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Three-dimensional cell tissue culture, which produces biological structures

termed organoids, has rapidly promoted the progress of biological research,

including basic research, drug discovery, and regenerative medicine. However,

due to the lack of algorithms and software, analysis of organoid growth is labor

intensive and time-consuming. Currently it requires individual measurements

using software such as ImageJ, leading to low screening efficiency when used

for a high throughput screen. To solve this problem, we developed a bladder

cancer organoid culture system, generated microscopic images, and developed

a novel automatic image segmentation model, AU2Net (Attention and Cross

U2Net). Using a dataset of two hundred images from growing organoids (day1 to

day 7) and organoids with or without drug treatment, our model applies deep

learning technology for image segmentation. To further improve the accuracy of

model prediction, a variety of methods are integrated to improve the model’s

specificity, including adding Grouping Cross Merge (GCM) modules at the

model’s jump joints to strengthen the model’s feature information. After

feature information acquisition, a residual attentional gate (RAG) is added to

suppress unnecessary feature propagation and improve the precision of

organoids segmentation by establishing rich context-dependent models for

local features. Experimental results show that each optimization scheme can

significantly improve model performance. The sensitivity, specificity, and F1-

Score of the ACU2Net model reached 94.81%, 88.50%, and 91.54% respectively,

which exceed those of U-Net, Attention U-Net, and other available network

models. Together, this novel ACU2Net model can provide more accurate

segmentation results from organoid images and can improve the efficiency of

drug screening evaluation using organoids.
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1 Introduction

Bladder cancer is a malignant tumour that occurs on the

bladder mucosa and is a common malignancy of the urinary

system. In recent years, the incidence of bladder cancer has risen

rapidly, especially in men and the elderly population. According to

the latest data from GLOBOCAN, bladder cancer ranks 13th in the

ranking of malignant tumors, and its incidence rate ranks among

the top 10 (1). Most patients with early bladder cancer are unaware

of their condition and have no apparent symptoms, resulting in a

low early diagnosis rate (2). Therefore, early detection and diagnosis

are crucial for bladder cancer management.

An organoid (3–5) is a multicellular in vitro tissue cultured in

three dimensions (3D). It can mimic the original tissue

environment and is similar to the primary organ in terms of

physical and chemical properties. Compared with cell lines and

animal experiments currently and commonly conducted, organoid

experiments have a broader application prospect in various

preclinical and clinical studies. Human bladder cancer patients’

organoids had been established and exome sequencing confirmed

that the spectrum of genetic mutation from cultured organoids is

heterogeneous and may represent bladder cancer tumour evolution

in vivo (6), in addition, patient derived organoids recapitulate the

histopathological diversity of human bladder cancer. Therefore,

bladder organoids could be used for drug screening and could serve

as a preclinical platform for precision medicine. Indeed, the drug

response using patient derived tumor organoids show partial

correlations with mutational profiles and changes associated with

drug resistance, especially the response can be validated in

xenografts model (7), furthermore, the drug screen could be easily

performed in vitro rapidly to match cancer patient’s unique

mutation. Beside bladder cancer, 3D cell culture and organoid

approaches are being increasingly used for other cancer types and

even broader scenario in basic research and drug discovery in a

variety of diseases (8). Recent advances in these technologies, which

enable the in vitro study of these tissue-like structures, are very

important for assessment of heterogenous diseases, such as

colorectal cancer (9). As well, the use of 3D culture will not only

help advance basic research but also help reduce the use of animals

in biomedical science (10). 3D organoid methods are also very

important for the study of diseases in conditions when it is difficult

to obtain patient tissues. Therefore, developing methods to rapidly

and accurately process organoid image data become a top priority.

Accelerating the analysis of organoid image data is also extremely

important for the development of biological experiments. A bladder

cancer organoid derived from a patient is an in vitro model of their

bladder tumour, and it can be used as a model to rapidly select for

the most appropriate therapeutic strategies for each individual

patient (6, 11, 12). The great advantage of the bladder cancer

organoid is that this model is an accurate mimic of the bladder

cancer patient’s tumour (7). At present, the role of the drug

sensitivity prediction model in the precision treatment of bladder

cancer has gradually become prominent. This model is able to

determine the most sensitive drugs for patients in vitro and evaluate
Frontiers in Oncology 02
their therapeutic effects. The introduction of organoid models into

the diagnosis and treatment of bladder cancer not only predicts

resistance to anti-cancer drugs but also identifies effective cancer

therapy for individual patients (13, 14).

Deep learning is a machine learning method based on artificial

neural networks with representation learning. By using rapid and

continuous automatic analysis of pathological images, the deep

learning method could dramatically improve the accuracy rate and

efficiency of drug screening and evaluation. Despite the rapid

development of deep learning applications in pathological images,

such as retinal segmentation (15), and pulmonary nodule

segmentation (16), development of a deep learning segmentation

method suitable for cancer organoids, especially for evaluation of

bladder cancer organoids and drug screening, requires more efforts

and is less studied.

This paper proposes a new Attention and Cross U2Net

(ACU2Net) model for bladder cancer organoid segmentation in

images. We used an image segmentation neural network in deep

learning for bladder cancer organoid segmentation. First, 200

images SW780 and T24 were selected as our data set. Since image

segmentation is mainly done by supervised training, our data set has

no labels. Therefore, we used Labelme to label the obtained images

with masks and outline each organoid. Then, combined with the

data characteristics that our organoid background region is more

than the target region, we optimized the original U2Net network

model and selected a better loss function to improve the

segmentation accuracy of the model. After segmentation, the

trained model was further used to quickly calculate the area of

bladder cancer organoids treated with or without different drugs on

different culture days. To quantify the growth of organoids, violin

plots were generated permitting the easy visualization of the effect of

drug treatment on different days. The workflow for this process is

shown in Figure 1.

Our innovations are that this is the first time the image

segmentation network has been applied in the application of bladder

cancer organoid segmentation. Our model also added a grouping and

merging module to the original U2Net (17) jump connection. This

combination enriched the characteristic information of bladder cancer

organoids, especially the semantic and spatial characteristics. An

improved attention mechanism (18) was introduced to make the

feature extraction network pay more attention to key features in the

feature layer and spatial region of bladder cancer organoids while

ignoring unnecessary features in redundant regions. After

segmentation, the computer is used to automatically determine the

growth of organoids treated with different drugs or different drugs at

different days, and then generate violin diagrams for faster and easier

visualization for drug screening. The ACU2Net model was developed

and tested on 3D bladder cancer organoids for drug screening and

evaluation. Our results show that the ACU2Net model is faster, as

traditional manual bladder organoid drug screening takes 2-3 days,

while the deep learning algorithm only takes about 1 hour and is more

accurate. In summary, our method can provide more accurate

segmentation results for organoid images and greatly improve the

efficiency of drug screening evaluation.
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2 Related work

2.1 Clinical trial simulation

Currently, drug screening strategies have been developed based

both on experimental and virtual methods. Experimental screening

refers to screening in the laboratory. Clinical trial simulation, a virtual

screening method, has recently emerged as an interdisciplinary

subject and attracted widespread attention in the pharmaceutical

industry (19–21). Statistics show that during the stages of new drug

development, 60% of drugs fail due to poor drug metabolism or high

toxicity. The emergence of clinical trial simulation can guide

experimental design in drug research, by conducting computer

simulations on key hypotheses before bench experiments, and can

potentially obtain drug effect information. Therefore, clinical trial

simulation can reduce research investment in clinical trials and

improve research efficiency and success rates (22).

Since the discovery of new drug targets and action mechanisms

has become more complex, drug screening nowadays requires a

huge investment of time and money. To solve this problem, many

pharmaceutical companies and drug research institutions have
Frontiers in Oncology 03
applied artificial intelligence, such as deep learning methods (23),

to improve screening efficiency and to mine for new findings from

existing data. For example, DOCK Blaster (24), was developed by

the Shoichet Laboratory for molecular docking. It screens in a

specific database with a given receptor structure to search for

potential active small molecules. However, the parameter settings

for this method are troublesome and often influence the accuracy

and reliability of the results. Iscreen (25), developed by the Taiwan

YC Laboratory, can conduct virtual screening of traditional Chinese

medicines online, but only on a small scale, with low diversity and a

long screening time. DeepScreen (26) uses convolutional neural

networks to obtain single-cell images based on flow-cytometry cells.

Compared with standard experimental methods, DeepScreen can

significantly reduce the detecting time, from a few days to 2-6 hours,

effectively improving the detecting efficiency.
2.2 Image segmentation network

The concept of deep learning originated from the research of

artificial neural networks. The structure of deep learning is a multi-
FIGURE 1

Workflow of using ACU2Net model for drug screening for bladder cancer organoids.
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layer perceptron structure with multiple hidden layers. It combines

low-level features and then forms more abstract high-level features

to represent attribute categories or features. Deep learning theory

includes many different deep neural network models (27), such as

classic deep neural network (DNN), convolutional neural network

(CNN), deep Boltzmann machine (DBM), and recurrent neural

network (RNN). Networks with different structures are suitable for

processing different data types. For example, CNN is suitable for

image processing, and RNN is suitable for speech recognition. At

the same time, some different variants of these network models will

be produced by combining them with different algorithms.

Deep learning has significantly progressed in image classification

(28), image segmentation (29), and object detection (30). Deep

learning has also been gradually applied in the field of biomedical

image segmentation in natural image segmentation. For example, one

group (31) used a fully convolutional network to solve the task of cell

image segmentation. The network can classify each pixel and achieve

end-to-end training, but the pooling operation causes a slight loss of

adequate information, which is less effective in fine-grained

segmentation. Another group (32) proposed U-Net, to compensate

for information loss through deconvolution layers and feature

stitching. It has a simple structure, few parameters, and strong

plasticity. As a result, it is one of the most basic and effective

models currently applied to cell image segmentation. However, the

network is not practical for edge contour segmentation, because there

are many cell breakage problems and the depth of the network that

can be constructed is limited due to vanishing gradients problems. To

improve the U-Net model, some deep learning networks have been

proposed. For instance, UNet++ (33) connects encoders and

decoders using dense skip connections between different layers. In

addition, FU-Net (34) uses a dynamically weighted cross-entropy loss

to improve U-Net. Quan et al. (35) combined the features extracted

by the segmentation network to build a more profound network

architecture to achieve more accurate cell segmentation. Moreover,

attentionmechanisms have recently been used in image segmentation

to improve the segmentation effect. For example, Fu et al. (36)

proposed a dual attention network attention mechanism that

captures contextual information dependencies through a self-

attention mechanism and adaptively integrates local features and

global information. However, efficiency was only mildly improved

through this model, as well, in this model there are too many

parameters and it takes too much run time.
3 Methods

Given the characteristics of bladder cancer organoids in

microscope images, this paper introduces Grouping Cross Merge

(GCM) in the skip connection of the U2Net network on the basis of

U2Net and Attention U-Net (37) and combines GCM with the

encoder and decoder of the U2Net network. The shallow and deep

features are cross-merged by the GCM module. In addition, to

further enhance the correlation between features, a feature transfer

channel is added between each GCMmodule, so that the features of

the entire U2Net network are serially passed to the last GCM
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module and output. Next, it is passed through the Residual

Attention Gate (RAG), which enhances the model’s ability to

extract the features of the region of interest. Finally, bladder

cancer organoids and backgrounds are classified through a 1×1

convolutional layer. The proposed model is shown in Figure 2.
3.1 Residual U module

The residual U-module consists of three parts: an input layer

that collects local features and transforms channels, a U-shaped

structure that extracts and encodes multi-scale context information,

and an output layer that fuses the input and intermediate layers.

First, the convolutional layer, which is a standard for local feature

extraction, converts the input feature x(H×W×Cin) map into an

intermediate F1(x) map with Cout channels. Next, a U-shaped

symmetric encoder-decoder structure with a height of L, which

takes the intermediate feature map U (F1(x)) as input, learns to

extract and encode multi-scale context information, and finally

fuses the residual connections of local features and multi-scale

features by summing. The U-shaped symmetric codec structure

representation is shown in Figure 3, where L is the number of layers

in the encoder, Cin and Cout represents the number of input and

output channels, and M represents the number of channels in the

RSU middle layer. The more significant L is, we can get a deeper

residual U-shaped block (RSU), more pooling operations, more

diversity of the receptive field, and richer local and global features.

Therefore, we can configure the level parameter L to extract multi-

scale features from input feature maps with arbitrary spatial

resolution. In this paper we selected L=7. When using larger L,

the sampling of the feature graph will lead to the loss of useful

context, resulting in higher computing and memory costs. Using a

smaller L less local semantic information can be captured. In

contrast, L=7 can capture global semantic information and local

semantic information and consume fewer computing resources and

computing costs.
3.2 The overall structure of the U2Net
module

The overall structure of the U2Net network includes 6 encoders

and 5 decoders, as well as a saliency map fusion module connected

to the decoder. The configured RSU-L fills each stage, and the level

parameter L is configured according to the spatial resolution of the

input feature map. As can be seen from Figure 2, the left part of the

network is the down-sampling process. The first 4 stages fill

Encoder1, Encoder2, Encoder3, and Encoder4 with RSU, whose

level parameters L are 7, 6, 5, and 4, respectively. For feature maps

with larger resolutions, we use a more significant L to obtain

information at a larger scale, and the size of the feature maps in

each stage is halved layer by layer and restored to the original size.

The feature maps in Encoder5 and Encoder6 are of relatively low

resolution, and further down-sampling of these feature maps will

result in the loss of adequate contextual feature information.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1064548
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1064548
Therefore, RSU-4D is used in both stages, where “D” indicates that

RSU is a dilated version in which we replace the pooling and up-

sampling operations with dilated convolutions, which means that

all intermediate feature maps of RSU-4D have the same resolution

as its input feature maps. The last two stages are filled by RSU

configured with dilated convolution, and the size of the feature

graph within the stage remains unchanged. In the encoding stage,

the RSUs are connected by a 2×2 max pooling, and the feature map

size becomes 1/32 of the original. The right side of the network is a

decoding module composed of 5 decoders, which is an up-sampling

process. The RSU configuration in each stage is the same as the left

symmetrical position, so the decoder has a similar structure to its

symmetric encoder. In Decoder5, we also use an extended version of

the residual U-block RSU-4D, similar to that used in encoder-level

Encoder5 and Encoder6. The input for each decoder level is a

decoder output from its previous level and a symmetric encoder

output. In addition, the decoding part changes the size of the

reduced feature map to the original size.

The last part is the feature fusion module, which generates

segmentation probability maps. U2Net first generates six output

feature maps O6, O5, O4, O3, O2, and O1 from Encoder6, Decoder5,

Decoder4, Decoder3, Decoder2, and Decoder1 through a 3×3

convolutional layer and a sigmoid function. Then, it up-samples

the side output feature map to the input image size, and the six output
Frontiers in Oncology 05
feature maps are spliced to generate the final segmentation map. The

network structure parameters of U2Net are shown in Table 1.
3.3 Grouping cross fusion module

In this design, to further improve the correlation of feature

information, the Grouping Cross Merge (GCM) is applied in the

U2Net network, which fuses low-level morphological features and

high-level semantic features to enrich the feature information. The

network structure of the packet cross-fusion module designed in

this paper is shown in Figure 4.

There are two input feature maps for the GCM module: the

“mirror” feature maps for the shallow network and the deep

network feature maps for the U2Net network. Each feature map

is divided into n groups. Because the channel number of the shallow

network is relatively small, and the channel number of the deep

network is relatively large, we set the values of n as 4, 6, and 8

according to the different layers of the network, shallow layer,

middle layer, and deep layer, respectively. Based on the granularity

that needs to be subdivided, the two groups of features are merged

using the CONCAT layer. After merging, the feature maps are

integrated using a 1 x 1 convolutional layer, and the number of

channels of the feature map is halved. At this stage the feature cross-
FIGURE 2

Overall architecture of ACU2Net model.
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processing of each group is completed. Next, the CONCAT layer is

used to combine again to complete the cross- of the two feature

maps. Since many convolution calculations are involved in the

entire module, to prevent problems such as vanishing gradient, the

input feature maps in the deep network are mapped to the cross-

merge modules to construct the residual channels of the

overall module.
3.4 Residual attention gate

In the Residual Attention Gate (RAG), the feature map of the

same layer in the contraction path and the feature map of the
Frontiers in Oncology 06
previous layer in the expansion path achieve multi-scale feature

fusion through convolution, addition, and activation operations.

Then, 1×1 convolution filtering is performed on the fused

features, and global average pooling (GAP) is used to extract

global features to reduce dimensionality (38). Next, two fully

connected layers (FC) are combined with the sigmoid function to

generate an organoid-oriented weight matrix, which is then

multiplied by the feature fusion graph to adjust the feature

weights (39). Since the weight matrix continuously assigns

weights to the target area, the value of the background area in

the output feature map will be smaller, and the value of the target

area will be more significant. Finally, the feature fusion map is

residually connected with the adjusted weight feature map to
FIGURE 3

Overall architecture of RSU method.
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obtain the final output features. The overall structure of the RAG

is shown in Figure 5.

First, the feature maps x∈RCx×W×H and g∈RCg×W/2×H/2 are

converted from different scale layers into a unified size and mapped
Frontiers in Oncology 07
to the feature spaces of a, b, respectively. Then, a 1 x 1 convolution

is performed, and a bit-by-bit summation is carried out. Finally, the

fused feature map is obtained by activating the Relu function. The

feature map can be defined as j:
TABLE 1 Network parameters of U2Net.

Block input size (C × H × W) output size (C × H × W) Note

Decoder and
Encoder Part

Encoder1 3×256×256 3×256×256 Max Pooling

Encoder2 64×128×128 128×128×128 Max Pooling

Encoder3 128×64×64 256×64×64 Max Pooling

Encoder4 256×32×32 512×32×32 Max Pooling

Encoder5 512×16×16 512×16×16 Max Pooling

Encoder6 512×8×8 512×8×8 Dilated Conv

Decoder5 512×16×16 512×16×16 Dilated Conv

Decoder4 512×32×32 256×32×32 Up-sampling

Decoder3 256×64×64 128×64×64 Up-sampling

Decoder2 128×128×128 64×128×128 Up-sampling

Decoder1 64×256×256 32×256×256 Up-sampling

Fusion Part of Feature Figure O6 512×8×8 1×8×8 Conv+Sigmiod

O5 512×16×16 1×16×16 Conv+Sigmiod

O4 256×32×32 1×32×32 Conv+Sigmiod

O3 128×64×64 1×64×64 Conv+Sigmiod

O2 64×128×128 1×128×128 Conv+Sigmiod

O1 32×256×256 1×256×256 Conv+Sigmiod
FIGURE 4

Our proposed grouping cross merge (GCM) module.
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j = Relu(a(x) + b(upsampling(g))) ∈ RC�H�W (1)

In the formula, a(x)=Wxx, b(g)=Wgg, then the feature j is sent

to the convolutional layer to filter the multi-scale features to

generate another feature space d, where d(j) =Wjj. Wx, Wg, and

Wj represent the 1×1 convolution operation. Next, the GAP layer is

applied for dimensionality reduction and global feature extraction

to convert it into a one-dimensional vector a (d (j)) ϵ R1×C.

Afterwards, two fully connected layers, fc1×c/r and fc1×c are used to

model the correlation between channels (the first layer has c/r

channels, the second layer has c channels, and r is the reduction

ratio), and outputs the same number of weights as the input

features. This operation has more nonlinearity, so that it can

better fit the complex correlation between channels, and

significantly reduce the number of parameters and computation.

Then a Sigmoid function is applied to obtain weights normalized

between 0 and 1 to generate a channel attention map A:

A = sigmoid(fc1�c(Relu(fc1�c=r(b(d(j))))))) (2)

For each channel Ak, k ϵ {1,…, c} in the attention map A ϵ R1×C,

the weight of the feature map d (j) ϵ RC×H×W is adjusted. The above

calculation retains the useful semantic and detail features of

different layers, and the complex background is suppressed as

much as possible. Finally, we perform the residual operation,

adding pixels with the fusion feature graph to obtain the final

output feature of.

of = o
c

k=1

Akd(jk) + d(j) (3)
3.5 Loss function

The segmentation of bladder cancer organoids is a pixel-level

binary classification problem, and we adopt a binary cross-entropy

function (40) as part of the loss function. Its mathematical

expression is:

LBCE = −
1
no

(yn � lnxn + (1 − yn)� ln(1 − xn)) (4)

Among them, yn = {0,1} represents the true value of the dataset,

and xn ={0,1} represents the prediction result.

In medical image analysis, the Dice coefficient is often used as a

criterion for judging segmentation results. The Dice loss function

proposed based on the Dice coefficient can show whether the
Frontiers in Oncology 08
prediction results and the data manually labelled by experts show

a consistent distribution in the overall performance (41). At the

same time, the Dice loss function focuses on mining the foreground

area’s information during the network training process. We take the

Dice loss function as another part of the loss function, whose

mathematical expression is as follows:

LDice = 1 −
2� Pred ∩ Labelj j

Pred ∩ Labelj j (5)

Where Pred denotes the predicted image of the network and

Label denotes the standard ground truth image.

The overall loss function of the ACU2Net network combines

the binary cross-entropy loss function and the Dice loss function

with the following mathematical expressions.

Lloss =   LBCE + LDice (6)
4 Experimental results

4.1 Dataset and experimental setup

The dataset used in this study is the image of bladder cancer

organoids provided by the Life Science Center of Yunnan

University. The data set included 200 images from bladder cancer

organoids. The pixel size is 2592 × 1944. SW780 and T24 bladder

cancer cell lines were used to establish the organoid model

(Figure 6). SW780 cells came from low malignancies female

patient representing bladder cancer clinical stage I (T1), while

T24 cells came from high malignancies female patient

representing bladder cancer clinical stage 3 or above. In brief

bladder cancer cells were digested by 0.125% or 0.25% trypsin

EDTA (Viva Cell, C3530, China) for 3-5 minutes, after 1200 rpm

centrifuge, bladder cancer cells were counted and diluted into 250

cells/ml. The Cultrex Reduced Growth Factor Basement Membrane

Extract, Type 2, PathClear (BME, R&D, 3533-010-02, USA) was

prepared on ice, and then added 4 ml resuspended bladder cancer

cells into 40uL BME on ice and mixed gently, finally loaded into a

well of 24 wells plate in 37C for 10 minutes. Once BME solidified,

600uL complete DMEM cell culture medium was added into 24

wells plate, and medium were replaced in every 3 days. Organoid

images were collected by Microscope DM2000 (Leica, German) at

day 1, 3, 5 and 7. The complete culture medium for SW780 bladder

cancer organoids was composed of RPMI Medium 1640 basic

(Gibco, C118755008T, USA), 10% Fetal Bovine Serum(FBS,
FIGURE 5

The residual attention gate.
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Gibco, 10099141C, USA), 1% Penicillin-Streptomycin (PS,

Millipore, TMS-AB2-C, USA), 1% HEPES (Viva Cell, C3544-

0100, China), while the medium for T24 cell organoids contained

McCoy’s 5A Medium (Viva cell, c3020-0500, China), 10% Fetal

Bovine Serum(FBS, Gibco, 10099141C, USA), 1% Penicillin-

Streptomycin (PS, Millipore, TMS-AB2-C,USA).Since the drug

was diluted by DMSO(sigma, D2650, China), the medium of CTR

group contained the same proportion of DMSO as the control,

while the medium of RA(MedChemExpress, HY-14649, China) and

B0107 (MedChemExpress, HY-B0107, China) groups contained RA

and B0107. Because the images were collected at different times and

from different environments, there exists uneven staining and

illumination in the images, therefore it is necessary to denoise

them. For this purpose, we chose the non-local average denoising

algorithm (42) for processing. Each image is a ground truth image

marked by experts at the pixel level. An example of the images in the

dataset and its pre-processing are shown in Figure 7.

In order to make full use of the limited dataset, the denoised

dataset was expanded by random flipping, cropping, and scaling.

Therefore, the 200 images of bladder cancer organoid were

expanded to 6400 bladder cancer organoid images with a size of

256×256 pixels. Moreover, the dataset was randomly divided into a

training set, a validation set, and a test set in a ratio of 8:1:1,

respectively. The experimental environment configuration required

for experiments is shown in Table 2.

A total of 1000 epochs were trained, and the gradient descent

was optimized using the SGD (Stochastic Gradient Descent)

algorithm (43). In addition, loss functions use Dice Loss and BCE

Loss, and the neuron inactivation probability was set to 0.5 (44),

which is used to further reduce the overfitting phenomenon.
4.2 The evaluation index

The purpose of bladder cancer organoid segmentation is to

divide the pixels in the organoid image into organoid pixels and

background pixels. There are four possible segmentation results:
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True Positive (TP), which indicates that the pixels in the organoid

images marked by experts are classified correctly as organoids; False

Negative (FN), indicating that the organoid pixels in the images

marked by experts are classified incorrectly as background; True

Negative (TN), indicating that the background pixels in the

organoid images marked by experts are classified correctly as

background; False Positive (FP), indicating that the background

pixels in the images marked by experts are classified incorrectly as

organoids. In order to evaluate the segmentation results, four

evaluation indicators of accuracy (Acc, accuracy), sensitivity (Se,

sensitivity), specificity (Sp, specificity), and F1–Score are used to

evaluate the segmentation effect objectively. The definitions of

evaluation indicators are shown in Table 3.
4.3 Results analysis of different
segmentation models

This paper first tested the traditional segmentation algorithm to

segment organoids. Three traditional segmentation algorithms were

selected, which are the threshold segmentation algorithm (45), the

canny edge detection algorithm (46), and the watershed algorithm

(47). The results are shown in Figure 8. We can see from

Figures 8C–E that the three traditional segmentation algorithms
BA

FIGURE 6

Bladder cancer cell line organoid model. (A) SW780 bladder cancer cell line. (B) T24 bladder cancer cell line.
TABLE 2 Experimental environment configuration.

Configuration Parameter

OS Ubuntu20.04

CPU i9 7900

GPU Geforce GTX 3090 GPU×2

CUDA CUDA 11.1

Environment Python 3.8

Frame Pytorch 1.7.1
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have a good ability for organoid segmentation in a simple

background, but it is quite different from tags for organoid

segmentation in complex backgrounds. Next, we compared four

algorithms of classical deep learning neural networks which are the

FCN model, the U-Net model, the Attention U-Net model, the

U2Net model, and our proposed ACU2Net model. These results are

shown in Figures 8F–J. The segmentation results of the FCN model

are not precise enough and incomplete, and there are a large

number of unrecognized organoids. The segmentation results of

the U-Net model have improved with obvious edges, but there are

still problems of mis-segmentation in images with complex

backgrounds. The Attention U-Net model has better

segmentation results, and is less affected by background

interference, but its segmentation outline is slightly rough. The

U2Net model has precise segmentation edges and achieves better

results in images with a large number of organoids, but in images

with complex backgrounds, some organoids are often mis-

segmented. In images with complex backgrounds and many

organoids, the proposed ACU2Net network model can maintain a

complete structure, and it can usually segment more detailed

information in regions with weaker edges.
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Although it is more intuitive to observe with the naked eye,

subjective factors may still be present, so it is still necessary to

quantitatively evaluate the segmentation results. These results are

shown in Table 4. The performance of our ACU2Net model is

better than other models on the four evaluation indicators of Acc,

Se, Sp, and F1–Score, which proves the rationality and effectiveness

of the model. In addition, it can segment more organoid

information in complex background regions, and has strong

robustness. Due to the insufficient recovery of detailed

information during the up-sampling process, the segmentation

effect of the FCN model is slightly worse. By introducing

deconvolution and feature layer connections, the U-Net model

makes up for the lost detail information to a certain extent, and

the effect is greatly improved. Furthermore, the Attention U-Net

model uses the attention module to replace the traditional method

of direct connection in the U-Net network, which enhances the

effectiveness and selectivity of the connection in the effective

connection of primary features and advanced features, and all

indicators are significantly improved. The U2Net model utilizes a

nested U-shaped network that integrates features of receptive fields

of different sizes to segment most organoids. Compared with the

U2Net model, the proposed model improved in various indicators,

indicating that the proposed model can segment more organoids in

complex areas and areas with blurred background edges, so it is

more adaptable to interference factors such as contrast and noise,

and the segmentation effect is better than other models.
4.4 The influence of each module on the
overall model

In order to verify the effectiveness of the RAG and GCM

modules introduced in this paper, the network was adjusted as

follows (1): the original U2Net network, is represented by Net1 (2);
B CA

FIGURE 7

Examples of the original microscope image and corresponding denoised images of bladder cancer organoids. (A) Microscope images of bladder
cancer organoids on culture day 3 and day 7 (B) Denoised images based on the microscope images of bladder cancer organoids. (C) The labels
generated from denoised images of bladder cancer organoids.
TABLE 3 The evaluation index.

Evaluation indicators Formula

Acc
Acc =

TP + TN
TP + TN + FP + FN

Se
Se =

TP
TP + FN

Sp
Sp =

TN
TN + FP

F1–Score
F1 − Score =

2� TP
2� TP + FP + FN
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the U2Net network, which is combined with RAG module, is

denoted by Net2; (3) the U2Net network, which is combined with

GCM module, is represented by Net3; (4) The U2Net network,

which is combined with RAG and GCM modules, is denoted by

Net4. The influence of different modules on the model is shown

in Table 5.

As can be seen from Table 4, the F1–score of the original U2Net

network segmentation is 88.64. When the RAGmodule is added to the

jump connection of the original U2Net network, the F1–Score of the

network is 2.18% higher than that of the U2Net network, indicating

that RAG attention can extract more detailed feature information

about bladder cancer organoids and reduce the influence of a lot of

background redundancy. It helps to combine high-level semantic

information with low-level fine-grained surface information to

improve the recognition ability. Compared with the U2Net network,

the F1–Score of the GCM module is improved by 1.13%, indicating

that the GCM module can maximize the feature transmission of

significant regions of bladder cancer organoids, and the details of

small targets would not be lost with the deepening of the feature
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extraction process. Finally, when the two modules are added to the

whole network simultaneously, the F1–Score is improved by 2.91%,

indicating that the proposed algorithm has a good segmentation effect

on the image of bladder cancer organoids with complex structures,

which fully proves the effectiveness of the proposed algorithm. The test

results of each module are shown in Figure 9.

The reasons for this improvement are: Based on the structure of

U2Net, the channel attention network is inserted into the U2Net

skip connection part, which improves the algorithm’s ability to

learn the characteristics of bladder cancer organoids and the ability

to process detailed information. As well,

ACU2Net can capture the spatial relationship with the

surrounding pixels by applying high-resolution images in different

layers of networks, but the ability to capture detailed features is poor. In

addition, it can focus on the geometric details of the image by utilizing

low-resolution images to obtain the local receptive field of the network,

which is suitable for high-precision segmentation tasks, but the ability

to represent images needs to be strengthened. Therefore, the different

receptive fields obtained by the GCM module can further improve the
B C D E F G H I JA

FIGURE 8

Comparison of results of different segmentation methods. (A) Image of bladder cancer organoids. (B) The bladder cancer organoids label. (C)
Threshold segmentation method. (D) Canny edge detection. (E) Watershed algorithm. (F) FCN model. (G) U-Net model. (H) Attention model. (I)
U2Net model. (J) ACU2Net model.
TABLE 4 Test results of different segmentation algorithms. Bold represents the best of each category.

Model Acc(%) Se(%) Sp(%) F1–Score(%)

FCN 97.83 83.47 81.40 82.42

U-Net 98.82 89.35 83.75 86.45

Attention U-Net 98.92 91.75 82.63 86.96

U2Net 98.97 92.64 84.97 88.64

ACU2Net 99.23 94.81 88.50 91.54
TABLE 5 Influence of each module on the whole model. Bold represents the best of each category.

U2Net RAG GCM Acc (%) Se (%) Sp (%) F1–Score (%)

Net1 + 98.97 92.64 84.97 88.64

Net2 + + 99.12 95.43 86.63 90.82

Net3 + + 99.01 94.19 85.74 89.77

Net4 + + + 99.23 94.81 88.50 91.54
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image representation ability, to solve the problem of various sizes of

bladder cancer organoids.
4.5 Drug screening evaluation

After training the model to identify bladder cancer organoids,

segmentation is completed, and drug screening is required to select

candidates for the treatment of bladder cancer for clinical trials. First,

the segments as shown in Figure 10A need to be automatically

computed to build a violin diagram, which can be drawn by

calculating the organoid area after treatment with different drugs on

different days. Figure 10B reflects the growth of bladder cancer

organoids from 1 to 7 days in three environments, where the CTR

group represents no drug treatment, and RA and B0107 are the

abbreviations for the names of the two drugs used to treat bladder

cancer, respectively. To observe the growth of organoids more

intuitively, a quartile distribution map is added to the violin plot,

and the dotted line in the middle is the median of this data group. As

can be seen from the figure, as days 1-3 are the initial growth stage of

bladder cancer organoids, there is no significant difference between
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drug-treated and non-drug-treated organoids. The growth differences

gradually appear after day 5, with the organoids in the CTR group

reaching a peak. The median area of CTR is higher than those of RA

and B0107, indicating that these two drugs have a specific inhibitory

effect on the growth of bladder cancer organoids and can be put into

clinical development. To verify the reliability of the experiment, we

invited professionals in related fields to perform manual verification.

These experts confirmed that the results of this paper showed the same

regularity as the manual statistical results. While manual data

processing time was 6 hours, the deep learning method used in this

paper can screen and evaluate bladder cancer organoids in about 10

minutes. Therefore, the proposed method can promote the throughput

for the testing of anti-cancer drugs for bladder cancer.
5 Conclusions

In this paper, an imaging segmentation method for bladder cancer

organoids is proposed by using the U2Net basic framework combined

with residual attention gate and grouping cross fusion module. The

method employs GCM, the grouped cross merge module, to obtain
B C D E FA

FIGURE 9

Comparison of results of different segmentation methods. (A) Image of bladder cancer organoids. (B) The bladder cancer organoids label. (C) Net1
model. (D) Net2 model. (E) Net3 model. (F) Net4 model.
BA

FIGURE 10

Drug screening evaluation based on ACU2Net model. (A) A micro image of organoids treated with drugs. (B) Using ACU2Net methods, the growth
results of organoids after treatment of (retinoic acid) RA and B0107.
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objects of different sizes at the skip connection of the model, which

improves the feature representation of segmentation. Through

integrating the improved attention mechanism, RAG, the semantic

information of the feature is enhanced for finer segmentation, and the

F1-Score indicator has reached 91.54% in this case. In addition, the

application of this new method in evaluating the growth status of

organoids on different culture days, with or without the treatment of

drugs, found it could provide accurate screening results with higher

efficiency for drug screening. This evidence shows that the proposed

novel algorithm has a greater improvement in the imaging

segmentation of bladder cancer organoids, especially in drug

screening evaluation using bladder cancer organoids, than the

existing algorithms. However, there are also some limitations to this

method. Due to the complex background of the 2D images of bladder

cancer organoids on Day 7, the adhesion of the organoids and the

existence of aliasing, noise, and mixing effects of sampling points

cannot be solved by image segmentation alone. In this case, the

organoid volume for drug screening should also be considered.

Therefore, the 3D reconstruction of bladder cancer organoids

cultured for longer than seven days is the main focus of our

later research.
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