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Gastric cancer is the fifth most common cancer worldwide, and the treatment of

advanced gastric cancer has relatively little progress. With the continuous

development of molecularly targeted therapy for tumors, it has been discovered

that human epidermal growth factor receptor 2 (HER2) contributes to the poor

prognosis and pathogenesis of various cancers. In order to treat HER2-positive

advanced gastric cancer, Trastuzumab has emerged as the first first-line targeted

medication used in conjunction with chemotherapy. The consequent trastuzumab

resistance has become an important issue, and various new HER2-targeted gastric

cancer drugs are emerging to address this challenge. This review’s primary

concern is the drug mechanism of various HER2-positive gastric cancer targeted

therapy and fresh techniques of detection.
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1 Introduction

Since 2010, China’s cancer incidence and fatality rates have increased, making cancer the

leading cause of death and a major public health issue (1). Gastric cancer is the second most

common cancer causing death in China, and its 5-year survival rate is very low because more

than 80% of patients are diagnosed with advanced gastric cancer (AGC) (2). The 5-year

survival rate for AGC is less than 10%, and even if novel chemotherapy protocols and

biological therapy are being used, median overall survival (OS) is still less than 1 year (3).

Gastric cancer remains important worldwide, causing over 1 million new cases and an

estimated 769,000 deaths in 2020, incidence and mortality rank fifth and fourth in the world,

respectively (4). Only in recent years has it been discovered thatH. pylori infection can lead to

antral/body gastric cancer. Additionally, H. pylori infection greatly increases the risk of

developing gastric cancer. The risk of gastric cancer brought on by a chronic H. pylori

infection may also be influenced by additional risk factors, such as smoking, excessive salt

consumption, and drinking alcohol (5, 6).

Different perioperative treatment strategies (neo-adjuvant, adjuvant, or both) have

improved survival for patients with locally AGC. For unresectable gastric cancer, In first-

line therapy, the combination of platinum compounds with fluoropyrimidine-based

chemotherapy is successful in extending survival, improving symptoms, and enhancing the

quality of life (7). Adding a third drug, such as docetaxel, to the platinum-fluoropyrimidine
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combination increases toxicity but improves patient survival (8).

With the application of various novel immunotherapy and

molecular targeted therapy, anti-HER2 is the most widely used

target because it significantly increases the survival of cancer patients.
2 The HER2 pathway and the relevance
of gastric cancer

Human epidermal growth factor receptor 2 (HER2), also known

as Neu or ErbB2, Encoded by ERBB2 on chromosome 17, is a

transmembrane tyrosine kinase (TK) receptor belonging to the

epidermal growth factor receptor (EGFR) family, This family

consists of four members (HER1 or EGFR, HER2, HER3, and

HER4), all of which have an extracellular domain(ECD), a

transmembrane domain, and an intracellular kinase domain (9, 10).

(Figure 1.) The binding of different ligands to the ECD initiates a

series of signal transduction pathways, which are crucial for the

growth, apoptosis, adhesion, migration, and differentiation of tumor

cells (11). The HER2 receptor, first discovered in 1984, is a 185kD

transmembrane glycoprotein (12). HER2 lacks ligand-binding activity

and requires heterodimerization with other family members (HER1

and/or HER3) to be activated (13). Among them, the HER2-HER3

heterodimer is the most active HER signaling dimer and plays a

crucial role in HER2-driven tumor oncogenic transformation, HER-2

activates downstream pathways through heterodimerization and

tyrosine kinase autophosphorylation mediated signal transduction,

major signaling pathways include Ras/MAPK and PI3K/Akt (14).

They are essential pathways regulating cell proliferation,

differentiation and survival and are closely related to the

pathogenesis of various tumors (15–17). HER2-specific antibodies

inter fere wi th HER2 s igna l ing pr imari ly by blocking
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heterodimerization between ErbB-2 and growth factor receptors

(18). Use immunohistochemistry (IHC) to detect HER2 protein,

fluorescence in situ hybridization (FISH) or chromogenic in situ

hybridization (CISH) to detect gene amplification, HER2

overexpression can be classified as IHC0 (negative), IHC1+

(negative), IHC2+ (equivocal), or IHC3+ (positive), and samples

with an IHC 2+ value should undergo another FISH or CISH test

(Figure 2) (19, 20).

Although non-small cell lung cancer (NSCLC), ovarian, colon,

and pancreatic cancers overexpress HER2 protein and/or show gene

amplification in varying proportions of cases, HER2 protein

overexpression is most pronounced in breast and gastric cancers

(21). In comparison to HER2-negative breast cancer, HER2-positive

breast cancer is more well-studied and has greater mortality and risk

of distant metastases. Following its approval in 1998, trastuzumab,

one of the first molecularly targeted drugs to be developed, is now

recommended for all patients with early-stage HER2-positive disease

and has a better prognosis (22–24). According to the latest global

report, the average HER2-positive rate of gastric cancer is 17.9%, of

which the HER2-positive rate in Chinese gastric cancer patients was

8.8% (25, 26). HER2 overexpression was associated with tumor

location, tumor differentiation, Bormann classification, Lauren’s

classification, lymph node status, venous invasion, and lymphatic

invasion in patients. Among gastric cancers with high expression of

HER2 protein, gastroesophageal junction cancer(GEJ) is more

common than gastric corpus cancer. Predominantly tubular

adenocarcinoma (larger proportion of wel l/moderately

differentiated carcinomas, lesser proportion of poorly differentiated

adenocarcinomas), and HER2 positivity is more common in the

Intestinal type than diffuse or mixed type. However, there is no

correlation with gender, age, or clinical stage (27–30). However, there

is controversy over the role of HER2 in predicting prognosis in gastric
FIGURE 1

Mechanism of action of agents targeting HER2. Trastuzumab (green) binds to the ECD IV of HER2, thereby inhibiting the HER2 signaling pathway leading
to cell cycle arrest; Pertuzumab (orange), which binds to the ECD II and Inhibits dimer formation; Margetuximab, which binds trastuzumab to an altered
Fc-g domain that involved in ADCC; Lapatinib (yellow) directly prevents the PI3K pathway from being activated by binding to the intracellular tyrosine
kinase domain of HER2; T-DM1 (red circle)releases the emtansine moiety after the ADC is phagocytosed by lysosomes; T-Dxd (orange triangle), another
ADC combining trastuzumab and deruxtecan, a potent topoisomerase I inhibitor; Bispecific antibody ZW25 (purple) binds to both extracellular domains II
and IV of HER-2.
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cancer, as opposed to the poor prognosis associated with HER2

positivity in breast cancer. Studies have revealed that the prognosis

is independent of HER2 expression. Therefore, HER2 remains an

uncertain predictor of gastric cancer prognosis, and more research is

required (31–33).
3 Monoclonal antibodies

3.1 Trastuzumab

Patients with HER2-positive gastric cancer have seen favorable

clinical results after receiving anti-HER2 therapy. Trastuzumab is a

humanized recombinant monoclonal antibody that selectively binds

to HER2 ECD IV and reduces the expression of HER2 receptors,

Thereby inhibiting angiogenesis, reducing DNA repair, and inducing

apoptosis. On the other hand, trastuzumab contains an IgG1 Fc

structure, which Can mediate antibody-dependent cellular

cytotoxicity (ADCC) to attack target cells (34). Patients who

underwent chemotherapy with cisplatin and fluorouracil in

combination with trastuzumab had a better median OS than those

who just got chemotherapy(16 months vs 11 months). This is mainly

due to the survival advantage of patients with high expression of the

HER2 protein (35, 36).

With the advancement of tumor immunotherapy, combined

immune checkpoint inhibitors will emerge as a promising

treatment. A phase II trial (NCT03409848) revealed that

trastuzumab and PD-1 inhibitors nivolumab combined with first-

line chemotherapy showed promising efficacy in HER2-positive GEJ

Cancer (37). Meanwhile, pembrolizumab can also be safely used in

combination with trastuzumab and chemotherapy (38).

Pembrolizumab was added to trastuzumab and chemotherapy in a

phase III trial (NCT03615326), which dramatically decreased tumor

size and improved objective response rates (39).

The issue has gained attention as most patients develop resistance

to trastuzumab. Trastuzumab resistance appears to be primarily

mediated by tumor heterogeneity. Treatment failure with anti-

HER2 therapy is also associated with changes in receptor tyrosine

kinase-RAS-PI3K signaling. Additionally, Mucins, which are cell

surface proteins, reduce the HER2 receptor’s interaction with

trastuzumab. As a result, the drug’s inhibitory effect is blocked (31,
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40). To overcome this problem, a variety of new drugs and treatments

are emerging.
3.2 Pertuzumab

Pertuzumab is a recombinant humanized anti-HER2 antibody

with different antitumor activity than trastuzumab. Pertuzumab binds

to the ECD II of HER2. Therefore, pertuzumab can inhibit the

dimerization of HER2 with other HER family members, especially

effectively block HER2-HER3 heterodimerization, thereby preventing

ligand-dependent HER2 signaling (41–43). Adding pertuzumab to

trastuzumab and chemotherapy has not been found to increase

survival in patients with HER2-positive metastatic gastric cancer,

despite the fact that pertuzumab significantly prolongs the lives of

patients with metastatic breast cancer. This may be a consequence of

the different tumor biology exhibited by HER2-positive AGC and

HER2-positive breast cancer (44, 45). The ongoing INNOVATION

trial will individually evaluate the relative benefit of trastuzumab and

pertuzumab in perioperative therapy (45).
3.3 Margetuximab

Margetuximab is a HER2-targeted antibody with an engineered FCg
domain. Special modification of the Fc region increases its binding to the

activating Fc receptor FcgRIIIA (CD16A) and reduces its binding to the

inhibitory Fc receptor FcgRIIB (CD32B). Therefore, the response rate is

increased (46). CD16A is an Fc receptor important in mediating ADCC

effects, which renders margetuximab more potent and more cytotoxic

than trastuzumab with the wild-type Fc domain. A phase Ib/II trial

(NCT02689284) has shown that margetuximab combined with anti-PD-

1 drugs such as pembrolizumab and retifanlimab have synergistic

antitumor activity (47). At the same time, it has a stronger impact on

people with tumors expressing low HER2 or those with CD16A low

binding alleles (48). In addition, compared with trastuzumab,

margetuximab can enhance the ADCC effect to produce a stronger

killing effect on tumor cells (49). The current Phase II/III, randomized

trial(MAHOGANY) is assessing margetuximab plus retifanlimab with/

without chemotherapy and margetuximab plus tebotelimab with

chemotherapy in HER2-Positive Gastric or GEJ Cancer (50).
FIGURE 2

HER2/neu testing algorithm.
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4 TKIs

Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP

binding site of Protein tyrosine kinase(PTK), leading to a reduction in

tyrosine kinase phosphorylation and blocking downstream signaling

pathways, thereby inhibiting cancer cell proliferation (51, 52).

Lapatinib, a small-molecule inhibitor of the EGFR and HER2

tyrosine kinase domains, was first approved for treating HER2-

positive breast cancer (53). In treating HER2-positive gastric cancer,

the median OS of capecitabine and oxaliplatin (CapeOx) combined

with lapatinib and CapeOx plus placebo was 12.2 months and 10.5

months, respectively, and there was no significant difference. Median

progression-free survival (PFS) was 6.0 months and 5.4 months,

respectively (54). On the other hand, the median OS of lapatinib

plus paclitaxel and paclitaxel alone was 11.0 months and 8.9 months,

respectively (P=0.1044). There were also no significant differences in

PFS (5.4 months vs. 4.4 months) and time to progression (TTP) (5.5

months vs. 4.4 months). Therefore, the addition of lapatinib to

CapeOx’s first-line chemotherapy regimen and second-line

regimens of lapatinib plus paclitaxel did not improve patients’ OS

(55). Afatinib irreversibly inhibits the ErbB family, paclitaxel and

afatinib are being tested in a trial (NCT01522768) for patients with

HER2-positive, trastuzumab-refractory esophagogastric cancer.
5 Antibody-drug conjugates

5.1 Trastuzumab emtansine

Antibody-drug conjugates (ADC) is an emerging antibody

bioconjugate, which is an immunoconjugate composed of a

monoclonal antibody bound to a cytotoxic drug through a chemical

linker, combining the antigen specificity of the antibody and the

potency of the cytotoxic agent at the same time (56). Monoclonal

antibodies are used as carriers to target cytotoxic drugs to specific

cells. The antibodies bind to specific receptors on the surface of the

target cells and are then degraded by lysosomes after endocytosis.

Intracellular small-molecule cytotoxic drugs are released in large

quantities, destroying DNA chains or microtubules, or exerting

topoisomerase or RNA polymerase inhibitory effects, resulting in

tumor cell death (57, 58). Trastuzumab emtansine (T-DM1) is a kind

of ADC composed of trastuzumab linked to the tubulin inhibitor

DM1 (a derivative of maytansine) through a stable linker. Catabolites

containing cytotoxic emtansine are released intracellularly to induce

mitotic arrest and apoptosis. However, AGC patients treated with T-

DM1 did not have a clear advantage in OS compared with patients

treated with taxanes (59, 60).
5.2 Trastuzumab deruxtecan

Trastuzumab deruxtecan (T-Dxd) is a novel ADC consisting of a

humanized anti-HER2 antibody covalently linked to a topoisomerase

I inhibitor (DXd) via a tetrapeptide-based cleavable linker (61). The

ADC payload (ie, DXd) was delivered directly to HER2-expressing

tumor cells, reducing damage to normal cells by cytotoxic agents (62).

Unlike T-DM1, T-Dxd showed stronger antitumor activity against
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gastric or GEJ cancer with low HER2 expression (63). Compared with

conventional chemotherapy, T-Dxd significantly improved patient

response rate (RR) (51% vs 14%) and prolonged OS(12.5 months vs

8.4 months) (64). Other studies have shown that T-Dxd is not only

effective against HER2 protein-positive tumor cells but also effective

against HER2-negative tumor cells in the presence of HER2-positive

cells. Due to the high membrane permeability of T-Dxd, this

bystander-killing effect may be due to T-Dxd being internalized by

HER2-positive cells, and DXd being released into the cytoplasm and

then being transferred to adjacent HER2-negative cells (65, 66).

Ongoing Phase II trials (NCT04014075) and (NCT04379596) will

study safety and efficacy of T-Dxd drug alone or in combination with

chemotherapy and/or immunotherapy.
6 Emerging treatments

6.1 ZW25

ZW25 is a bispecific antibody that simultaneously binds two

HER2 epitopes: ECD4 and ECD2. Compared with trastuzumab or

pertuzumab, ZW25 has stronger antitumor activity, can effectively

silence HER2 signaling, and also stimulate the immune system. ZW25

has been demonstrated to have single-agent action and to be well

tolerated (67). A clinical trial recruiting 24 patients with HER2-

positive cancer, 71% of whom had previously received trastuzumab,

showed a median PFS of 6.2 months and a disease control rate of 82%.

Diarrhea, infusion reactions, and nausea were the most common

grade 1 or 2 side effects. Phase II trials will test the medication both by

itself and when combined with chemotherapy (68). Additionally, a

trial combining ZW25 with tislelizumab and chemotherapy is

ongoing (NCT04276493).
6.2 CAR-T therapy

Chimeric antigen receptor T (CAR-T) cell therapy is an adaptive

cellular immunotherapy in which CAR-redirected T cells expressing

engineered receptors for specific antigens are reinfused into patients,

thereby triggering an effective antitumor immune response (69).

Major histocompatibility complex (MHC)-independent tumor-

associated antigen recognition is made feasible by CARs (70). CARs

consist of an extracellular target antigen-binding domain, a hinge

region transmembrane domain, and one or more intracellular

signaling domains (71). Among them, chimeric antigen receptor-

modified T cell therapy targeting CD19 is very effective in relapsed

acute lymphoblastic leukemia (72). Due to the substantial

heterogeneity of gastric cancer cells, there is not much research on

the application of CAR-T cells in the treatment of gastric cancer. A

study showed that expanded CAR-T cells efficiently eliminated

HER2-positive gastric cancer cells from patients after being

specifically triggered by the HER2 antigen (73). In HER2-positive

xenograft tumors, CAR-T cells’ tumor suppressor and killing abilities

were significantly enhanced compared with non-transduced T cells

(74). HER2-targeted CAR-T cells for treating HER2-positive AGC is a

promising therapeutic strategy, but additional study is required to

determine its toxicity and immunogenicity. Patients with refractory
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HER2-positive solid tumors will participate in a phase I study

(NCT04511871) to investigate the CAR-T’s safety and preliminary

therapeutic efficacy.
7 Drug resistance in anti−HER2 therapy

7.1 HER2 heterogenous expression

Intratumor heterogeneity and genomic instability processes shape

tumor evolution in space and time, and growing evidence suggests a

link between assessment heterogeneity and poor prognosis. This

explains the mismatch between the costs and benefits of some

cancer treatments (75). Gastric cancer tumor cells have greater

HER-2 heterogeneity (from 26 to 79% in IHC) compared to breast

cancer (76). HER-2 heterogeneity may reduce the efficacy of

trastuzumab. Two Japanese studies discovered it to be an

independent predictor of poor prognosis (77). This may be the

most important primary mechanism of anti-HER2 drug resistance.
7.2 Loss of HER2 positivity

HER2 loss is one of the primary causes of acquired resistance to

trastuzumab in HER2-positive gastric cancer patients (78). In patients

with HER2-positive gastric cancer receiving trastuzumab, 29.1%-64%

of patients developed loss of HER2 expression during treatment (IHC

score <3+ and absence of ISH amplification) and/or loss of HER2

overexpression (IHC “down scoring” from 2+/3+ to 0/1+), At the

same time, the heterogeneity of HER2 gene expression increased. This

phenomenon was found more frequent in tumors with an initial IHC

score of 2+, suggesting that HER2 status needs to be reassessed before

starting second-line anti-HER2 therapy (79, 80).
7.3 Activation of alternative pathways

Src, a non-receptor tyrosine kinase of the Src family, plays a role

in signaling and crosstalk between growth-promoting pathways (81).

Studies have shown a relationship between the low clinical effect of

trastuzumab and the changes of the PI3K/Akt pathway. Acquired

resistance to trastuzumab in both HER2-overexpressing breast and

gastric cancer are associated with sustained Src-mediated activation of

the MAPK/ERK and PI3K/mTOR pathways (82, 83). Meanwhile,

HER3 overexpression was observed in drug-resistant gastric cancer

cell lines, which may be induced by HER2 blockade (84). Therefore,

blocking these targets may improve drug resistance in patients.
7.4 Epithelial to mesenchymal transition

Epithelial to Mesenchymal Transition (EMT) is a reversible

cellular program that temporarily places epithelial cells in a quasi-

mesenchymal state (85). EMT is essential for the invasion and

metastasis of cancer cells as well as embryogenesis and the healing

of wounds (86, 87). EMT and HER4 may be associated with resistance

to HER2 therapy. HER4 and phosphorylated HER4 (p-HER4)
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activating the downstream PI3K pathway through the HER4-YAP1

axis to promote the transformation of epithelial cells to mesenchymal

cells to maintain the invasiveness of HER2-positive gastric cancer and

escape the blockade of trastuzumab (88, 89).
8 New screening techniques

8.1 Circulating tumor DNA

To better assess patient outcomes, we need improved diagnostic,

prognostic, and disease surveillance methods despite the availability of

various treatments (90). Circulating tumor DNA (ctDNA) is released

into the bloodstream by circulating tumor cells during tumor cell

apoptosis or necrosis, a process that occurs before the tumor is

detected by imaging means or clinical symptoms are not manifested.

As a result, ctDNA is one of the most promising biomarkers for detecting

cancer in its early stages (91, 92). In a study of ctDNA in early gastric

cancer, HER2 amplification in tumor tissue and DNA samples matched

at a rate of roughly 60% (93). With the application of modern

technologies such as digital droplet PCR and next generation

sequencing, the coincidence rate between ctDNA and her2 expression

in tumor tissue has increased to about 90% (90, 94). Moreover, the

detection of ctDNA can overcome the heterogeneity of some tumors,

which suggests that the targeted HER2 population can be screened

alternatively using ctDNA (95). Based on the advantages of non-

invasive and dynamic monitoring of ctDNA, it can be used as a tool to

evaluate and predict the effectiveness of anti-HER2 therapy (96).
8.2 Circulating tumor cells

Circulating tumor cells (CTCs) are tumor cells that shed into the

blood and circulate throughout the body (97). The spread and

migration of CTCs are important causes of distant metastasis of

tumors (98). CTCs counting is a non-invasive method to monitor

chemotherapy response and real-time progression, which is more

valuable in predicting the sensitivity or prognosis of AGC patients to

chemotherapy drugs (99–101). Recent research has found that HER2

amplification detected in CTCs is highly consistent with patient

tissue. Therefore CTCs can serve as a non-invasive alternative to

document gene amplification in GC patients (102–104).
8.3 89Zr-Trastuzumab PET/CT

89Zr-Trastuzumab PET/CT is an imaging test using radionuclide
89Zr-labeled trastuzumab as an imaging agent to determine HER2

expression heterogeneity in gastric cancers and the effect of HER2-

targeted therapy. 89Zr-Trastuzumab has additional advantages over

single-point biopsy, allowing simultaneous non-invasive assessment

of changes in HER2 levels and target binding in the primary tumor

and all metastatic sites (105–107). HER2 PET imaging will play an

important role in improving diagnosis, staging (eg, when lesions

cannot be biopsied), guiding individualized therapy, and the

development of targeted drugs (108).
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9 Conclusion and prospects

The role of HER-2 in gastric cancer has been demonstrated, and

HER2-targeted therapy has dramatically improved the prognosis for

patients with early- and late-stage HER2-positive AGC. But only

trastuzumab prolongs OS and PFS and is approved as the first-line

standard of care. Furthermore, gastric cancer’s intratumoral, intrapatient,

and interpatient heterogeneity remains a crucial obstacle to developing

targeted therapy drugs. At the same time, immune checkpoint inhibitor

monotherapy is not effective against the majority of gastric cancer, hence

a combination of immunotherapy and anti-HER2monoclonal antibodies

may be required. To overcome these challenges, novel HER2-targeted

drugs have been developed, such as ADCs, TKIs, and bispecific

antibodies. New screening methods, such as ctDNA and new imaging

agents, allow real-time assessment and monitoring of anti-HER2

treatment in a less invasive manner. Overall, the outcomes for both

present and future patients will be significantly improved by new research

approaches that address the issues mentioned above.
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