,343 2 MSI/dMMR vs.
MSS/pMMR

No annotation Macenko method Resnet18 The highest cohort: 0.960;
The lowest cohort:0.740
Biopsy samples: 0.890
F
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87.66%, with AUCs of 0.98 (TRG0), 0.93(≤TRG1), 0.84(≤TRG2),

and the performance of this model is better than constructing the

model based on MRI features, or pathological image features alone.

One year later, the same team (69) reported another study focusing

on the cell nuclei and the tumor microenvironment in pathology

images. They used CellProfiler and VGG19 convolutional neural

networks to extract 770 tumor cell nuclei features and 220 tumor

microenvironment features, respectively. Combined them with

2,106 MRI image features to construct the prediction System

(RAPIDS) model, which was further validated in a prospective

study. The model has a high accuracy in predicting pathological

complete response and an AUC of 0.812 in a prospective study. In

addition, the combined model is significantly better than the single-

modality prediction model.

In summary, AI has great potential in predicting the response to

neoadjuvant therapy for colorectal cancer. By analyzing a large

number of pathological image features and the potential correlation

between them and treatment outcomes, these models can predict

how patients will respond to neoadjuvant therapy while also

providing patients with more accurate treatment recommendations.
4.2 Prediction of survival

As presented in Table 3, the pathological features extracted by

AI to predict the prognosis of CRC are numerous and varied. In a

study by Kather et al. (70), a tumor microenvironment-related
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prognostic factor was proposed for the prediction of CRC survival.

Specifically, the tissues of CRC patients were first automatically

classified into 9 categories at the tile level, including CRC epithelial

cells, tumor-associated stroma, lymphocytes, debris, adipose tissue,

background, mucus, smooth muscle, and normal colon mucosa,

respectively. Using the univariable Cox proportional hazard model,

5 of the 9 categories were associated with poor outcomes: adipose

tissue, debris, lymphocytes, smooth muscle, and tumor-associated

stroma. The characteristics of these 5 tissue types were extracted

and combined by the VGG19-based CNN model to establish the

deep stroma score, which was an independent prognostic factor for

overall survival in CRC (HR 1.99 [1.27-3-12], p=0.0028) using a

multivariate Cox proportional hazard model. Zhao et al. (71)

proposed a deep learning model for automatic tumor stromal

ratio (TSR) quantification. Similar to Kather et al, they classified

CRC patients’ tissues into 9 categories and trained a model based on

the VGG-19 architecture. They found that TSR could be an

independent prognostic factor in 2 independent cohorts of CRC

patients, with stroma-low associated with a higher five-year survival

rate. Subsequent incorporation of independent risks (stage and age)

together to build a predictive model showed that the model

demonstrated significant predictive power for patient prognosis

with high accuracy and discrimination (ACC:0.759, C-index:0.721).

Skrede et al. (72) developed a DoMore-V1-CRC classifier to predict

cancer-specific survival in colorectal patients. These authors used

the univariate and multivariate Cox proportion hazards model and

Kaplan-Meier analysis to analyze the association of pathological
TABLE 3 Literature overview of AI-based algorithms for CRC prognosis using histopathological images.

Reference Number
of
cases

ROIs annotated
method

Modeling
method

Findings Prognostic factors

Kather et al.
(70)

N=909 VGG19 model
automatic
classification

VGG19 Cohort1:OS(overall survival): hazard
ratio(HR): 1.99 [1.27-3.12]
Cohort2:OS : HR:1.63[1.14-2.33];
CRC-specific OS : HR:2.29[1.5-3.48];
relapse-free survival:HR:1.92[1.34-2.76]

Deep stroma score

Zhao et al.
(71)

N=814 VGG19 model
automatic
classification

VGG19 Stroma-high associated with reduced OS,
Cohort1: OS : HR:1.72[1.24-2.37]
Cohort2:OS : HR:2.08[1.26-3.42];

Tumor-stroma ratio (TSR)

Skrede et al.
(72)

N=2,473 DeepLab network
automatic
segmentation

DoMore v1 Cancer-specific survival:HR:3.84[2.72-
5.43]; sensitivity:52%;
Specificity:78%

Tumor area

Wulczyn
et al. (73)

N=3,652 Inception-v3
model
automatic
classification

CNNs, similar to the
design of MobileNet

Cohort1: 5-year disease-specific survival
AUC:0.70
Cohort2: 5-year disease-specific survival
AUC:0.69

Tumor area, tumor-adipose

Lin et al.
(74)

N=1,686 VGG19
model
automatic
classification

VGG19 Cohort1:OS : HR:1.54[1.08-2.19];
Cohort2:OS : HR:1.36[1-1.84];
Cohort3:OS : HR:1.83[1-3.35];

Adipose tissue

Xu et al (75) N=448 Resnet18
model
automatic
classification

Resnet 18, Resnet34,
Shufflenet

Cohort1:progression-free survival(PFS):
HR:0.004[0.0001-0.15];
Cohort2:PFS : HR:0.031[0.001-0.645]

Tumor-infiltrating lymphocytes

Wang et al.
(76)

N=103 NA DeepConvs.urv model,
Nomogram model

OS: AUC:0.86
DFS: AUC:0.875

Combing pathomics,radiomics features,
immunoscore and clinical factors
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features and pathological clinical variables with cancer-specific

survival. They concluded that the pathological features extracted

by the classifier could serve as strong predictors of prognosis and

they can be used to complement established molecular and

morphological prognostic markers. Similarly, Wulczyn et al. (73)

developed a deep learning system (DLS) for predicting 5-year

cancer-specific survival in grade II and III CRC. Significantly, the

team generated 200 histological features based on clustered

embeddings in a deep-learning image similarity model, which

enabled the model to extract pathological features with human

interpretability. The analysis reveals that the degree of tumor

differentiation and the proportion of tumor stroma were the main

features of DLS for predicting prognosis. Specifically, moderate to

high grade tumors were associated with the high risk prediction by

DLS, while low grade tumors and high stroma ratio were associated

with low risk prediction of DLS.

In addition to studying the tumor stroma ratio, some studies

have focused on the lipid microenvironment surrounding CRC. Lin

et al. (74) trained the VGG-19 model to score adipose (ADI) tissue

quantitatively in CRC and used Kaplan-Meier analysis to compare

the OS of patients with high ADI to those with low ADI, and they

found that the OS time was significantly lower in the high ADI

group than in the low ADI group. In addition, tumor-infiltrating

lymphocytes (75) can be used as a prognostic factor for CRC.

In summary, AI has shown potential in predicting the survival

of colorectal cancer patients by analyzing not only the tumor region

but also the tumor microenvironment. By using quantitative

analysis techniques, AI can help identify important factors in the

tumor microenvironment that can affect patient survival.
5 Integration of pathomics
and other omics

A wealth of data is available during the actual diagnosis and

treatment of CRC patients, ranging from radiology, pathology,

colonoscopy, clinical data, and laboratory testing, to genomic

information, each of which can provide information to assess the

patient’s status. Given the enormous complexity of medical data,

most of the data currently used to build AI models is monomodal.

However, compared with monomodal algorithms, multimodal

programs might help extract features from different perspectives,

bring complementary information, and facilitate better decision-

making. For example, radiological and pathological images provide

microscopic and macroscopic information about the lesion tissue

which can be combined to diagnose and stage CRC. Additionally,

multi-modal data fusion is helpful to find the correlation and

causal ity between different levels and to identify the

characteristics that have prognostic or therapeutic significance.

For example, by integrating pathological images, genome data,

transcriptome data, and other data types, we can make molecular

typing of tumors, and predict treatment response and survival (16,

77, 78). In CRC, studies have used radiomics and pathomics

features in combination of clinical data to predict the treatment

response (65, 68, 69) and survival (76). There are also studies (58) to
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investigate the correlation between gene expression changes and

histomorphology, using genomic data and histological images to

predict MSIs. Although the study of integrating pathomics and

other omics with colorectal cancer has not been fully developed, it

can be seen in the multimodal data fusion of artificial intelligence

for other cancers.

Different strategies, such as connection-based, model-based,

and transformation-based integration methods, can be employed

for data fusion (79). Through such a multi-modal data integration

analysis method, AI can assist researchers in comprehending the

heterogeneity and complexity of tumor cells in greater detail. This,

in turn, offers a stronger foundation for precise diagnosis and

individualized treatment.
6 Challenges and perspectives

Studies have proved that with the continuous in-depth research

of AI technology represented by deep learning in CRC, AI can aid

pathologists in making more accurate and effective diagnoses,

evaluating the therapeutic response, and predicting the prognosis

before receiving treatment. In most published papers, researchers

construct their models through transfer learning, which aims to first

train the selected neural network model in the large dataset of the

source domain, usually in the ImageNet Database (80), and then

fine-tune it in the labeled pathological images to finally adapt the

model to its task. Alternatively, some researchers may choose to

train a deep network from scratch using domain-relevant images.

The transfer learning model refers to the mode of learning new

knowledge by leveraging existing related knowledge. This technique

enables improved model performance and reduces computational

costs by transferring similarities between existing and new

knowledge. Conversely, training models from scratch entails

establishing and training a model without any prior knowledge,

offering simplicity but requiring substantial amounts of data and

computational resources. Both models have their advantages and

disadvantages, with transfer learning models not only saving

training time and computing resources but also enhancing the

model’s generalization ability and accuracy by incorporating

knowledge and experience accumulated in other fields or tasks.

Additionally, transfer learning models can tackle the scarcity and

heterogeneity of medical data by improving the model’s

representation ability with data from other sources. For example,

a CNN trained on natural images can be used to extract image

features, which can be fine-tuned or have the final classifier replaced

to match the requirements of specific medical tasks. However, the

transfer learning model does not apply in all situations. When the

target domain differs significantly from the source domain,

the negative transfer may interfere with the acquisition of

accurate knowledge in the target domain. In such cases, training

models from scratch can better adapt to specific tasks by designing

the appropriate model structure and parameters according to the

data and goals. Overall, transfer learning models are usually

superior to models trained from scratch for medical image

classification tasks. AlexNet, ResNet, VGGNet, and GoogleNet are

among the most common and effective transfer learning models
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that have shown good results across various types, scenes, and

objectives of medical image classification.
6.1 Data

Using AI algorithms to train models requires massive,

multicenter, diverse, and high-quality data. With the ability to

learn from vast amounts of data, these algorithms can offer new

insights into the development of CRC, identify new predictive and

prognostic factors, and facilitate individualized treatment plans.

Numerous large publicly avai lable databases of CRC

histopathological images exist, including the TCGA database (81),

the 2015 MICCAI Gland segmentation (GlaS) challenge dataset

(82), colorectal adenocarcinoma gland (CRAG) dataset (83),

Digestpath (84), and COMET dataset (85). However, such

datasets are typically not labeled or annotated, and biopsy

samples may result in lost morphological features due to the

sampling method. For instance, the preparation process of

colonoscopy biopsy specimens can squeeze some tissues, leading

to changes in their original morphological characteristics. These

defects can impair the training power of an AI algorithm, and

limited training data can often lead to model overfitting. To address

this issue, researchers (86, 87) may decide to either reduce the

complexity of network architecture or procure additional training

data. Data augmentation technology can also enhance the number

of training samples in a limited dataset, improving the model’s

overall performance (88). Pathology images have various data

enhancement techniques, such as tissue classification (89), cell

nucleus segmentation (90), gland segmentation (91), and

prediction of microsatellite status (92), that can expand smaller

datasets and improve their functionality. Furthermore, training

models on synthetic images can produce similar results to

authentic images (93, 94).
6.2 Ground truth annotation

The training of the model heavily depends on the manual

assignment of pathology image labels for learning and

classification. The gland is a critical component of colorectal

tissue that has a typical round or elliptical shape and neat

arrangement in normal samples, making manual labeling

relatively simple. However, as cancerous tissues develop, the

gland’s normal structure may become disrupted, resulting in

irregular shapes and disorganized configurations. As a result,

histological characteristics of such tissues typically show

significant individual variations that are challenging to delineate

manually (95). Pathologists often spend a considerable amount of

time classifying and labeling CRC tissues, particularly tumor tissues

that are challenging to identify and diagnose and require senior

pathologists to identify and label them as part of the model’s

training set to ensure machine learning accuracy. Unsupervised

(96) or self-supervised learning (97) can alleviate these issues since

they do not require explicit labeling, holding promise for

overcoming these challenges.
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6.3 Interpretability

Currently, the most effective AI algorithms for processing

pathological images are deep learning based on neural

convolution networks. These models may perform better than

humans, but they have been questionable for the AI black-box

problem (47, 49). The opacity of these models may be due to the

inability of humans to perceive the decision-making pattern of

machine learning algorithms (98). The deep neural network, for

example, has thousands of neurons that allocate information and

make decisions. As the number of network layers increases, the

features extracted by the neurons become more abstract and

incomprehensible to humans (99).

Some studies have used visualization methods to interpret the

models to improve black-box transparency. Specifically, most

researchers utilized heatmap (23, 33, 58, 100), and the attention

mechanism (101–103) to visualize the features of histopathology

images. These methods present the data using a heatmap overlaid

on top of the original image, with darker colors signifying higher

response and contribution of the corresponding region of the

original image to the network model. These methods can help

improve the transparency and feasibility of AI.

In summary, pathomics is a new tool that can comprehensively

extract features and has the potential to improve the diagnosis of

CRC. Moreover, it is increasingly important in determining the

efficacy and prognosis of CRC treatment.
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