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Artificial intelligence (AI), particularly deep learning (DL) algorithms, has

demonstrated remarkable progress in image-recognition tasks, enabling the

automatic quantitative assessment of complex medical images with increased

accuracy and efficiency. AI is widely used and is becoming increasingly popular in

the field of ultrasound. The rising incidence of thyroid cancer and the workload

of physicians have driven the need to utilize AI to efficiently process thyroid

ultrasound images. Therefore, leveraging AI in thyroid cancer ultrasound

screening and diagnosis cannot only help radiologists achieve more accurate

and efficient imaging diagnosis but also reduce their workload. In this paper, we

aim to present a comprehensive overview of the technical knowledge of AI with a

focus on traditional machine learning (ML) algorithms and DL algorithms. We will

also discuss their clinical applications in the ultrasound imaging of thyroid

diseases, particularly in differentiating between benign and malignant nodules

and predicting cervical lymph node metastasis in thyroid cancer. Finally, we will

conclude that AI technology holds great promise for improving the accuracy of

thyroid disease ultrasound diagnosis and discuss the potential prospects of AI in

this field.

KEYWORDS
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1 Introduction

With the rapid progress of modern medicine, especially the continuous development of

imaging technology, the detection rate of thyroid diseases and thyroid cancer has shown a

rapid growth trend both domestically and internationally (1, 2). Various auxiliary

examination methods, such as ultrasound, computed tomography, and radioisotope
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1060702/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1060702/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1060702&domain=pdf&date_stamp=2023-05-12
mailto:1287424798@qq.com
mailto:cuixinwu@live.cn
https://doi.org/10.3389/fonc.2023.1060702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1060702
https://www.frontiersin.org/journals/oncology


Cao et al. 10.3389/fonc.2023.1060702
scanning, are used to evaluate thyroid diseases (3). Among them

methods, ultrasound has become the primary means of thyroid

examination and diagnosis because of its advantages, such as

convenience, real-time imaging display, non-radiation, and good

tolerance (4, 5). However, the accurate identification of ultrasound

images is highly related to physician’s experience, and the

differences between different observers can be significant.

Therefore, inexperienced physicians are at greater risk of

misdiagnosis, underestimating the condition, or unnecessarily

performing fine-needle aspiration (FNA) biopsies (6, 7).

Therefore, taking advantage of artificial intelligence (AI) in

thyroid disease ultrasound screening and diagnosis not only assist

the radiologists in achieving more accurate imaging diagnosis with

higher efficiency, but also lessen the radiologists’ workload (8).

AI, a branch of computer science that encompasses both

machine learning (ML) algorithms and deep learning (DL)

algorithms, is gaining increasingly popularity in the field of

medicine. Due to its ability to process pixel values and derive

insights from images, AI techniques are particularly well-suited

for fields that rely on imaging data, such as gastroenterology (9),

ophthalmology (10), dermatology (11), pathology (12), radiology

(13), and ultrasonography (14). The exponential growth in the

volume of medical data over the past decade has spurred the

development of AI, which can automatically analyze complex

medical images and provide more accurate and efficient

diagnoses. By leveraging AI for thyroid disease ultrasound

screening and diagnosis, radiologists can reduce their workload

and improve the accuracy of their diagnoses.

Several scholars have examined the application of ultrasound AI in

thyroid diseases thus far. However, most review studies focus on

specific topics, such as distinguishing benign or malignant thyroid

nodules or predicting cervical lymph node metastasis using ultrasound

features. As a result, there is a need for a comprehensive review of the

current state and future possibilities of AI in thyroid ultrasound. This

article aims to provide a comprehensive review by discussing the

fundamental theoretical knowledge of AI, including traditionalML and

DL algorithms, and their clinical application in ultrasonic imaging of

thyroid diseases, such as thyroid disease detection, thyroid

segmentation, and differential diagnosis of thyroid nodules. Finally,

this article addresses the challenges and prospects of AI in the clinical

application of thyroid ultrasound.
Frontiers in Oncology 02
2 Basic theoretical knowledge of AI

2.1 Conventional ML algorithms

Traditional ML algorithms typically rely on the pre-defined

engineered features that accurately describe the regular patterns

inherent in data extracted from regions of interest (ROI) with

explicit parameters on the basis of expert knowledge. In the medical

field, common ML algorithms such as support vector machines

(SVM), Bayesian classifiers, et al. rely heavily on these predefined

features (15, 16). While these features are considered to be

discriminative, conventional ML algorithms are limited by their

dependence on expert-defined features and cannot adapt to changes

in different imaging methods or variations in signal-to-noise ratios.
2.2 DL algorithms

Unlike traditional ML algorithms, DL algorithms do not require

predetermined features and regions of interest set by humans.

Instead, they can automatically learn representations of

information and gain experience from raw data (17). DL

algorithms are composed of simple and nonlinear modules that

are particularly effective at extracting features from ultrasound

images (18). Various DL architectures have been explored to

solve problems, with the convolutional neural network (CNN)

being the most commonly utilized architecture (19).

In the 1990s, the use of CNNs expanded to include image

processing (20). Compared to other approaches, CNNs utilize

spatial and structural information more effectively. The network

can directly input the original image, eliminating the need for

preprocessing and complex feature extraction procedures that can

lead to errors and classification biases. The structure of the

convolutional neural network CNN generally includes the

following layers: input layer, convolutional layer, pooling layer,

fully linked layer and output layer (Figure 1). These layers map the

input image information to the critical endpoint in turn through

mapping, and learn more advanced image functions at the same

time. The convolutional layer is the essential component of a CNN,

responsible for extracting features from input images. Through data
FIGURE 1

A typical convolutional neural network model.
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sharing between the input and output feature maps, the

convolutional layer reduces the number of trainable parameters

and overall model complexity, thereby facilitating network training.

The initial convolutional layer typically extracts basic features, while

subsequent layers iteratively extract increasingly complex content

from lower-level functions (21). Pooling layers are periodically

inserted between consecutive convolutional layers for feature

extraction and information filtering. Its function is to decrease the

dimension of each feature graph, reduce computing resources and

control overfitting effectively while improving the fault tolerance of

the model. The operations performed by the pooling layer are

usually of the following types: maximum pooling, mean pooling,

random pooling, gaussian pooling and training pooling, of which

maximum pooling is the most common method (22). When a linear

classifier is employed in the classification layer, maximum pooling

has better classification performance than average pooling due to its

better classification performance (23). The fully connected layer in a

CNN serves as the classifier for the entire network, responsible for

categorizing the extracted features. It combines the local

information with feature identification from the convolution and

pooling layers, refitting the extracted features and reducing loss of

information. Due to its numerous connection weights, overfitting is

a potential risk with the fully connected layer. To mitigate this risk,

sparse connections and dropout methods have been suggested (24).
3 Application of AI in
thyroid ultrasound

3.1 Detection of thyroid disease

Thyroid nodule images obtained through ultrasound are often

distorted by echo disturbance and speckle noise. Thus, accurate

recognition of these images typically requires the expertise of

experienced physicians. However, DL algorithms that incorporate

multiple image patterns have become increasingly prevalent in

detecting thyroid lesions (25–28). As an automated method, a

computer-aided detection system (CAD) can recognize and

process predefined features, which is used in clinical practice. The

combination of CAD and ultrasound in thyroid ultrasound image

detection, compared with visual assessment, this method is helpful

to find the pathological features that cannot be recognized by the

naked eye, so as to improve the detection rate of thyroid lesions.

Ma et al. (25) performed a cascaded CNN to detect thyroid

nodules automatically, utilizing 21532 images from 5842 patients.

The model was designed to bypass potential errors that might arise

during preprocessing, leading to inaccurate results and classification

bias due to the feature set’s lack of robustness. And the result

demonstrated that the model performs good detection efficiency

with an area under the summary receiver operating characteristic

curve (AUROC) of 98.51%. Another study by Li et al. (26)

developed a papillary thyroid cancer detection model based on R-

CNN, which demonstrated a sensitivity of 93.5%. Liu et al. (27) also

employed the multi-scale detection network to automatically detect

thyroid nodules with an accuracy rate of 97.5%. Acharya et al. (28)
Frontiers in Oncology 03
proposed a CAD system called ThyroScan, which utilizes

seven significant wavelet features extracted from thyroid images

of 232 normal thyroid and 294 Hashimoto’s thyroiditis patients.

The fuzzy classifier showed an accuracy of 85% in detecting

Hashimoto’s thyroiditis.
3.2 Segmentation: to achieve the
segmentation of the precise boundary of
the lesion

Thyroid ultrasound image segmentation, as one of the most

commonly used image preprocessing methods, is usually used to

detect and diagnose nodules and to estimate the volume. It is an

essential part of CAD systems and the diagnosis of thyroid diseases

(29). However, Raw thyroid ultrasound images contain inaccurate

and incomplete information, leading to erroneous segmentation

results. Therefore, precise segmentation of thyroid nodules is

essential for accurate diagnosis of thyroid nodules. In addition,

thyroid segmentation can be applied to estimate thyroid volume,

which helps evaluate thyroid hormone secretion. Therefore, thyroid

segmentation and thyroid nodule segmentation are essential links to

improve the development of thyroid AI research, which is

conducive to providing a reliable theoretical basis for radiologists’

diagnostic decisions.

Thyroid segmentation and nodule segmentation are classified

into contour- and shape-based methods, region-based methods,

machine and DL methods, and hybrid methods (30). Although

these methods are used with different objectives, they share the

same classification.

a) Contour- and shape-based methods: The method processes

ultrasound images of the thyroid by obtaining information about

the border or shape of the thyroid or thyroid nodule. Edge

segmentation is a primary image segmentation method using a

different edge detection operator (31). And the characteristic of

contour segmentation is that the energy function is used as a

measure of the coincidence between the prior model and the

image data to make the contour curve approach the target

contour (32). However, interfering with original image contrast

and image artefacts, borders between thyroid nodules were

sometimes discontinuous or false borders were detected. In

addition, thyroid nodules are often irregular. Therefore, initial

contour and prior shape information are usually required to

improve the segmentation accuracy. b) Region-based method:

This approach assumes that different regions in thyroid

ultrasound images are inhomogeneous, thereby obtaining a

minimized boundary energy function. However, when the

differences between different regions are less significant, the

application of this method is limited. c) Machine and DL

methods: The method is based on a machine and DL algorithm

to construct a classifier that can automatically extract features, and

finally segment the target tissue area accurately, which increases the

accuracy of classification. However, machine and DL classifiers

require an amount of training data and take a long time to

train (21). d) Hybrid methods: The above two or more
frontiersin.org
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methods are combined to achieve the purpose of improving the

segmentation accuracy.

3.2.1 Thyroid segmentation
In several studies, different automatic segmentation methods

were used to segment thyroid ultrasound images with varying

degrees of success. Poudel et al. (33) employed the graph cut

(GC) method (34) to segment 1416 images, achieving a dice

coefficient of 76.5%. Meanwhile, Narayan et al. (29) developed a

method based on the principle of echo consistency to segment 52

thyroid images, resulting in a dice coefficient of 84.47%, higher than

the average of 83.23% obtained by two experts. Chang et al. (35)

developed a radial basis function neural network (RBFNN)

approach to automatically segment thyroid gland in 3D. The

segmentation method includes four steps thyroid region

localization and image enhancement, feature extraction, training

RBFNN and thyroid recovery. This study used 60 training patterns

to train the RBFNN and evaluated the performance of the method

by testing thyroid ultrasound images. The study found that the

accuracy of the method is 96.52%. Selvathi et al. (36) developed

support vector machines and extreme learning machines to develop

an automatic segmentation method, resulting in segmentation

accuracies of 84.78% and 93.56%, respectively. Poudel et al. (33)

also proposed a 3D U-Net CNN model (37) for thyroid

segmentation and compared its performance with four other

methods(ACWE, GC, RF, and DT), achieving an average dice

coefficient of 87.6%, which was higher than other methods.

3.2.2 Thyroid nodule segmentation
Nugroho et al. (38) used bilateral filtering (39) to preprocess

thyroid ultrasound images and then applied an active contour

without edges (ACWE) model to segment thyroid nodules. The

approach produced clearer nodule localizations and more accurate

segmentation outcomes. However, the ACWE model assumes

homogeneity of both foreground and background in the thyroid

ultrasound image, leading to potential inaccuracies. To overcome

the limitations of the ACWE model, Maroulis et al. (40) improved

the ACWE model and proposed a variable background active

contour (VBAC) model, which can mitigate the effects of

inhomogeneous tissue in ultrasound images. The VBAC model

was used to segment 71 thyroid nodule ultrasound images, and

compared with the ACWE model. The VBAC model achieved a

higher average overlap value of 91.1% compared to the ACWE

model’s 84.8%, indicating its superior performance in nodule

segmentation. Mylona et al. (41, 42) added Orientation Entropy

(OE) based on the ACWE model to make the contour of the nodule

closer to the target edge and leave the continuity of the contour

unaffected. This study showed that the OE-ACWE model evolves

faster than the ACWE model, and the average overlap rate of

segmentation results was 83.70%. In addition, some scholars have

studied the segmentation of thyroid nodules using DL methods. Ma

et al. (43) proposed a CNN model to segment nodules in 22,123

thyroid ultrasound images with an average overlap of 86.83% using

ten-fold cross-validation. Some scholars (44) have also proposed a

cascaded convolutional neural network (CCNN) model for thyroid
Frontiers in Oncology 04
nodule segmentation, using 1000 images in the dataset and

achieving an average overlap rate of 87.00% in the test set.

In addition, hybrid segmentation techniques have been

investigated to improve segmentation models and automate the

segmentation of solids. Zhou et al. (45) combined the GC model

and the ACWEmodel to segment thyroid nodules. After research, it

is concluded that the hybrid model performed better in

segmentation and addressed boundary leakage issues more

effectively. However, this study lacked quantitative results and

could not yet be compared with other models. Legakis et al. (46)

combined a maximum likelihood algorithm and an active contour

model to segment nodules in thyroid ultrasound images. The study

found that the average overlap rate of segmentation results

is 92.30%.

Thyroid segmentation and thyroid nodule segmentation have

become indispensable for modern medical ultrasound imaging

diagnosis, aiding clinicians in making optimal diagnostic

decisions. However, they do have certain limitations. Firstly, the

current research on thyroid segmentation mainly focuses on the

segmentation of normal thyroid, leaving the segmentation of an

abnormal thyroid underexplored. The size and shape of abnormal

thyroid tissue may present new challenges for thyroid

segmentation. Secondly, most studies related to thyroid nodule

segmentation aim to distinguish the nature of thyroid nodules but

do not identify specific disease types.
3.3 Differentiation of malignant and benign
thyroid nodules

3.3.1 ML
Currently, some studies have combined the maximum

likelihood algorithm with the analysis of ultrasonic image texture

features for the differential diagnosis of thyroid nodules (Table 1).

The main objective of most researchers is to evaluate the efficacy of

ML algorithms in distinguishing between benign and malignant

thyroid nodules. In this regard, CAD systems that utilize ML

algorithms have become increasingly significant in assisting

ultrasound imaging to enhance the precision of nodule assessment.

In 1989, Hirning et al. (47) published the first study to

differentiate thyroid nodules based on ultrasound texture analysis.

The overall accuracy of their classification system in classification

has reached 85%. Chang et al. (49) used 78 texture features to

describe thyroid ultrasound images and applied SVM to classify the

images, achieving a remarkable accuracy rate of 100%. Acharya

et al. (31, 54–57, 63) proposed a CAD system for automatically

classifies malignant and benign thyroid nodules using 3D high-

resolution and contrast-enhanced ultrasound (CEUS) images. The

classification accuracy of different classifiers tested with these

features ranged from 98.1% to 100%, indicating that the CAD

system could support radiologists in identifying the nature of

thyroid nodules. Raghavenra et al. (67) proposed a fusion method

to identify the maturity of thyroid lesions, that is, the spatial gray

scale correlation feature (SGLDF) and fractal texture system fusion.

The classification efficiency of the SVM classifier was high, with an
frontiersin.org
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TABLE 1 Main results of ML algorithm in thyroid nodules ultrasound image studies.

Reference Published
year Technique No. of

subjects Features Classifier Main
Performance

Hirning et al
(47)

1989 US 55 Hist, GLCM SVM Accuracy:85.0%

Tsantis et al
(16)

2005 US 120
Hist, GLCM,
GLRLM

SVM Accuracy:96.7%

Tsantis et al
(48)

2009 US 85
Shape and size, Fractal,

Wavelet
SVM, PNN AUROC:0.96

Savelonas
et al (46)

2009 US 171 His, shape and size, Fractal SVM, k-NN AUROC:0.95

Chang et al
(49)

2010 US 61
GLCM, GLRLM;

Wavelet
SVM Accuracy:100%

Iakovidis
et al (50)

2010 US 75 Hist, GLCM, FLBP SVM Accuracy:97.5%

Legakis et al
(51)

2011 US 142 Textural, shape feature vectors SVM AUROC:0.93

Luo et al (52) 2011 Elastography 98 Waveform LDA
Sensitivity:100%;
Specificity:75.6%

Ding et al
(53)

2011 Elastography 125
Hist,
GLCM

SVM
Accuracy:93.6%;
AUROC:0.97

Acharya et al
(31)

2011 3D CEUS 20 GLCM, Wavelet K-NN, PNN, DT

Sensitivity:98.0%;
Specificity:99.8%;
Accuracy:98.9%;
AUROC:0.99

Acharya et al
(54)

2012 3D HRUS 20 GLCM, Wavelet AdaBoost

Sensitivity:100.0%;
Specificity:100.0%;
Accuracy:100.0%;
AUROC:1.00

Acharya et al
(55)

2012 3D CEUS 20 GLCM, Wavelet K-NN, PNN, DT
Sensitivity:98.0%;
Specificity:99.8%;
Accuracy:98.9%

Acharya et al
(56)

2012
3D HRUS
3D CEUS

20 FD, LBP, FS, LTE
SVM, DT, Sugeno Fuzzy, GMM, KNN, PNN,

NB

HRUS
Accuracy:100.0%

CEUS
Accuracy:98.1%

Acharya et al
(57)

2013 3D CEUS 20 Wavelet Fuzzy Accuracy:99.1%

Zhu et al
(58)

2013 US 689 na ANN
Accuracy:83.1%;
AUROC:0.83

Kim et al
(59)

2015
US
RTE

613 Hist, GLCM na AUROC:0.68

Song et al
(60)

2015 US 155 GLCM SVM, RT, RF, boost, logistic, ANN AUROC:0.84

Ardakani
et al (61)

2015 US 70 Hist, GLCM, GLRLM 1-NN, ANN

Sensitivity:94.5%;
Specificity:100.0%;
Accuracy:97.1%;
AUROC:0.97

Ardakani
et al (62)

2015 US 60 Wavelet 1-NN

Sensitivity:100.0%;
Specificity:100.0%;
Accuracy:100.0%;
AUROC:1.00

Acharya et al
(63)

2016 3D HRUS 242
Safe-Level
SMOTE

SVM, KNN, MLP,
C4.5decision tree

Accuracy:94.3%

(Continued)
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accuracy rate of 97.5% and a maximum AUROC of 0.95.To

determine which ML classifiers have higher classification

performance for thyroid nodules, Zhang et al. (69) nine ML

classifiers (K-NN, CNN, Random Forest, Logistic, adaptive

enhancement, Naive Bayes, neural networks, etc.) were evaluated

for their classification performance of thyroid nodules using

conventional ultrasound and real-time elastography features in

2064 thyroid gland samples, and compared to experienced

radiologists. The Random Forest algorithm demonstrated the

highest diagnostic performance among all the classifiers tested.

Based on the handcrafted image features, Ouyang et al. (70)

analyzed the classification efficacy of linear and nonlinear ML
Frontiers in Oncology 06
methods when processing thyroid data. They found that both

methods had similar accuracy and a simpler prediction process

compared to a CAD system, as there was no need to preprocess the

image or extract texture features from it.

3.3.2 DL
The integration of DL techniques with ultrasonography has

garnered considerable interest in the identification of benign and

malignant thyroid nodules (Table 2). Based on the DL model, it can

learn useful texture features to extract features or classify thyroid

nodules automatically in ultrasound images, which overcomes the

limitations of manual methods.
TABLE 1 Continued

Reference Published
year Technique No. of

subjects Features Classifier Main
Performance

Bhatia et al
(64)

2016 SWE 105 GLCM na
Sensitivity:97.5%;
Specificity:90.0%;
AUROC:0.97

Chang et al
(65)

2016 US 59
Hist, intensity differences,

elliptical fit, GLCM, GLRLM
SVM AUROC:0.99

Wu et al (66) 2016 US 970 na NB, SVM, RBF-NN AUROC:0.91

Raghavendra
et al (67)

2017 US 242 SGLD, Fractal
DT, LDA, QDA, NB, PNN, k-NN, SVM with

different
kernel functions

Sensitivity:90.3%;
Specificity:98.6%;
Accuracy:97.5%;
AUROC:0.94

Yu et al (68) 2017 US 543
Hist, GLCM,

GLRLM, NGLDM,
Fractal

SVM, ANN
Sensitivity:100.0%;
Specificity:87.9%;
Accuracy:92.0%

Zhang et al
(69)

2019
US
RTE

2064 na
k-NN, RF, k-SVM,

Logistic, LDA, CNN, adaptive boosting, NB,
neural network

AUROC:0.94

Ouyang et al
(70)

2019 US 1036 na
Ridge, Lasso-penalty, Elastic Net, RF,

k-SVM, Neural Network
AUROC:0.95

Shin et al
(71)

2020 US 348
GLCM, GLRLM, Gabor, and

Haar wavelet
SVM, ANN

SVM:
Accuracy:79.4%

ANN:
Accuracy:69.0%

Zhao et al
(72)

2021
US
SWE

743

contour, shape, textural
phenotype, Hist, GLCM,

GLRLM, GLSZM,NGTDM,
GLDM,LTP,LDP,LBP, ect.

DT, NB, KNN, logistics regression, SVM,
KNN-based bagging, RF, extremely

randomized trees (xgboost), multi-layer
perception, and gradient boosting tree

ML‐assisted SWE
+US visual
approach:
AUC:0.951
SWE+US
radiomics
approach:
AUC:0.834

Vijay et al
(73)

2021 US 99 GLCM ANN, SVM Accuracy:96.0%

Matti et al
(74)

2022 US 8339 Hist, GLCM Random forest AUC:0.75

M. Keutgen
et al (75)

2022 US 1052
Gray-level co-occurrence

matrix texture
Two-class BANN AUC:0.75
US, ultrasonography; CEUS, contrast-enhanced ultrasonography; HRUS, high-resolution ultrasonography; RTE, real-time elastography; SWE, shear wave elastography; AUROC, area under
ROC curve; Hist, histogram; GLCM, Gray-Level Co-occurrence Matrix; GLRLM, Gray-Level Run-Length Matrixes; NGLDM, Neighboring Gray-Level Dependence Matrix; FLBP, fuzzy local
binary pattern; SVM, Support Vector Machines; PNN, Probabilistic Neural Network; KNN, k-Nearest Neighbor; ANN, artificial neural network; 1-NN, first–Nearest Neighbor; DT, Decision
Tree; RT, Random Tree; RF, Random Forest; RBF-NN, radial basis function-neural network LDA, Linear Discriminant Analysis; GMM, Gaussian Mixture Model; QDA, Quadratic Discriminant
Analysis; NB, Naive Bayes; FD, Fractal Dimension; LBP, Local Binary Pattern; FS, Fourier Spectrum; LTE, Laws Texture Energy; MLP, multi-layered perceptron; Two-class BANN, two-class
Bayesian artificial neural networks; na, not available.
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Ma et al. (76) first proposed the classification of thyroid nodules

based on the CNN fusion method. Their findings indicated an

83.02% diagnostic accuracy for this approach. Chi et al. (77) first

attempted to combine the DL method with the TI-RADS scoring

system to propose a classification system for thyroid images,

utilizing the deep CNN GoogLeNet. By fine-tuning the existing
Frontiers in Oncology 07
DL network, they achieved a classification accuracy of 99.13%,

leading to improved effectiveness of CAD systems in thyroid nodule

evaluation. Peng et al. (80) developed a ThyNet-based DL model to

differentiate benign and malignant thyroid nodules in a multicenter

study, which showed that the AUROC was significantly higher in

subjects with ThyNet diagnosed benign and malignant thyroid
TABLE 2 Main results of DL algorithm in thyroid nodules ultrasound image studies.

Reference Published
year Number of subjects Type of DL Main Performance

Ma et al (76) 2017 15000 images
fusion of two pre-trained CNNs on the

ImageNet

Accuracy:83.0%;
Sensitivity: 82.4%;
Specificity: 85.0%.

Ma et al (43) 2017 22123 images CNN Sensitivity: 91.5%

Chi et al (77) 2017 693 images Fine-Tuning DCNN Accuracy:99.1%

Zhu et al (78) 2017 298 nodules
Fine-Tuning DCNN

(ResNet18-based network)
Accuracy:93.8%

Gao et al (79) 2018 342 nodules multiple-scale CNN Accuracy:82.2%

Peng et al (80) 2021 18049 images ThyNet AUROC:0.921.

Zuo et al (81) 2018 19260 images Alexnet CNN Accuracy:86.0%

Zhu et al (82) 2018 467 nodules DNN Accuracy:87.2%

Buda et al (83) 2019
1377 images

(training set:1278;
test set: 99)

Multitask DCNN
Sensitivity:87.0%;
Specificity:52.0%.

Guan et al (84) 2019
2836 images

(training set:2437;
test set:399)

DL(Inception-v3)
Sensitivity: 93.3%;
Specificity: 87.4%.
AUROC:0.87

Li et al (85) 2019
42952 training samples
and 2692 test samples

DCNN
Sensitivity: 93.4%;
Accuracy:89.8%;
AUROC:0.95

Nguyen et al (86) 2019 237 nodules DCNN Accuracy:90.88%

Song et al (87) 2019
1358 nodules

Test set (internal:55; external:100).
DL(Inception-v3)

internal test set:
Sensitivity:95.2%;

external test set: Se:94.0%

Song et al (88) 2019 4309 images multitask cascade CNN Accuracy: 98.2%

Sundar et al (89) 2019
2525 training samples
and 613 test samples

Inception-v3, VGG-16

Inception-v3+CNN:
Accuracy:93.0%;
VGG-16+CNN:
Accuracy:79.0%;

Wang et al (90) 2019 5007 nodules YOLOv2 neural network Accuracy:90.3%

Nguyen et al (91) 2020 450 images DCNN Accuracy:92.1%

Wang et al (64) 2020 7803 images CNN Accuracy:84.6%

Wu et al (92) 2021
2082 images(90% training images and 10%

testing images)
CNN(ResNet-50、Inception-Resnet v2、

Desnet-121)

ResNet-50: Accuracy:87.4%
Inception-Resnet v2:
Accuracy:84.6%

Desnet-121: Accuracy:84.6%

Zhu et al (93) 2021
16401 training samples
and 1000 test samples

CNN (BETNET) Accuracy:98.3%

Liu et al (94) 2021 163 pairs images IF-JCNN Accuracy:89.6%

Kim et al (95) 2022
12327 training samples
and 3082 test samples

DL (VGG16, VGG19, ResNet)
VGG16: Accuracy:78.0%
VGG19: Accuracy:74.0%
ResNet: Accuracy:75.0%
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nodules than in radiologists (0.922 vs 0.839, P< 0.0001). And With

the assistance of ThyNet, the number of fine needle aspirations

decreased from 61.9% to 35.2%, while the number of missed

malignant thyroid nodules decreased from 18.9% to 17.0%. It was

concluded that ThyNet could significantly improve radiologists’

diagnosis and help to reduce unnecessary fine needle punctures of

thyroid nodules.

Nguyen et al. (86) have developed a method for feature

extraction from thyroid images using a cascade classifier

architecture to enhance the performance of CAD systems for

thyroid nodule classification. This approach combines both

handcraft and DL, achieving an overall accuracy of 90.88%.

Considering the differences in the DL network structure and the

imbalance of image samples, the same group (91) artificially

reduced the influence of the imbalance of training samplesby

employing a weighted binary cross-entropy loss function in

training multiple CNN models. This method achieved a 92.05%

accuracy rate for thyroid ultrasound images. Wu et al. (92)

combined ACR TI-RADS with CNN to train three commonly

used DL algorithms to distinguish malignant from benign thyroid

nodules in TI-RADS 4 and TI-RADS 5. The method showed a

significant ability to distinguish malignant and benign nodules,

demonstrating high clinical value. Liu et al. developed a joint

convolutional neural network (IF-JCNN) based on information

fusion to improve the diagnostic performance of thyroid nodules.

The IF-JCNN was able to achieve an accuracy and AUROC of 0.896

and 0.956, respectively, which outperformed those obtained using

only US images (94). Since multiple images from different angles are

necessary for a thorough thyroid ultrasound examination, most

methods only utilize a single US image for diagnosis. Wang et al.

(96) proposed a new CNN structure for attention-based feature

aggregation networks that can aggregate features extracted from
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multiple images in a single inspection. This method improves the

ability to identify malignant thyroid nodules using different views.

3.3.3 S-Detect
S-Detect (Samsung RS80A ultrasound system, Seoul, Korea) is

the first commercially available ultrasound CAD based on DL

technology for thyroid imaging. The system employs a CNN

model that is trained using various TI-RADS hierarchical

knowledge to automatically identify and analyze multiple

grayscale ultrasound image features, including the internal

structure, echo height, boundary, direction, and shape of thyroid

nodules. After selecting the region of interest, the system can

quickly determine whether the nodule is benign or malignant,

either automatically or through manual intervention (Figure 2).

Many studies have been carried out on the effectiveness of S-Detect

system in differentiating between malignant and benign thyroid

masses (97–109) (Table 3). Despite being a novel technique, its

clinical applicability remains controversial, and different

experiments have yielded varying results. Several studies have

evaluated the diagnostic efficacy of the S-Detect system for

identifying malignant thyroid nodules. Choi et al. (97) indicated

that the difference in sensitivity of the S-Detect system for the

diagnosis of malignant thyroid nodules compared to radiologists

with 20 years of experience was not statistically significant (88. 4%

vs 90.7%, P > 0.05), while the specificity(94.9% vs 74.9%, P<0.05)

and discriminative power (AUROC 0.92 vs 0.83, P<0.05) of the S-

Detect system were inferior to those of experienced radiologists. In

contrast, the results of the S-Detect test by Gitto et al. (98) displayed

no statistically significant difference in specificity between the

software and radiologists with 5 years’ experience (66.7% vs

81.3%, P > 0.05)., but the diagnostic sensitivity of the software

was inferior to the CAD system (21.4% vs 78.6%, P<0.05). Yoo et al.
FIGURE 2

Thyroid nodules S-detect technique in the Samsung RS80A ultrasound system. (A, B) In a 35-year-old woman with right Hashimoto’s thyroiditis with
focal fibrosis on conventional ultrasound (A), S-Detect comes to the correct conclusion through analysis as “Possibly Benign” (B); (C, D) In a 52-
year-old woman with left thyroid cancer on conventional ultrasound (C), S-Detect comes to the correct conclusion through analysis as “Possibly
Malignant” (D).
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(109) found that the S-Detect system had comparable diagnostic

performance to a radiologist with 10 years of experience, and could

improve the diagnostic sensitivity and negative predictive value of

less experienced radiologists. Jeong et al. (108) found that

experienced radiologists had higher sensitivity and accuracy than

less experienced radiologists when using the S-Detect system. A

subgroup meta-analysis by Zhao et al. (107) showed that the S-

Detect system had similar sensitivity to experienced radiologists,

but lower specificity.

Xia et al. (106) were the first to utilize the S-Detect software to

evaluate thyroid cancer subtypes. They found that the S-Detect

system exhibited higher diagnostic sensitivity than experienced

radiologists in detecting papillary thyroid cancer and follicular

thyroid cancer. Nonetheless, the radiologists demonstrated

superior diagnostic specificity compared to CAD systems. Kim

et al. (99) evaluated the diagnostic efficacy of the S-Detect™

software (Rs85A) in its new version, which was assigned to

classify calcification into four distinct categories. However, the

accuracy of calcification identification limits the diagnostic

performance of S-Detect. In terms of characterizing thyroid

nodules, the S-Detect system and radiologists generally agreed on

most sonographic features, but there were discrepancies when it
Frontiers in Oncology 09
came to margin definition. The study of Choi et al. (97) considered

that radiologists and the S-Detect system described composition,

orientation, echogenicity, and sponginess in substantial agreement

(Kappa= 0.66, 0.74, 0.73, 0.66, respectively), while marginal

definition showed a fair greement (Kappa = 0.239). Similar

findings were reported by Xia et al (106). In addition, Gitto et al.

(98) performed an inter-observer agreement between the S-Detect

system and the radiologist with a Kappa value of only 0.03 for the

margin assessment.

S-Detect is the first commercially available ultrasound CAD

based on DL technology for Thyroid. It is specifically designed to

support inexperienced radiologists in identifying thyroid nodules’

ultrasound characteristics and thereby enhance their diagnostic

accuracy. However, despite its promising potential for clinical use,

the S-Detect system’s performance is still largely dependent on the

operator. Moreover, the system necessitates the manual input of

certain features, and several attempts may be required to segment

lesions correctly. Therefore, the system’s performance requires

further development, including automatic detection of nodule

calcifications and margins. This development will not only save

analysis time but also enhance physicians’ overall performance in

diagnosing nodules.
TABLE 3 Summary of related studies reported on thyroid nodules of compared diagnostic efficacy between the S-Detect and experienced
radiologists.

Author Nodules Sensitivity Specificity Accuracy PPV NPV AUROC

Benign/
maligant

S-D Ra S-D Ra S-D Ra S-D Ra S-D Ra S-D Ra

Choi et al (97) 102
(59/43)

90.7% 88.4% 74.6% 94.9% 81.4% 92.2% 72.2% 92.7% 91.7% 91.8% 0.83 0.92

Gitto et al (98) 62
(48/14)

21.4% 78.6% 81.3% 66.7% 67.7% 69.4% 25.0% 40.7% 78.0% 91.4% -* -*

Yoo et al (109) 117
(67/50)

80.0% 84.0% 88.1% 95.5% 84.6% 90.6% 83.3% 93.3% 85.5% 88.9% 0.84 0.90

Jeong et al (108) 100
(56/44)

88.6% 84.1% 83.9% 96.4% 86.0% 91.0% 81.3% 94.9% 90.4% 88.5% -* -*

Xia et al (106) 180
(85/95)

90.5% 81.1% 41.2% 83.5% 67.2% 82.2% 63.2% 84.6% 79.5% 79.8% -* -*

Kim et al (99) 218
(132/86)

80.2% 84.9% 82.6% 96.2% 81.7% 91.7% 75.0% 93.6% 86.3% 90.7% -* -*

Fresilli et al (100) 107
(80/27)

70.4% 81.5% 87.5% 88.8% 65.5% 71.0% 89.7% 93.4% -* -* 0.79 0.85

Wei et al (101) 204(112/92) 91.3% 83.7% 65.2% 63.4% 77.0% 72.5% 68.3% 65.3% 90.1% 82.6% 0.78 0.74

Han et al (102) 454
(287/167)

97.6% 97.6% 21.6% 36.2% 49.6% 58.8% 42.0% -* 93.9% -* -* -*

Chung et al (103) 165
(140/25)

92.0% 72.0% 87.9% 85.0% 88.5% 83.0% 57.5% 46.2% 98.4% 94.4% -* -*

Barczyński et al (104) 50
(40/10)

90.0% 90.0% 95.0% 80.0% 94.0% 82.0% 81.8% 52.9% 97.4% 97.0% -* -*

Molnár et al (105) 200
(185/15)

88.6% 80.0% 88.1% 40.5% 88.0% 43.5% -* -* -* -* 0.94 0.66
frontiers
PPV, Positive predictive value; NPV, negative predictive value; AUROC, area under the summary receiver operating characteristic curve; S-D, S-Detect; Ra, Radiologist. ∗The exact data were not
reported in the original articles.
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3.4 Prediction of lymph node metastasis in
thyroid cancer

Assessing the recurrence and prognosis of thyroid cancer

heavily relies on the status of lymph nodes, making it a

significant indicator in the diagnostic process (110). Among

various imaging techniques, ultrasound has become a preferred

method due to its non-invasiveness, real-time monitoring, and

convenience, providing essential information for diagnosis and

treatment (111). To predict lymph node metastasis, the

traditional risk prediction model based on risk factors such as

tumor size, microcalcification, Hashimoto’s disease (112–115), and

blood markers (116, 117), has been commonly used. Predictive

models have been constructed to assess the lymph node status of

thyroid cancer patients using ultrasound examination, with the area

under the AUROC ranging from 0.67 to 0.80. At the same time,

other analytical methods, especially radiomics and CNN models,

have attracted significant attention because of their feasibility in

exploring the correlation between ultrasonic features and the lymph

node status of thyroid cancer (118, 119).

The CAD system utilizing DL algorithm was applied to predict

lymph node status of thyroid cancer. Lee et al. (120) developed a

CAD system using the VGG-Class activation map model to

determine lymph node status. The study found that the model’s

accuracy was 83.0% and exhibited good diagnostic performance.

The system also provides reliability scores and identified regions

associated with lymphatic metastasis from ultrasound images.

Notably, this study established the first DL-based CAD system

intended to assess lymph node status. Some scholars (120)

developed a CAD system based on the CNN model to locate and

identify the lymph node status of thyroid cancer. The results

showed that the accuracy of the CAD system is 83.0% on the test

set and effectively detected and diagnosed the location and nature of

lymph nodes.

However, the application of the DL algorithm in auxiliary

ultrasonic image diagnosis is not mature enough. One reason is

the limited number of available ultrasonic images, which also have

low resolution that prevents the algorithm from detecting typical

features. Additionally, most current studies do not consider various

clinical data, such as medical history, clinical inspection results, and

other relevant information (121). Some scholars (122) proposed a

deep multichannel learning network called MMC-Net to predict

lymphatic metastasis of thyroid cancer. The study used clinical data,

two-dimensional ultrasound and color Doppler flow imaging

(CDFI) images as inputs and proposed a new index to compare

the contribution of different channels to prediction. The proposed

multi-channel DL network achieved an average F1 score of 0.888

and an average AUC of 0.973, outperforming three single-channel

networks. These results indicate that the MMC-Net model is a more

effective approach for predicting lymphatic metastasis of thyroid

cancer. In recent years, researchers have shown interest in the

application of radiology to predict the lymph node status of thyroid

cancer. This has been achieved through the use of quantitative

medical imaging features. By mining quantitative image feature data

in a high-throughput manner and integrating it into clinical
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decision-making systems, it has been possible to improve the

diagnostic accuracy of clinicians (119, 123, 124). Liu et al. (119)

analyzed the lymph node status of patients with preoperative

thyroid papillary carcinoma based on radiological methods. The

radiomics method showed a prediction accuracy of 0.712,

indicating the feasibility of radiological analysis of ultrasonic

images of patients with thyroid papillary carcinoma. Jiang et al.

(125) developed a multimodal ultrasound-based nomogram to

predict lymph node metastatic status in papillary thyroid

carcinoma. Multimodal ultrasound techniques include shear wave

elastography and conventional ultrasound. The results showed that

for univariate analysis, the radiological features of B-mode

ultrasound and shear-wave elastography radiomics score were

significantly correlated with lymph node status. However, the B-

mode ultrasound radiomics score did not appear in the

final nomogram.

Accurate identification and complete removal of metastatic

lymph nodes during preoperative thyroid cancer treatment is

crucial for preventing postoperative recurrence. The future CAD

system holds promise in predicting metastatic lymph nodes with

greater efficiency and accuracy, providing valuable insights for

clinical diagnosis and treatment decision-making.
4 Challenges and future perspectives

In clinical ultrasound medicine, it is controversial when AI

technology can be automatically applied in the clinic, with

speculations for the time ranging from a few years to decades.

Despite many studies that have confirmed the effectiveness of AI

and achieved satisfactory results, most articles have used

retrospective analysis or single-center controlled studies, which

may lead to inevitable selection bias. For example, the samples in

the training set are small, or the selected samples are not from the

screening of thyroid nodules, but from the thyroid nodule

population with pathological results, which leads to the

unrepresentative model or the wrong description of the real

population, thus affecting the universality of the model.

Therefore, detailed system verification is needed before AI is

applied to practical clinical practice. In order to carry out reliable

and independent clinical verification, multi-center prospective

research is needed in the future, and appropriate inclusion/

exclusion criteria are set to make the selection of target

population representative, and unused data sets are used for

external verification. When the learning model adjusts itself too

much on the training data set or the data set used for model

development cannot fully represent the patient range (target

population) to be applied to clinical practice, over-fitting or

spectrum bias will occur (126, 127). Overfitting and spectrum

bias may lead to overestimation of accuracy and generalization

ability. Therefore, in order to correctly verify the accuracy of AI,

doctors should evaluate the performance of AI by avoiding the

influence of over-fitting and spectrum bias. DL can handle the

complex relationship between dependent variables and

independent variables and can make abstract inference at
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multiple levels. However, this complexity also makes the model a

“black box” where the decision making mechanism is not clearly

demonstrated, which is not conducive to building social

acceptability (128), so further research is needed to address model

interpretability or explainability.

The downside of the AI tool is that it can’t solve multiple tasks,

and being good at one task doesn’t necessarily mean being good at

other tasks. In addition, the difference between the actual efficiency of

AI results and the expected results and the cost-effectiveness must be

proved by complex and extensive investigations. In the current

medical environment, the acquisition of reasonable regulations and

reimbursement policies from relevant departments is crucial for the

progress of AI technology. At present, a common shortage of AI tools

is that they cannot resolve multiple tasks. There is currently no

comprehensive AI system capable of detecting multiple abnormalities

throughout the human body.

We believe that the future AI system will increase the efficacy of

detecting thyroid nodules and predicting the lymph node status of

thyroid cancer. At the same time, it can further distinguish specific

benign and malignant diseases, such as thyroiditis, thyroid

adenoma and nodular goiter. Besides, In the aspect of thyroid

ultrasound-guided puncture biopsy and microwave ablation, the

AI navigation intervention system can be further developed and

perfected. The puncture position can be monitored in real-time by

computer software to improve the accuracy of puncture. In

addition, complementary information is provided by creating a

DL model trained on multimodal images to further improve the

diagnostic performance of the DL model.
5 Conclusion

At present, the application of AI in medicine has achieved

satisfactory achievement, especially in the recognition and diagnosis

of imaging pictures. It is rapidly emerging as a promising adjunct to

thyroid ultrasound imaging tasks, satisfying the desire of clinical

care to improve the efficiency of medical imaging. As an advanced

technology, AI has changed the dependence and subjectivity of

traditional ultrasound diagnosis on operator’s experience. In

addition, AI can also improve diagnostic efficiency and reduce the

burden on radiologists. With the continuous increase in the amount

of data, AI will be the domain development direction of thyroid

ultrasound diagnosis in the future. In order to utilize AI wisely,

radiologists must keep up to date with its feasibility, consider the

strengths and limitations of different algorithms, understand the

impact of overfitting and spectral bias on AI performance,
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understand that DL technology has its own “black box” nature

(lack of interpretability or explainability), and that radiologists need

to attempt to compensate for its shortcomings by building rich

heterogeneous image datasets, using unused datasets for external

validation, etc. We believe that AI will not replace the dominant role

of human doctors. Still, AI can provide a credible rationale for

doctors to make clinical decisions in some regions of

imaging functions.
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