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Zhang L, Pozsgai É, Song Y, Macharia J,
Alfatafta H, Zheng J, Li Z, Liu H and Kiss I
(2023) The relationship between single
nucleotide polymorphisms and skin cancer
susceptibility: A systematic review and
network meta-analysis.
Front. Oncol. 13:1094309.
doi: 10.3389/fonc.2023.1094309

COPYRIGHT

© 2023 Zhang, Pozsgai, Song, Macharia,
Alfatafta, Zheng, Li, Liu and Kiss. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Systematic Review

PUBLISHED 15 February 2023

DOI 10.3389/fonc.2023.1094309
The relationship between single
nucleotide polymorphisms and
skin cancer susceptibility: A
systematic review and network
meta-analysis
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Background: Single nucleotide polymorphisms (SNPs) interfere with the function

of certain genes and thus may influence the probability of skin cancer. The

correlation between SNPs and skin cancer (SC) lacks statistical power, however.

Therefore, the purpose of this study was to identify the gene polymorphisms

involved in skin cancer susceptibility using network meta-analysis and to

determine the relationship between SNPs and SC risk.

Methods: PubMed, Embase, and Web of Science were searched for articles including

“SNP” and different types of SC as keywords between January 2005 and May 2022.

The Newcastle-Ottawa Scale was used to assess bias judgments. The odds ratio (ORs)

and their 95% confidence intervals (CIs) were determined to estimate heterogeneity

within and between studies. Meta-analysis and network meta-analysis were carried

out to identify the SNPs associated with SC. The P-score of each SNP was compared

to obtain the rank of probability. Subgroup analyses were performed by cancer type.

Results: A total of 275 SNPs from 59 studies were included in the study. Two

subgroup SNP networks using the allele model and dominant model were analyzed.

The alternative alleles of rs2228570 (FokI) and rs13181 (ERCC2) were the first-ranking

SNPs in both subgroups one and two of the allele model, respectively. The

homozygous dominant genotype and heterozygous genotype of rs475007 in

subgroup one and the homozygous recessive genotype of rs238406 in subgroup

twoweremost likely to be associatedwith skin cancer based on the dominantmodel.

Conclusions: According to the allele model, SNPs FokI rs2228570 and ERCC2

rs13181 and, according to the dominant model, SNPs MMP1 rs475007 and ERCC2

rs238406 are closely linked to SC risk.

KEYWORDS

skin cancer, single-nucleotide polymorphisms, network meta-analysis, systematic
review, melanoma
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1 Introduction

The incidence of skin cancer has increased significantly since the

1970s, mainly due to lifestyle changes, including sun-seeking behavior

and the thinning of the ozone layer (1). Skin cancers include

cutaneous melanoma (CM) and nonmelanoma skin cancer

(NMSC), with growing incidence rates for both cancer types (2).

They are all caused by the abnormal growth of skin cells, especially

those exposed to the sun. Non-melanoma skin cancer is the most

common cancer among white-skinned people, and thus it is a

significant cause of morbidity (3). Melanoma is less common;

however, its prognosis is poorer, resulting in higher mortality rates

(4). Approximately 1.2 million new NMSC (4) and nearly 300,000

new CM cases were diagnosed worldwide with 57,043 deaths from

CM in 2020 (4). Timely diagnosis is crucial for reducing mortality

from malignant melanoma and also has additional health and

economic benefits (5). Since early detection of skin cancer is often

limited, identifying suitable markers for its detection is of the utmost

importance (6). Therefore, certain new genetic loci were investigated

as possible markers for identifying SC risk (7).

Single nucleotide polymorphisms (SNPs) are genetic variations

caused by point mutations. The allelic distribution of SNPs may

interfere with the function of genes and then influence the probability

of certain diseases (8, 9), which has led to SNPs being investigated as

possible biological markers. Various SNPs have been shown to be

associated with pigmentation, nevi, hair, skin color, and skin cancer.

The SNPs of the BRAF and NRAS genes, for example, have been

found to be commonly mutated oncogenes in CM (10). Furthermore,

similarly to the interactions between genetics and the environment,

the number and frequency of SNPs also affect the characteristics of

their related genes as well as the development of their related disease

phenotypes (11, 12).

Network meta-analysis (NMA), and in particular, Bayesian

network meta-analysis, analyzes the direct and indirect evidence

from multiple comparisons of tests within and between studies

(13), making it possible to investigate the interactions between

multiple comparisons of SNP tests.

Therefore, the aim of our study was to identify and compare the

single nucleotide polymorphisms predominantly involved in skin

cancer susceptibility by conducting a network meta-analysis.
2 Method

2.1 Search strategy and selection criteria

We searched the PubMed, Embase, and Web of Science electronic

databases from their starting dates to May 2022 to identify relevant

studies. The search strategy is shown in detail in Supplementary

Presentation 1. We required the articles to include the following

keywords: case–control, single nucleotide polymorphism (SNP), and

study skin cancer (SC), cutaneous melanoma (CM), non-melanoma

(NM), squamous cell carcinoma (SCC), or basal cell carcinoma

(BCC). Inclusion and exclusion criteria are presented in

Supplementary Presentation 2. The study was designed and

performed in accordance with the PRISMA guidelines (Figure 1).
Frontiers in Oncology 02
2.2 Data abstraction and bias assessment

Two researchers (LZ and YS) independently screened the titles

and abstracts of the search results and extracted the following

information from the included articles: authors’ names, year of

publication, population of country and ethnicity, genotyping

method, case and control numbers, control’s source, case–control

match, cancer type, gene, SNP, and allele frequency.

Subsequently, we applied the Newcastle-Ottawa Scale (NOS)

score for case-control studies to evaluate the quality and risk of bias

of the included studies (Figure 2) (14). According to the NOS, article

quality is assessed through eight questions from the Selection

dimension (case definition, case selection, control definition, and

control selection), the Comparability dimension (comparability of

cases and controls), and the Exposure dimension (exposure

ascertainment, case and control ascertainment, and non-response

rate). Excepting “Comparability” with two stars, other items can

each be given one star. Hence, a study can be awarded a maximum

of nine stars and will be excluded if it receives fewer than five

stars. Discrepancies were resolved by consensus between the

reviewing authors.
2.3 Data synthesis and statistical analysis

Alleles are represented differently in different genomes. Therefore,

for clarity, all reference alleles were represented by “A” in this study,

and the corresponding alternative alleles were represented by “B.”

Hence, for genotype, “AA” meant the homozygous dominant

genotype, “AB” meant the heterozygote genotype, and “BB” meant

the homozygous recessive genotype. The allele model (A vs. B) was

employed to explore dominance. Furthermore, the dominant model

(AA + AB vs. BB) and the recessive model (AA vs. AB + BB) were

used for investigating the association between different genotypes and

phenotypes (15).

A bivariate random effect model was performed for the meta-

analysis of the comparative studies. Odds ratios (ORs) and their 95%

confidence intervals (CIs) were used for estimating heterogeneity

within and between studies. Then, pooled sensitivity (Se), specificity

(Sp), positive likelihood ratio (LR), negative likelihood ratio (LR),

diagnostic OR (DOR), and area under the summary receiver

operating characteristic curve (AUROC) were calculated for each

genotyping. The pooled AUROC was used as an indicator for testing

to examine the diagnostic accuracy of each genotyping. The statistical

heterogeneity between each study was assessed using the

inconsistency index I-square. Additionally, meta-regression analysis

was performed based on cancer type to assess heterogeneity. Cancer

types included: CM, NMSC, and SC (including both CM and NMSC).

Next, Bayesian network meta-analysis (NMA) was used to clarify

the relationships between the SNPs and skin cancer according to the

allele model (A vs. B) and the dominant model (AA + AB vs. BB). The

fixed-effects model that had four chains, 1,000 burn-ins, 200,000

iterations, and a thinning interval of 10 was selected for the MCMC

simulation (16). The Gelman–Rubin plot and potential scale

reduction factor (PSRF) were used for assessing convergence. Net

splitting was carried out to check the consistency of the networks, and

the effect estimate table was employed for estimating all SNP
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FIGURE 1

PRISMA flow diagram for network meta-analysis.
FIGURE 2

Case–control risks of the bias assessment graph.
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comparisons. Then, the overall ranks of SNPs were estimated by P-

scores that were equivalent to the surface under the cumulative

ranking curve (SUCRA) (17). SNPs with the highest P-scores were

the most related to skin cancer.

P <0.05 was statistically significant. RStudio software and StataSE

16.0 software were used for calculations and plotting. The software

packages used in the study are listed in Supplementary Presentation 2.
3 Results

3.1 Literature search results

The literature search initially identified 3,575 studies from

PubMed, Embase, and Web of Science. The search ended on 2 May

2022. As Figure 1 shows, we recorded screening 3,387 studies based

on titles and abstracts, and 368 studies were obtained for full-text

screening. At last, 59 studies met the inclusion criteria and were

included in our network meta-analysis after being excluded from 232

full-text manuscripts due to background, unusable data, and bias

reasons. One article was excluded due to bias, as explained below.
3.2 Characteristics and bias of enrolled
studies

Table 1 summarizes the main characteristics of 60 studies that

were published between 2005 and 2022. Studies investigating

Caucasian or Mongoloid ethnicities were included. Figure 2 shows

the quality assessment of enrolled studies using the NOS risk bias tool.

Any studies with NOS scores lower than five stars were excluded.

Finally, 59 articles were included in the systematic review and

meta-analysis.
3.3 Pairwise meta-analysis

A direct meta-analysis was performed to determine the

correlation between 275 SNPs and SC risk (Supplementary Table

1). A total of 72 SNPs from 47 studies were closely associated with SC

in the studies using the allele model (A vs. B), while a significant

association was found for 52 SNPs from 31 studies using the

dominant model (AA + AB vs. BB). Furthermore, based on the

recessive model (AA vs. AB + BB), 77 SNPs from 35 studies were

related to SC. As depicted in Supplementary Image 1, the detected

SNPs were analyzed further for diagnostic accuracy.

Table 2 shows the evaluation of the diagnostic performance of the

pooled SNPs for SC. According to SUCRA, the allele model can be

employed for exploring dominance. Then, we chose the dominant

model as the genotyping model for diagnosing SC.
3.4 The allele model (A vs. B)

The associations between the 72 SNPs and SC susceptibility are

shown in Supplementary Table 2. In the allele model, the reference
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alleles of rs16891982 (G vs. C, combined OR [cOR] = 2.74, 95% CI

[2.20, 3.40]), rs885479 (G vs. A, cOR = 1.46, 95% CI [1.06, 2.01]),

rs1544410 (G vs. A, cOR = 1.19, 95% CI [1.06, 1.34]), rs731236 (T vs.

C, cOR = 1.11, 95% CI [1.00, 1.23]), and the alternative alleles of

rs25487 (G vs. A, cOR = 0.92, 95% CI [0.85, 0.99]), rs4911414 (G vs.

T, cOR = 0.85, 95% CI [0.75, 0.96]), rs1695 (W vs. M, cOR = 0.79,

95% CI [0.65, 0.95]), and rs2228570 (wild-type allele vs. mutant allele,

cOR = 0.79, 95% CI [0.71, 0.88]) were related significantly to SC in at

least two of the studies. The pooled P-value for all SNPs was less

than 0.05.
3.5 The dominant model (AA + AB vs. BB)

Supplementary Table 3 summarizes the 52 SNPs’ cOR for SC

according to the dominant model. The results show that those who

were homozygous dominant and heterozygous genotypes:

rs16891982 (GG + GC vs. CC, cOR = 3.72, 95% CI [1.66, 8.35]),

rs494379 (TT + TC vs. CC, cOR = 2.62, 95% CI [1.96, 3.49]), rs514921

(AA + AG vs. GG, cOR = 2.14, 95% CI [1.67, 2.75]), rs1144393 (AA +

AG vs. GG, cOR = 1.48, 95% CI [1.19, 1.84]), rs11615 (AA + AG vs.

GG, cOR = 1.41, 95% CI [1.02, 1.95]), and rs498186 (TT + TG vs. GG,

cOR = 1.35, 95% CI [1.10, 1.65]) had a higher risk for developing SC,

than those who were homozygous recessive genotypes. In contrast,

individuals with the homozygous recessive genotypes of rs25487

(GG + GA vs. AA, cOR = 0.85, 95% CI [0.72, 1.00]) and rs1805007

(CC + CT vs. TT, cOR = 0.42, 95% CI [0.19, 0.91]) were significantly

associated with increased susceptibility to SC.
3.6 Subgroup analysis

A covariate regression analysis was performed for each of the

three genotypes. The results showed that there was no statistical

difference (all P-values > 0.05) among CM, NMSC, and SC (including

both CM and NMSC) (Table 3).
3.7 Network evidence

3.7.1 The allele model
The network plot depicts the rough comparison of each pair of

SNPs (Figure 3). A node indicates an SNP, and its size represents the

number of studies. The connections between the nodes represent a

pair of comparisons, and their thickness represents the number of

direct comparisons. As is evident from Figure 3A, there were three

subgroups without any connections. Also, to avoid redundancy, the

network of SNPs from one study was deleted from our study. Thus,

the NMA of the allele model was divided into two groups: subgroup

one (including rs1544410, rs2228570, and rs731236), and subgroup

two (including rs1042522, rs1136410, rs11615, rs13181, rs1695,

rs1799793, rs1805006, rs1805007, rs1805008, rs25487, rs25489,

rs4911414, and rs885479) (Figure 3B).

The SNPs rs731236 vs. rs2228570 had the strongest negative

correlation with SC risk in subgroup one (standardized mean

differences (SMD) of OR = −0.08, 95% CI [−0.18, 0.02])

(Supplementary Table 4). However, the P-values of the correlations
frontiersin.org
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TABLE 1 Main characteristics of the eligible studies.

Author Year Country Ethnicity Genotyping method Case/Control Control’s Source Match

Jannot (18) 2005 France Caucasians SNaPshot 120/125 HB N

Vogel (19) 2005 Denmark Caucasian RT-PCR 322/322 PB Y

Li (20) 2006 USA Caucasian PCR 602/603 HB Y

Li (21) 2006 USA Caucasian PCR 602/603 HB Y

Wilkening (22) 2007 Hungary Romania and Slovakia Caucasian TaqMan 517/523 HB Y

Meyer (23) 2007 Germany Caucasian Sequencing Kit 632/615 HB N

Applebaum (24) 2007 USA Caucasian Taqman 1540/780 PB Y

Povey (25) 2007 UK Caucasian PCR-RFLP 596/441 PB Y

Pjanova (26) 2007 Latvia Caucasian Sequencing Kit 203/125 HB N

Li (27) 2007 USA Caucasian PCR 602/603 HB Y

Li (28) 2008 USA Caucasian PCR 805/841 HB Y

Fernandez (29) 2008 Spain Caucasian PCR 131/245 HB Y

Guedj (30) 2008 France Caucasian PCR 1019/1466 HB N

Nan (31) 2009 USA Caucasian PCR-RFLP 805/873 HB Y

Schoof (32) 2009 Germany Caucasian TaqMan PCR 165/162 HB Y

Figl (33) 2010 Germany and Spain Caucasian TaqMan 1186/1280 HB Y

Capasso (34) 2010 Italy Caucasian PCR 249/291 HB N

Debniak (35) 2011 Poland Caucasian Taqman 300/300 PB N

Rizzato (36) 2011 Hungary, Romania, and Slovakia Caucasian RT-PCR 507/515 HB N

Rizzato (37) 2011 Hungary, Romania, and Slovakia Caucasian Taqman 529/532 HB Y

Lesiak (38) 2011 Poland Caucasian PCR-RFLP 142/142 HB Y

Wang (39) 2011 USA Caucasian TaqMan 872/873 HB Y

Almquist (40) 2011 USA Caucasian PCR-RFLP 1578/812 HB Y

Ibarrola-Villava (41) 2012 Spain Caucasian TaqMan PCR 562/338 HB N

Helsing (42) 2012 Norway Caucasian Sequencing Kit 388/420 HB N

Santonocito (43) 2012 Italy Caucasian RT-PCR 167/186 PB Y

Cocos (44) 2012 Romania Caucasian PCR-RFLP 174/80 HB N

Gao (45) 2013 USA Caucasian PCR 312/216 HB N

Oliveira (46) 2013 Brazil Caucasian PCR 146/146 HB Y

Maccioni (47) 2013 Spain Caucasian PCR 837/1154 HB Y

Pena-Chilet (48) 2013 Spain Caucasian RT-PCR 538/345 HB N

Pena-Chilet (49) 2013 Spain Caucasian RT-PCR 530/314 HB Y

Maccioni (50) 2013 Spain Caucasian PCR 837/1154 HB Y

Francisco (51) 2013 Brazil Caucasian PCR-RFLP 202/210 HB Y

Yamashita (52) 2013 Japan Mongoloid PCR 50/107 HB N

Cordoba-Lanus (53) 2014 Spain Caucasian Sequencing Kit 509/491 PB Y

Gomez-Lira (54) 2014 Italy Caucasian PCR-RFLP 240/342 HB N

Oliveira (55) 2014 Brazil Caucasian PCR 100/108 HB Y

Thunell (56) 2014 Sweden Caucasian PCR-RFLP 50/799 PB Y

Llorca-Cardenosa (57) 2014 Spain Caucasian KASP PCR 648/381 HB N

(Continued)
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between the SNPs in subgroup one were above 0.05 (Supplementary

Table 4). Similarly, as shown in Figure 3 and Supplementary Table 4,

the comparison with the highest direct pooled effect size in subgroup

two was rs4911414 vs rs1805006 (SMD of OR = −2.94, 95% CI [−2.48,

−3.40]), followed by comparison rs13181 vs. rs25489 (SMD of OR =

−2.35, 95% CI [−2.54, −2.16]).
Frontiers in Oncology 06
Additionally, in subgroup two, the direct and indirect evidence

showed negative correlations in the comparisons of rs1042522 vs.

rs25487, rs1136410 vs. rs25489, rs11615 vs. rs13181, rs11615 vs.

rs25487, rs13181 vs. rs1799793, rs13181 vs. rs25487, rs1805007 vs.

rs1805006, and rs1805007 vs. rs885479 (Table 2 in Supplementary

Table 4). However, since the indirect evidence proportion of each
TABLE 1 Continued

Author Year Country Ethnicity Genotyping method Case/Control Control’s Source Match

Hsu (58) 2015 China Mongoloid PCR-RFLP 70/210 PB Y

Russo (59) 2016 Italy Caucasian RT-PCR 177/158 HB N

Elefanti (60) 2016 Italy Caucasian TaqMan 182/89 HB N

Mukhammadiyeva (61) 2017 Russia Caucasian PCR-RFLP 25/100 PB Y

Li (62) 2017 China Mongoloid TaqMan 660/662 HB Y

Burns (63) 2017 USA Caucasian PCR 97/100 HB N

Sangalli (64) 2017 Italy Caucasian PCR 304/314 HB N

Motorina (65) 2018 Russia Caucasian TaqMan PCR 95/334 PB N

Gomez (66) 2018 Brazil Caucasian RT-PCR 250/250 HB N

Yuan (67) 2018 USA Caucasian PCR 177/172 PB N

Slawinska (68) 2019 Poland Caucasian PCR 254/254 HB Y

Orlandi (69) 2019 Italy Caucasian PCR-RFLP 334/291 HB Y

Ozola (70) 2019 Latvia Caucasian RT-PCR 253/200 HB N

Fathi (71) 2019 Iranian Caucasian PCR-RFLP 210/320 PB Y

Reis (72) 2020 Brazil Caucasian RT-PCR 120/135 HB Y

Morgado-Aguila (73) 2020 Spain Caucasian Taqman 81/73 PB Y

Tovar-Parra JD (74) 2020 Colombia Caucasian PCR 85/170 HB Y

Fathi (75) 2021 Iranian Caucasian PCR-RFLP 210/220 PB Y

Aristizabal-Pachon (76) 2022 Colombia Caucasians PCR-RFLP 120/120 HB Y

Dunjic (77)* 2022 Serbian Caucasians RT-PCR 93/95 UN Y
front
PCR, polvmerase chain reaction; PCR-RFLP, restriction fragment length polymorphism assay PCR; RT-PCR, real time PCR; KASP PCR, Competitive allele specific PCR; PB, population-based; HB,
hospital-based; UN, unknown; Y, yes; N, no; *Due to the low quality caused by bias, Dunjic’s article was excluded from the meta-analysis.
TABLE 2 SNPs’ diagnostic performance evaluation in skin cancer.

Alleles model
(A vs. B)

Dominant model
(AA + AB vs. BB)

Recessive model
(AA vs. AB + BB)

Studies number 47 31 35

SNPs number 72 52 77

Pretest Prob 0.48 0.46 0.48

AUROC 0.50 [0.45, 0.54] 0.61 [0.57, 0.65] 0.53 [0.49, 0.57]

Sensitivity 0.79 [0.75, 0.83] 0.93 [0.91, 0.95] 0.64 [0.58, 0.69]

Specificity 0.22 [0.19, 0.26] 0.14 [0.11, 0.18] 0.42 [0.37, 0.47]

Positive LR 1.00 [1.00, 1.00] 1.1 [1.00, 1.10] 1.10 [1.00, 1.20]

Negative LR 0.94 [0.87, 1.02] 0.48 [0.33, 0.70] 0.85 [0.77,0.95]

Diagnostic OR 1 [1, 1] 2 [2, 3] 1 [1, 2]
“A” stands for the reference alleles; “B” stands for the corresponding alternative alleles; the numbers inside the “[,],” mean the range of 95% CI.
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comparison (i.e., the mean path length of each estimated comparison)

was less than 2 (78), each of the above-mentioned comparisons

followed the direction of direct evidence (Supplementary Image 2).

To select the SNPs with the highest chance of a significant

association with skin cancer, the P-scores were ranked, as shown in

Table 4. The SNP rs2228570 (P-score = 0.85) ranked first in subgroup

one in the allele model, and the SNP rs13181 had the highest P-score

in subgroup two (P-score = 0.94).
3.7.2 The dominant model
In Figure 4A, only two subgroups met the requirements for the

NMA. Subgroup one included rs1051121, rs11225426, rs1144393,

rs1729376, rs2071230, rs2071231, rs3213460, rs470215, rs470358,

rs475007, rs491152, rs494379, rs498186, rs5031036, rs514921,

rs71250626, rs7945189, and rs996999 (Figure 4B), while subgroup

two included rs1051740, rs11615, rs2228001, rs238406, rs25487,

rs25489, rs3212948, and rs3212950 (Figure 4C).

There was no inconsistency between the direct and indirect

evidence in Group 1. The strongest positive correlations in this

subgroup were the comparison of rs475007 vs. rs1729376 and the

comparison of rs475007 vs. rs2071231 (both SMDs of network OR =

4.23, 95% CI [2.19, 6.25]). These were followed by the rs475007 vs

rs491152 comparison, which SNPs were negatively correlated with SC

risk (SMD of network OR = −4.21, 95% CI [−6.24, −2.18]). The

comparison of rs494379 and rs514921 showed the strongest indirect
Frontiers in Oncology 07
correlation (SMD of indirect OR = 11.52, 95% CI [−9.40, 32.44])

(Supplementary Image 3–5).

Inconsistencies between direct and indirect evidence were

found in the comparison of rs2228001 vs. rs25487 and the

comparison of rs2228001 vs. rs25489 in subgroup two (Figure 4

in Figure 5). Both rs25487 and rs25489 were negatively correlated

with rs2228001 after performing network analysis (Figure 5).

Figure 5 also demonstrates that the rs238406 vs. rs25489

comparison had the strongest association (SMD of network OR =

−2.17, 95% CI [−2.72, −1.61]).

As shown in Table 5, rs475007 has the highest P-score (0.97) in

subgroup one, and rs238406 has the highest P-score (0.97) in

subgroup two. Therefore, the top five SNPs most likely associated

with skin cancer are, in descending order, in subgroup one: rs475007,

rs470358, rs498186, rs1144393, and rs470215, and in subgroup two:

rs238406, rs2228001, rs25487, rs11615, and rs3212950.
4 Discussion

Based on direct comparisons from pairwise meta-analysis and

added indirect comparisons, our study employed network meta-

analysis to compare the associations between single-nucleotide

polymorphisms and skin cancer using the allele model and the

dominant model. Our network meta-analysis identified two

subgroups in each genetic model, respectively. We ranked SNPs
TABLE 3 Subgroup analyses according to the cancer type.

Study number Sensitivity [95% CI] p Specificity [95% CI] p LRTChi2 p

Allele model 121
0.85

[0.78, 0.91]
0.15

0.17
[0.11, 0.25]

0.28 3.31 0.19

Dominant model 76
0.95

[0.90, 0.97]
0.44

0.19
[0.11, 0.31]

0.28 3.16 0.21

Recessive model 132
0.77

[0.65, 0.86]
0.05

0.35
[0.25, 0.47]

0.29 5.88 0.05
frontiers
LRTChi2, Likelihood ratio test in joint model.
A B

FIGURE 3

The network evidence plots of single nucleotide polymorphisms (SNPs) in the allele model (A vs. B). (A) Network plot of SNPs in all subgroups in the
allele model; (B) Network plot of SNPs in subgroup two of the allele model.
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based on their P-scores to select the most appropriate SNPs. Our

results showed that the minor alleles (T) of rs2228570 (FokI) and (C)

of rs13181 (ERCC2) were the highest-ranking SNPs in both

subgroups one and two of the allele model. On the other hand,

using the dominant model, the homozygous dominant genotype and

heterozygote genotype (AA + AT) of rs475007 in subgroup one and

the homozygous dominant genotype (AA) of rs238406 in subgroup

two were most likely to be associated with skin cancer.

The single-nucleotide polymorphism rs2228570 (FokI) is in the

vitamin D receptor (VDR) gene. It is one of the common human VDR

SNPs along with rs1544410 (BsmI), rs7975232 (ApaI), and rs731236

(TaqI). Vitamin D is metabolized to vitamin D: 1,25(OH)2D3.1 in

response to ultraviolet B (UVB) radiation. This metabolite is the

ligand of the VDR, which in turn initiates a series of biological

responses in bone metabolism, immunity, cell proliferation, and

differentiation by binding to vitamin D response elements in DNA

(79). Hence, rs2228570 has not only been associated with various skin

diseases, such as chronic spontaneous urticaria (CSU) (80), atopic

dermatitis (AD) (81), and leprosy (82), but has also been linked to an

increased incidence risk and worse prognosis of different cancers,
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such as breast cancer (83), ovarian cancer (84), gastric cancer (85),

hepatocellular carcinoma (86), papillary thyroid cancer (87),

pancreatic cancer (88), and melanoma. Our results are consistent

with previous studies using assay methods (89). For instance, the

study results of Zeljic et al., who used the assay method, showed that

the homozygous recessive genotype of rs2228570 was related to

increased melanoma risk compared to the homozygous dominant

genotype in the Caucasian population (89). However, no association

was observed between rs2228570 and melanoma in this investigation

using the biosystem assay method (90).

SNPs rs13181 and rs238406 ranked first and second in subgroups

two in both the allele and dominant models. Both SNPs are in the

ERCC2 (formerly called XPD) gene. The ERCC2 polymorphisms

have ATP-dependent DNA helicase activity, which may impact DNA

repair functions. Deficiency of ERCC2 has been reported to lead to

xeroderma pigmentosum (XP), trichothiodystrophy (TTD), and

Cockayne’s syndrome (CS) (91). This observation may explain why

rs13181 and rs238406 were found to be linked to cancers such as lung

cancer (92), cervical cancer (93), breast cancer, squamous cell

carcinomas of the head and neck (94), and bladder cancer (95). In
A

B
C

FIGURE 4

The network evidence plots of single nucleotide polymorphisms (SNPs) in the dominant model (AA + AB vs. BB). (A) Network map with 47 SNPs of all
subgroups in the dominant model; (B) Network map of subgroup one with 18 SNPs in the dominant model; and (C) Network map of Subgroup two with
eight SNPs in the dominant model.
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line with these findings, our results showed that the alternative allele

(C) of rs13181 and the homozygous recessive genotype (AA) of

rs238406 were significantly associated with SC risk. The study by

Kertatbs et al. reported a high frequency of the wild-type allele of
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rs13181 in advanced melanoma (96). However, an investigation using

the microarray chip method, including 1,391 NMSC cases and 2,586

cancer-free controls, did not find significantly increased risks of

NMSC for the homozygous dominant genotype of rs13181 (97).

Furthermore, a meta-analysis found that the homozygous recessive

genotype (AA) of rs238406 was positively associated with an

increased risk of cancer of the nervous system, the digestive tract,

the genito-urinary system, and the respiratory system, but not basal

cell cancer (98).

Matrix metalloproteinases (MMPs) are a family of proteolytic

enzymes that are involved in cell mobility, proliferation,

differentiation, and apoptosis by degrading extracellular proteins (99).

MMP1, a secreted enzyme that cleaves fibrillar collagen, has been linked

to cancer by promoting cancer cell proliferation, tumor angiogenesis,

and vasculogenesis (100). In the dominant model of our research, all

the SNPs in subgroup one were located in the MMP1 gene. The SNP

most likely to be associated with SC was rs475007. Furthermore, the

homozygous recessive genotype of rs475007 was found to decrease the

risk of skin cancer. Similar results were found in Liu’s study, which

reported that patients with homozygous dominant genotype and

heterozygote genotype for the reference allele of rs475007 were more

likely to have larger skin tumors (101).
5 Limitation

Due to technical differences and differences in sensitivity, our

analysis only included studies that used the PCR genotypic detection

method and excluded microarray detection or genome-wide

association studies (GWAS). However, GWAS allows for much

larger sample sizes than PCR studies. Additionally, due to the

limitations of the RStudio and StataSE software and the complexity

of multi-arm studies, SNPs only reported in one single article were

not included in the final network meta-analysis.
TABLE 4 The rank of the P-score of the SNPs in each subgroup in the allele model.

Rank Subgroup 1 P-score Subgroup 2 P-score

1 rs2228570 0.85 rs13181 0.94

2 rs1544410 0.47 rs1799793 0.90

3 rs731236 0.18 rs25487 0.88

4 rs11615 0.77

5 rs1042522 0.64

6 rs1695 0.57

7 rs4911414 0.54

8 rs1136410 0.41

9 rs1805007 0.33

10 rs1805008 0.24

11 rs25489 0.19

12 rs885479 0.08

13 rs1805006 0.00
FIGURE 5

The direct and indirect evidence forest plot of subgroup two in the
dominant model.
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6 Future prospective
Our article indicated that people with mutations in the genes FokI

(rs2228570), ERCC2 (rs13181), MMP1 (rs475007), and ERCC2

(rs238406) were more likely to have skin cancer. Dysplastic nevi

(also called atypical moles) are precursors and risk factors for

malignant melanoma (102). However, it is difficult to distinguish

them from melanomas because of overlapping features and a lack of

predictive markers (103). Thus, our results may provide a possibility

for the early detection of asymptomatic skin cancer if routine genetic

screening is implemented in the general population in the future.

Additionally, the results of our study may also provide valuable

information for decision-making when determining the best mode

of therapy for SC in a patient. For instance, since FokI is a vitamin D

receptor gene and vitamin D is considered to be a protective factor in

certain cancers, such as skin cancer (104, 105), supplementation with

vitamin D may be used as adjuvant therapy in cancer patients.

Therefore, identification of SC patients with FokI gene (rs2228570)

mutations is important, since these patients would not benefit from

adjuvant Vitamin D therapy.

In addition, we obtained direct and indirect evidence between the

SNP pairs through network analysis, which proposed the possibility

of hitherto unexplored relationships between certain gene mutations.

For example, ERCC2 gene mutations have been shown to indirectly

increase the risk of SC (106, 107), and the Melanocortin receptor 1

(MC1R), which encodes melanocyte-stimulating hormone (MSH)
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receptors, has also been shown to be a risk factor for skin cancer

(108). However, surprisingly, indirect evidence from our network

meta-analysis showed that ERCC2 (rs13181) was negatively related to

MC1R (1805006, 1805007, 1805008, and rs885479) (Supplementary

Table 4). Therefore, the relationship between ERCC2 and MC1R

necessitates further research to determine their roles in

SC development.

Finally, as an added scientific value, we applied an innovative

research design by performing a network analysis of case–control

studies, thus providing a fresh perspective on the NMA method. Our

analysis implies that all studies involving genetically-related diseases,

whether cohort or case–control studies, can be used to build a

network in the meta-analysis, which may then provide valuable

information for the diseases’ early detection, diagnosis, staging,

treatment, and prognosis.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

Conceptualization: LZ, HL, and IK. Methodology: LZ and HL.

Data curation: LZ, YS, HA, and JZ. Statistical analysis: LZ and HL.
TABLE 5 The rank of the P-score of the SNPs in each subgroup in the dominant model.

Rank Subgroup 1 P-score Subgroup 2 P-score

1 rs475007 0.97 rs238406 0.97

2 rs470358 0.92 rs2228001 0.87

3 rs498186 0.89 rs25487 0.62

4 rs1144393 0.84 rs11615 0.50

5 rs470215 0.79 rs3212950 0.41

6 rs514921 0.68 rs3212948 0.41

7 rs71250626 0.62 rs1051740 0.21

8 rs494379 0.59 rs25489 0.02

9 rs996999 0.58

10 rs3213460 0.42

11 rs2071230 0.27

12 rs7945189 0.27

13 rs11225426 0.26

14 rs5031036 0.26

15 rs1051121 0.17

16 rs491152 0.16

17 rs1729376 0.16

18 rs2071231 0.16
frontiersin.org

https://doi.org/10.3389/fonc.2023.1094309
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1094309
Writing (original draft preparation): LZ and IK. Review and editing:
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