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Introduction: Colorectal adenoma can develop into colorectal cancer.

Determining the risk of tumorigenesis in colorectal adenoma would be critical

for avoiding the development of colorectal cancer; however, genomic features

that could help predict the risk of tumorigenesis remain uncertain.

Methods: In this work, DNA and RNA parallel capture sequencing data covering

519 genes from colorectal adenoma and colorectal cancer samples were

collected. The somatic mutation profiles were obtained from DNA sequencing

data, and the expression profiles were obtained from RNA sequencing data.

Results:Despite some similarities between the adenoma samples and the cancer

samples, different mutation frequencies, co-occurrences, andmutually exclusive

patterns were detected in the mutation profiles of patients with colorectal

adenoma and colorectal cancer. Differentially expressed genes were also

detected between the two patient groups using RNA sequencing. Finally, two

random forest classification models were built, one based on mutation profiles

and one based on expression profiles. The models distinguished adenoma and

cancer samples with accuracy levels of 81.48% and 100.00%, respectively,

showing the potential of the 519-gene panel for monitoring adenoma patients

in clinical practice.

Conclusion: This study revealed molecular characteristics and correlations

between colorectal adenoma and colorectal cancer, and it demonstrated that

the 519-gene panel may be used for early monitoring of the progression of

colorectal adenoma to cancer.
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1 Introduction

Although the mortality rate of colorectal cancer is declining, it

remains one of the top three causes of cancer-related deaths (1–7).

The occurrence of cancer is a multi-step process, and most malignant

colorectal cancers are caused by pre-existing benign tumors (8, 9).

Colorectal cancer is caused by the activation of oncogene mutations

and the inactivation of tumor suppressor genes, the latter of which is

the main cause (10–14). The specific process begins with the

abnormal growth of colonic epithelium, which transforms into

colorectal adenoma and finally into cancer (15–17). Chemotherapy

and radiation therapy are the main modes of treatment for tumors,

but these treatments are quite taxing for patients and the results are

not always ideal (18–22). Therefore, the detection and treatment of

cancer at an early stage of development is critical. Preventive

intervention during this period can preclude the development of

cancer and potentially reverse the process of cancer development (23).

Colonoscopy plays an important role in the diagnosis and

treatment of colorectal cancer during its formation and

development (24). However, the disadvantages of colonoscopy

include patients’ reluctance to undergo the procedure, possible

complications, and economic burden for patients (23). Colorectal

adenoma generally refers to a raised lesion that protrudes from the

rectal mucosa surface into the intestinal cavity. Colonoscopy can

detect polyps and aid doctors in polyp removal, but it cannot

identify whether a polyp is neoplastic (15). Gong et al. established

a real-time quality improvement system to monitor the speed of

colonoscopy sampling in real time, thereby improving the

effectiveness of colonoscopy in detecting adenomas (24). In

another study, regular aspirin was shown to reduce the incidence

of colorectal adenomas, and other non-steroidal anti-inflammatory

drugs (NSAIDs) were shown to mitigate the risk of colorectal tumors

(25). Moreover, obesity has been reported as a poor prognostic

factor, and weight control has been shown to decrease the risk of

colorectal adenoma progression (26, 27). Therefore, establishing an

approach to discerning the prognosis of colorectal adenoma can

increase the early screening detection of colorectal cancers and avoid

unnecessary treatment for benign colorectal adenoma.

Numerous studies have explored the relationship between

colorectal adenoma and colorectal cancer. By comparing the

somatic mutation research of colorectal adenoma and colorectal

cancer, a supervised random deep forest model was established in

(23). In (28), whole-exome sequencing and targeted sequencing

methods were used to describe the somatic mutations of colorectal

precancerous lesions, and then through comparison with colorectal

cancer, a colorectal adenoma genome map was established to

identify the direction of colorectal adenoma molecular markers of

cancer development. The map indicated that, during the process of

colorectal adenoma development into colorectal cancer, genome

stability decreased and mutations accumulated, resulting in

alterations in RNA expression. The Consensus Molecular Subtype

(CMS) is a colorectal cancer classification system based on RNA

expression. In (15), it was found that colorectal adenomas can be

classified into CMS types. Further study revealed that the

distribution of CMS types in colorectal adenomas was consistent
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with the proportion of adenomas that progressed to colorectal

cancer. Colorectal adenomas are also called colorectal neoplastic

polyps, which belong to a category of polyps. Polyps can be divided

into cancer adjacent polyps (CAP) and cancer-free polyps (CFP).

The characteristics of CAP and CFP tissues based on their genes,

expression, and methylation patterns are used to define molecules

related to the progression of polyps to cancer, and to provide

candidate markers for screening. Adenoma and normal mucosa

transcripts from the same individual were explored in (29), and it

was found that a key feature of the transformation process was the

remodeling of the Wnt pathway. KIAA1199 is a new target of the

Wnt signaling pathway and a potential indicator of colorectal

adenoma transformation. In (30, 31), an unidentified gene locus

(chR16: hCG_1815491) named colorectal neoplasia differentially

expressed (CRNDE) was found to be activated in the early stage of

colorectal cancer; further research found that the single CRNDE

transcript can be used as a tissue and plasma biomarker of

colorectal adenoma and cancer with high sensitivity and

specificity. The human large intestine has many complex bacterial

communities. Studying the relationship between these bacterial

communities and colorectal adenomas in (32, 33) revealed that

changes in the composition of the bacterial communities associated

with adenomas may be related to the etiology of colorectal cancer.

This provides a new direction for the prevention of colorectal

adenoma and colorectal cancer. In terms of technology, the use of

next-generation sequencing (NGS) technology to study colorectal

adenoma and colorectal cancer-related genes is a superior choice.

Studies have shown that a targeted sequencing platform using NGS

technology can be used in the clinic to provide comprehensive data

on genetic changes (5, 34, 35).

Past research has improved our understanding of the natural

history and treatment of colorectal adenomas and uncovered the

advantages and disadvantages of general methods of detecting and

removing adenomas. Although some studies have investigated

colorectal adenoma and colorectal cancer based on the NGS

platform, few have utilized multi-omics data. With the

advancement of science and technology, improvements in risk

stratification, adenoma detection, monitoring intervals, and

screening have contributed to the prevention of colorectal cancer

(36). The objective of the present study was to develop an NGS

panel capable of DNA&RNA Parallel Capture for the exploration of

molecular characterization of colorectal adenoma and cancer.

Comparing the separate capture of DNA and RNA with co-

capture of DNA and RNA, the latter brings about several

advantages. Firstly, detections in RNA could complement

detections in DNA (37). Though targeted capture at the DNA

level can precisely identify genomic variation such as single

nucleotide variants, insertions, deletions and breakpoints of

structure variation, changes at the DNA level do not necessarily

reflect corresponding changes in biological phenotypes. Therefore,

detection at the transcriptome or proteome level is essential.

According to reports, 12.8% of uncommon fusions identified at

the DNA level did not result in abnormal transcription or proteins.

In such cases, targeted therapy is not effective in clinical treatment

(38). Secondly, co-capturing of DNA and RNA minimizes
frontiersin.org

https://doi.org/10.3389/fonc.2023.1067849
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2023.1067849
molecular difference between DNA and RNA caused by tumor

heterogeneity (39). Thirdly, co-capture of DNA and RNA is a

simpler process that requires only one hybridization capture

experiment, but allowed obtaining DNA and RNA sequencing

results simultaneously. It reduces reagent and sequencing costs

and saves experimental time (40).

First, 519 cancer-related genes in the NGS targeted panel—

consisting of tumor oncogenes, tumor suppressor genes, and genes

associated with target drugs and chemotherapy drugs—were

collected from OncoKB (41), Cosmic (42), TCGA (43), and the

literature. Specifically, the panel covered 73 drug target genes, 30

chemotherapy drug-related genes, and 74 hereditary tumor genes.

Then the potential molecular mechanism of the progression from

colorectal adenoma to colorectal cancer was investigated, and

common markers and key driver genes were identified to aid

clinical application in more accurately determining the potential

for disease progression.
2 Results

2.1 Overview

First, 26 colorectal adenoma patients and 28 colorectal cancer

patients were enrolled. The clinical information of these patients are

listed in Supplementary Tables 1, 2. Mutation profiles and

expression profiles were obtained for all available patients.

Multiple analysis was applied to the mutation profiles and the

expression profiles. Finally, a model was trained for classification
Frontiers in Oncology 03
between adenoma and cancer samples, achieving good results. The

entire analysis process is shown in Figure 1.
2.2 Somatic mutations in the two groups
showed similarity in most frequently
mutated genes and transitions/
transversions ratio

In total, DNA sequencing data of 26 colorectal adenoma

and 28 colorectal cancer cases passed the quality control.

Thus, somatic mutations were called for those samples using

matched blood samples as normal. The mutations are listed in

Supplementary Table 3.

The top five most frequently mutated genes in the adenoma

group were APC, TTN,MUC16, KRAS, andGATA3, and the top five

most frequently mutated genes in the cancer group were TP53,

APC, KRAS, TTN, and MUC16 (Figures 2A, B). Hence, the two

groups shared four common genes in the top five most frequently

mutated genes, namely APC, TTN, MUC16, and KRAS. The most

frequently mutated gene, APC, encodes a tumor suppressor protein

that acts as an antagonist of the Wnt signaling pathway. Mutations

at specific loci of APC and inactivation of APC can lead to familial

adenomatous polyposis, an autosomal dominant pre-malignant

disease that usually progresses to colorectal cancer (44, 45).

Transitions and transversions were also analyzed in the

adenoma and cancer groups (Figures 2C, D). The two groups

tended to harbor more transitions than transversions, had similar

Ti/Tv (transition/transversion) ratios, and had C>T as the most
FIGURE 1

Overview of this study. First, 26 colorectal adenoma patients and 28 colorectal cancer patients were enrolled, and DNA&RNA Parallel Capture was
applied on the patients’ adenoma and cancer samples. Mutation profiles and expression profiles were analyzed. Finally, a model was trained for
classification between adenoma and cancer samples, achieving good results. Classification results from both expression profiles and mutation
profiles could aid in making decisions.
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frequent mutation type. Interestingly, the top four most frequent

mutation types, C>T, T>C, C>A, and T>A, were in the same order

in both groups.

Furthermore, the driver genes were analyzed in the two groups.

In the adenoma group, GNAQ, KRAS, MUC16, and TTN were

identified as the driver genes, whereas in the cancer group, only

GNAQ and KRAS were identified as the driver genes. Notably,

GNAQ and KRAS were identified as driver genes in both groups.
2.3 TP53, SPTA1, SOX9, and ARID5B were
differentially mutated in the two groups

Colorectal cancer patients harbored more mutations in TP53

and SPTA1, two genes that are frequently mutated in breast cancer

(46). TP53 encodes a tumor suppressor protein containing

transcriptional activation, DNA binding, and oligomerization

domains; this protein responds to diverse cellular stresses to

regulate the expressions of the target genes, thereby inducing cell

cycle arrest, apoptosis, senescence, DNA repair, or changes in

metabolism. TP53 is closely related to colon cancer (47) and

other cancers (48, 49). SPTA1 encodes molecular scaffold proteins

that link the plasma membrane to the actin cytoskeleton. These

proteins determine cell shape, arrangement of transmembrane

proteins, and organization of organelles. Mutations in SPTA1

result in a variety of hereditary red blood cell disorders.
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Furthermore, as reported by Tian et al., SPTA1 is also related to

tumor burden in cholangiocarcinoma (50).

SOX9 and ARID5Bwere mutated in the adenoma group but not in

the cancer group. The protein encoded by SOX9 acts during

chondrocyte differentiation and, with steroidogenic factor 1, regulates

transcription of the anti-Müllerian hormone (AMH) gene. SOX9 has

been reported to be positively correlated to tumor size (51). Thus,

mutations on SOX9 might impair the function of the protein encoded

by SOX9, which might suppress the development of colorectal cancer.

ARID5B plays a role in the cell growth and differentiation of B-

lymphocyte progenitors. It is also reported to be related to the

development of acute lymphoblastic leukemia (52). We surmise that

ARID5B might be a new target for the prevention of colorectal cancer.
2.4 Distinct mutually exclusive and co-
occurring oncogene patterns were found
in the two groups

Correlations between mutations in the adenoma group and cancer

group were analyzed (Figure 3), focusing on the 10 overlapping

mutated genes between the two groups: APC, ARID1A, FAT1,

FBXW7, GNAQ, KRAS, LRP1B, MUC16, TP53, TTN, and ZFHX3.

In the adenoma group, co-occurrences related to the 10 genes were

found between the gene pairs GNAQ-PDGFRB, KRAS-SOX9, LRP1B-

KMT2D, and LRP1B-TP53. Co-occurrences gene pair means two genes
B

C

D

A

FIGURE 2

Colorectal adenoma or cancer sample mutation profile analysis. (A) Mutation profile summary for 26 adenoma samples. (B) Mutation profile
summary for 28 cancer samples. (C) Transitions and transversions ratio visualization for 26 adenoma samples. (D) Transitions and transversions ratio
visualization for 28 cancer samples.
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in the pair co-mutate more often than expected. Similarly, mutually

exclusive pair means two genes co-mutate less often than expected.

However, no significant mutually exclusive gene pairs were found in

the adenoma group. For the same 10 genes, more co-occurrence gene

pairs were found: ARID1A-MUC16, ARID1A-MED12, FAT1-PIK3CD,

FAT1-KIF1B, FBXW7-TTN, FBXW7-SPTA1, and GNAQ-AR.

Furthermore, the mutually exclusive gene pair APC-MUC16 was

found in the cancer group. Though correlated gene pairs were found

in both groups, no common gene pair appeared in the two groups,

indicating that the mutually exclusive and co-occurring oncogene
Frontiers in Oncology 05
mutations in adenoma patients might help in distinguishing between

colorectal adenoma patients and colorectal cancer patients.
2.5 Detection of ETV6-NTRK3 fusions
in colorectal cancer samples on DNA
and RNA levels

We detected three fusions in three colorectal cancer samples on

DNA level and one fusion in one colorectal adenoma sample on
B

A

FIGURE 3

Mutually exclusive and co-occurring gene pairs in (A) colorectal adenoma samples and (B) colorectal cancer samples.
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RNA level (Table 1). The fusions detected were all ETV6-NTRK3

fusion. This fusion has been reported in colorectal cancer patients

(53–55). The additional fusion was detected only in RNA data,

showing the RNA could complement the DNA on the detection

of fusion.
2.6 151 differentially expressed genes
were found between cancer and
adenoma samples

As the RNA of some samples did not meet requirements, RNA

sequencing data from 19 colorectal cancer samples and 23 adenoma

samples passed the quality control, and the expression profiles are

listed in Supplementary Table 4. We plotted the principal

coordinate analysis (PCoA) for the 19 colorectal cancer samples

and TCGA samples after batch correction in Supplementary

Figure 1 as the quality control procedure. We found no

significant difference between the expression profiles of the

selected cancer cohorts and those from TCGA.

We also plotted the PCoA for our cancer and adenoma cohorts.

The PCoA showed the cancer samples and the adenoma samples

could be distinguished, shown in Figure 4A (p = 0.001 using Adonis

analysis). Differentially expressed gene (DEG) analysis was then

applied to compare the expression profiles of colorectal adenoma

and colorectal cancer, and DEGs are listed in Supplementary

Table 5 (56). Compared with the RNA expression level of the

adenoma samples, 151 genes with significantly different expressions

were found in the cancer samples, with 99 (65.56%) upregulated

genes and 52 (34.44%) downregulated genes. The top 10

downregulated and upregulated genes are shown in Figure 4B.

The top downregulated gene, the Kruppel-like factor 4 (KLF4) gene,

encodes a transcription factor that belongs to the Kruppel family. It

is involved in the differentiation process of epithelial cells and is

thought to control the G1-to-S transition of the cell cycle following

DNA damage by mediating the tumor suppressor gene p53. It is

also associated with secretory meningioma and epilepsy. KLF4

participates in signaling pathways regulating the pluripotency of

stem cells and chemical carcinogenesis - receptor activation.

Another downregulated gene, MSH3, takes part in pathways of

platinum drug resistance, mismatch repair, and colorectal cancer,

and it is related to colorectal cancer, endometrial cancer, and

familial adenomatous polyposis. FGFR1, one of the upregulated

genes, encodes a protein that belongs to the family of the fibroblast

growth factor receptor, which is a key factor in many cancer-related
Frontiers in Oncology 06
pathways, such as the MAPK signaling pathway, Ras signaling

pathway, and PI3K-Akt signaling pathway.

An independent RNA-seq dataset, GSE164541 containing 5

colorectal cancer samples and 5 colorectal adenoma samples was

collected to confirm our DEGs. The same DEG analysis were

conducted as in our dataset. 849 DEGs were found in GSE164541

and supplied in Supplementary Table 6. 18 common DEGs were

found. We performed a hypergeometric test (see Materials and

Methods for details) to assess the significance of the overlap

between the DEGs identified in two datasets. Our analysis showed

that the probability of observing such an overlap by chance alone

was 0.0004, indicating a significant enrichment of common DEGs

between the two datasets.
2.7 Adenoma and cancer samples could be
classified using mutation profile or
expression profile

Because some genes were differentially mutated or expressed

between cancer samples and adenoma samples in this study, and

this observation has also been previously reported (57), this study

further investigated whether cancer samples and adenoma samples

could be distinguished using the currently available molecular

markers. The mutation profiles covering 411 genes from 28

cancer samples and 26 adenoma samples were used to evaluate

the performance of classification for mutation. The expression

profiles covering the entire 519-gene panel from 19 cancer

samples and 23 adenoma samples were used to evaluate the

performance of classification for expression. Tenfold cross-

validation was used for both datasets. Random forest (58), a

classic classification method, was used to classify the cancer

samples and adenoma samples. To prevent overfitting, we utilized

the random forest algorithm for feature selection and set the

maximum number of selected genes equal to the sample size with

a step size of 10. Thus, we used 10, 20, 30 and 40 as the candidate

gene numbers for both mutation profiles and expression profiles.

The performance of the different gene numbers was evaluated using

a random forest classifier. The accuracies using different number of

genes for the mutation profiles and the expression profiles. were

shown in Figure 5A.

For achieving the best accuracy for the mutation profiles, 20 is

the optimal gene number. The receiver operating characteristic

(ROC) using 20 genes for mutation profiles is displayed in

Figure 5B. A high accuracy of 81.48% was achieved by the 20-

gene set, which contained TP53, SOX9, CCDC6, ETV6, CLTC,

AGK, EML4, CUL1, BRAF, FIP1L1, PAPSS1, TTN, EGFR, ETV5,

BCL2, TPM3, GATA3, SPTA1, MUC16, and ARID1A. In the cross-

validation of the 20-gene set, six adenoma samples were

misclassified as cancer samples, and four cancer samples were

misclassified as adenoma samples.

To achieve the best accuracy for the expression profiles, 20 is the

optimal gene number. The ROC using 20 genes for expression

profiles is displayed in Figure 5C. A high accuracy of 100% was

achieved by the 20-gene set, which contained PPP6C, RASA1,

MSH3, NSD1, BRD4, RYBP, NCOR1, SDHA, ARID2, EP300,
TABLE 1 Fusions detected in colorectal cancer samples and adenoma
samples.

sample fusion Source

15F ETV6-NTRK3 RNA

519S1 ETV6-NTRK3 DNA

519S3 ETV6-NTRK3 DNA

519S9 ETV6-NTRK3 DNA
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ASXL2, REL, FOXP1, SETD2, MAP2K4, SDHC, DICER1, IGF2,

SMAD2, and ASXL1. Note that only FOXP1 is not one of the DEGs.

We further validated the 20 gene set for expression profiles in an

independent dataset. We trained a model using random forest based

on the 20 genes from adenoma and cancer samples and tested the

model performance on the independent RNA-seq dataset,

GSE164541, which contains 5 colorectal adenoma samples and 5

colorectal cancer samples. The area under curve (AUC) of

classifying the independent dataset reached 0.84 (Figure 5D),

showing the robustness of the 20 genes in classifying colorectal

adenoma and cancer samples.

Additionally, the GSE164541 dataset supplied another 5 normal

samples. To investigate whether the 20 genes could help to

distinguish the normal samples, we performed a twofold cross-

validation for the GSE164541 dataset with only the 20 informative

genes found in this study’s dataset. An accuracy of 66.7% was

achieved on the GSE164541 dataset and the confusion matrix was
Frontiers in Oncology 07
displayed in Figure 5E, showing the 20 genes have the potential in

distinguish the normal samples.

We demonstrated that the genes contained in the 519-gene

panel were sufficient for determining sample malignancy. Thus, the

519-gene panel, which could capture both DNA and RNA

sequences, might help to solve the problem of early screening and

monitoring while also lowering costs.
2.8 Correlations between expression
and mutation were discovered in
adenoma samples

We further investigated whether there were correlations

between mutations and expressions. Three pairs were found to be

strongly correlated: mutation of GATA3 with expression of IDH1

(coefficient = 0.71, p-adj = 0.01), mutation of EML4 with expression
B

A

FIGURE 4

Differences between colorectal cancer group and adenoma group. (A) PCoA plot for the cancer group and the adenoma group. (B) Differentially
expressed gene between the colorectal cancer group and the colorectal adenoma group. Top 10 differentially expressed genes in colorectal cancer
samples (1–19 on the horizontal axis) compared with adenoma samples (20–42 on the horizontal axis).
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of ROS1 (coefficient = -0.68, p-adj = 0.02) and mutation of EML4

and the expression of GATA1 (coefficient = -0.66, p-adj = 0.03).

GATA3 encodes a protein that is important regulator to T-cell

development and related to cancer (59, 60). EML4 is a gene that

frequently involved in fusion events (61, 62). Based on our parallel

capture technique, those findings might supply us new insight for

the prevention and curation of colorectal cancer.
3 Materials and methods

3.1 Case collection

Individuals were diagnosed with colorectal cancer and did not

receive any treatment before sample collection. Patients with

hereditary nonpolyposis colorectal cancer and a history of

colorectal cancer were excluded. Based on inclusion criteria in

addition to similar sex and age, samples were collected from the

Shanghai Changhai Hospital, Peking Union Medical College

Hospital, Jiangmen Central Hospital, and Maoming People’s

Hospital along with patients’ clinical information. For this study,

all patients provided informed consent.

An additional RNA-seq expression dataset, GSE164541, was

collected from the Gene Expression Omnibus database (GEO) to

supply adjacent normal tissue, adenoma tissue, and primary colorectal

cancer tissue for each of the five patients, forming a 15-sample dataset.
Frontiers in Oncology 08
To obtain the expression profile from TCGA, read counts of

colorectal samples were downloaded from https://dcc.icgc.org/

releases/release_26.
3.2 DNA/RNA extraction

DNA and RNA were extracted from the obtained case samples.

DNA was extracted from both tumor/adenoma and blood. RNA

was only extracted from tumor/adenoma. The Quick DNA/RNA

FFPE kit (ZYMO) was used for extraction from formalin-fixed

paraffin-embedded (FFPE) sections. DNA quantification was

conducted by Qubit dsDNA HS Analysis Kit (LIFE) and agarose

gel electrophoresis, while RNA was quantified by Qubit RNA HS

Assay Kit (LIFE) and RNA 6000 Pico Kit (Agilent). The

construction of DNA and RNA libraries was accomplished using

the ABclonal Rapid DNA Lib prep kit and KAPA Stranded RNA-

Seq Kit with RiboErase HMR, according to the manufacturer’s

protocol. Covaris s220 was used to physically cut 50–200-ng DNA,

followed by A-tailing, adaptor ligation, and polymerase chain

reaction amplification. The total amount of DNA and RNA

libraries was 500 ng, and the mixing ratio was 10:1. The mixture

was hybridized at 65°C for 16–18 h using hybridization probes from

Boke, followed by the use of M270 streptavidin beads for 45 min for

capture. Then 15 post-capture amplification cycles were carried out

to obtain the captured library.
B

C D E

A

FIGURE 5

Performance of classification of colorectal adenoma and cancer using our 519-gene panel. (A) Accuracies using different gene number for mutation
or expression profiles. (B) ROC using 20 genes for mutation profiles. The AUC is 0.88. (C) ROC using 20 genes for expression profiles. The AUC is
1.00. (D) ROC of the GSE16454 dataset containing 5 adenoma samples and 5 cancer samples. The AUC is 0.84. (E) Confusion matrix of a two-fold
cross validation using the GSE164541 dataset utilizing the 20 informative genes discovered in our expression profiles.
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3.3 Next-generation sequencing and
quality control

All samples were sequenced using a panel-based NGS system

that contained 519 cancer-related genes and covered 1.8 Mb of the

human genome (GRCh37/hg19) (see Supplementary Table 7 for

details). A special capture technology called DNA&RNA Parallel

Capture (P-Cap, patent authorization publication number: CN

110079594 B), which can obtain DNA and RNA sequences

through a single capture operation, was used in the experiment.

The final libraries were pooled and sequenced using the MGI-2000

sequencing platform with the paired-end 100-cycle kit. To ensure

quality control, a sequencing depth of 100x was set for both DNA

and RNA samples.
3.4 Somatic mutation calling

Mutations shown in matched blood samples were taken as

germline mutations. The Microraptor (https://github.com/umich-

brcf-bioinf-projects/microraptor) pipeline, which is based on GATK,

was used to call somatic mutations. Trimmomatic was used to filter

low-quality reads, and BWAmem was used for the mapping of reads.

GATK SortSam,MarkDuplicates, CollectHsMetrics, BaseRecalibrator,

ApplyBQSR, AnalyzeCovariates, CollectSequencingArtifactMetrics,

Mutect2, GetPileupSummaries, CalculateContamination,

FilterMutectCalls, and FilterByOrientationBias were used for

mutation calling and filtrations.
3.5 Mutation analysis

Maftools (63) was used for multiple analysis in mutation profiles.

For visualization of the mutations in samples, the oncoplot function

was used. To discover the transitions/transversions relationships, the

titv function was used. To determine the co-occurrence and mutually

exclusive patterns in the mutations between genes, the

somaticInteractions function was used, where Pair-wise Fisher’s

Exact test were performed and Bonferroni correction was used to

adjust the p-values. Based on the OncodriveCLUST algorithm, a

function called oncodrive was used to detect the driver genes.

Bonferroni correction was then used to adjust the p-values. The

driver genes with FDR < 0.01 were displayed in this study.
3.6 Fusion detection

SEGF software (64) was used to detect the fusions in both DNA

and RNA fastqs. The default parameters were used.
3.7 RNA expression profile calling

Mapsplice v12_07 was used to map the RNA reads onto the

hg19 genome using default parameters. RSEM (v1.1.13) was used
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for quantification of gene and isoform abundance estimation

according to TCGA GAF 2.1 files using default parameters.
3.8 Batch correction

To eliminate the batch effect, we used the combat function from

sva package (65) for batch correction. Null model was used, which

assumes equal variance across our samples and TCGA samples.

After batch correction, negative values were replaced to zero.
3.9 Principal coordinate analysis and
Adonis analysis

The dissimilarities between samples was first calculated using

Bray-Curtis dissimilarity distance measure using vegdist function

from vegan package (66). cmdscale function was then used to keep

the first three principal coordinates. Bray-Curtis dissimilarity

distance measure was chosen for the Adonis analysis using

adonis2 function from vegan package.
3.10 Differentially expressed gene analysis

DEG analysis was performed using R package DESeq2 (56).

Wald significance tests was used in DESeq function. Benjamini-

Hochberg were used for controlling false discovery rate. The

thresholds were set to log2 |fold change| > 1 and adjusted p-value

< 0.01 for further analysis.
3.11 Hypergeometric test for assessing the
significance of the overlap between the
DEGs identified in two datasets

We employed the R function phyper to determine the

significance of overlap between two sets of differentially expressed

genes (DEGs). In our study, the parameters q=17, m=151, n=20827,

and k=849 were used to define the size of each set and the level

of overlap.
3.12 Classification for colorectal cancer
and adenoma

Before classification, the expression data, the read counts were

normalized for each sample. For mutation data, the mutation

counts on each gene were used as features.

For gene selection, the scikit-learn package (67) was used to

implement a 100-estimator random forest to get the importance

scores of each gene. and the Gini impurity was used to measure the

quality of a split. The feature number used by each estimator is

square root of total feature.

For classification, we implement a 100-estimator random forest

classification model with the same hyperparameters. The reason we
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chose random forest as the classification algorithm is that (a) each

tree of random forest process a random subset of features and

samples, alleviating the problem of overfitting; (b) the ensemble of

trees could alleviate the curse of dimensionality.
3.13 Correlation calculation between
mutations and expressions

The gene mutation profile was processed by indicator function,

which will output whether the gene has mutation (output = 1) or

not (output = 0). To decrease false discoveries, genes that mutated

in less than 5 samples were excluded. Pearson correlation from

scipy package (68) was used to calculate the correlation between the

mutation of one gene and the expression of another gene. Benjamini

& Hochberg method from statsmodels package (69) was used for

false discovery.
4 Discussion

In this study, 54 FFPE samples were collected from patients

with colorectal adenoma or colorectal cancer as well as the matched

blood samples to explore the molecular characteristics of colorectal

adenomas and the relationship to colorectal cancer. P-Cap was

employed to capture DNA and RNA simultaneously, and the NGS

results were analyzed. Mutations of the APC, TTN, MUC16, and

KRAS genes were high in frequency in both colorectal adenoma and

colorectal cancer samples. However, some differences were

identified, such as the relatively high occurrences of mutations in

SOX9 and ARID5B in the colorectal adenoma samples, and the

relatively high mutation frequencies of TP53 and SPTA1 in the

colorectal cancer samples.

The underlying driver genes of colorectal adenoma and

colorectal cancer were identified by mining DNA sequencing

data. GNAQ and KRAS were identified as driver genes in both

colorectal adenoma and colorectal cancer samples. GNAQ was a

potential driver in colorectal cancer. The mutated GNAQ gene is a

proto-oncogene of uveal melanoma, and the activation of the

pathway containing the mutated GNAQ may be the main cause

of uveal melanoma (70, 71). KRAS is an important “switch” in

intracellular signaling and is most closely related to the occurrence

and development of tumors; it is also a drug target. The activate

mutation of KRAS is one driving factor in metastatic progression

and has been reported in a number of studies. The mutated KRAS

can drive the invasion and maintenance of metastasis of colorectal

cancer, and it may also be a potential biomarker and therapeutic

target for metastatic colorectal cancer (72, 73).

Our finding of the additional fusion detected only in RNA

data highlights the complementary roles of DNA and RNA in

the detection of fusion events. Unlike DNA, RNA can reveal

information on splicing patterns and post-transcriptional

modifications that can affect gene expression and alter the protein

structure and function. Thus, we could detect additional fusion in

RNA (74). Moreover, as previously reported by Hechtman et al.,

DNA plays a crucial role in detecting fusions, which could
Frontiers in Oncology 10
complement RNA-based detection methods (75). Therefore, the

combination of DNA and RNA sequencing can offer a more

comprehensive and accurate characterization of fusion events in

cancer, which can promote the development of targeted therapies

and improve the prognosis for patients.

Since there were differences in both mutation profiles and

expression profiles between the adenoma group and the cancer

group, a classification model was designed to distinguish between

colorectal adenoma samples and colorectal cancer samples, and it

performed well. It is worth noting that the model trained on the

expression profile performed better than the model trained on the

mutation profile. RNA seems to be more informative regarding

sources of tissue, which has been addressed by other studies (3, 19,

20, 76, 77). In the future, the sample amount should be enlarged to

verify the classification model proposed in this study. Although

some previous studies also used random forest in small datasets that

contained less than 100 samples (78, 79), our classification model

might not be robust since our study’s dataset does not meet the

requirement of event per variable. In addition, more efforts should

be made to simplify the panel for the expression profile to detect

colorectal cancer more inexpensively. Lin et al. developed a 20-gene

panel using only mutation profiles for classifying adenoma and

cancer at an accuracy of 85.46%, which is 3.98% higher than the

accuracy of our proposed model (81.48%) (23). The feature used in

their work was the severe consequences for each gene, whereas we

used a simpler feature, the mutation count for each gene. We also

found that TP53 and SOX9 were both in our 20-gene mutation gene

set and their 20-gene set. Furthermore, it is possible to use the

interaction term between mutations, such as co-occurrence and

mutually exclusive relationships. However, since the interaction

term affects the number of parameters, the model must be carefully

designed. Though our model performed slightly worse than the

model by Lin et al. within only mutation profiles, our method could

still supply high classification accuracy from expression profiles,

which also provided insights from the RNA level. In the future, it

might be possible to achieve better prediction by integrating more

types of patients’ data, such as histopathological images and

microbes, as demonstrated in colorectal and other cancers (80–84).

In this study, we investigated correlations between mutations and

expressions to gain insights into colorectal cancer prevention and

curation. Our results showed strong correlations between three pairs

of mutations and expressions: mutation of GATA3 with the expression

of IDH1, mutation of EML4 with the expression of ROS1, and

mutation of EML4 with the expression of GATA1. These findings

provide new insights into the molecular mechanisms that underlie

colorectal cancer development and progression, especially in relation to

gene-gene interactions. Moreover, our parallel capture technique offers

an efficient and reliable way to investigate these correlations, which can

lead to the discovery of new biomarkers and therapeutic targets.

Compared to separate capture technique, our technique minimizes

the differences between the tissues for DNA sequencing and RNA

sequencing caused by heterogeneity (39). Taking advantage of this

technique, we could generate more accurate results in analysis

requiring both DNA and RNA, such as correlation analysis. Further

studies are needed to validate our findings and to explore the clinical

implications of these novel insights.
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In conclusion, using the proposed 519-gene DNA and RNA P-Cap

sequencing platform, mutation and expression profiles both revealed

the molecular characteristics and correlations of these characteristics

between colorectal adenoma and colorectal cancer. These molecular

characteristics, especially the expression profiles, can be used as early

monitoring indicators to predict the occurrence and development of

colorectal adenoma to cancer. The findings of this study will be

valuable for developing molecular prevention and surveillance

programs for colorectal cancer. Our results are based on a cross-

comparison, and we will continue to follow the prognosis of patients in

the cohort to further explore the risk of cancer development in

adenoma patients with similar genetic alterations to those of

colorectal cancer patients. Should the cancer risk of adenoma

patients with these mutations increase, further attention and

monitoring of progress will be done. In the future, it will be helpful

to study colorectal adenoma and colorectal cancer using single cell

techniques (85–89), as these diseases are both very heterogeneous.
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