
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xu Zhang,
Jiangsu University, China

REVIEWED BY

Antonella Argentiero,
National Cancer Institute Foundation
(IRCCS), Italy
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Breast cancer (BRCA) remains the most prevalent cancer worldwide and the tumor

microenvironment (TME) has been discovered to exert a wide influence on the

overall survival and therapeutic response. Numerous lines of evidence reported

that the effects of immunotherapy of BRCA were manipulated by TME.

Immunogenic cell death (ICD) is a form of regulated cell death (RCD) that is

capable of fueling adaptive immune responses and aberrant expression of ICD-

related genes (ICDRGs) can govern the TME system by emitting danger signals or

damage-associated molecular patterns (DAMPs). In the current study, we obtained

34 key ICDRGs in BRCA. Subsequently, using the transcriptome data of BRCA from

the TCGA database, we constructed a risk signature based on 6 vital ICDRGs, which

had a good performance in predicting the overall survival of BRCA patients. We

also examined the efficacy of our risk signature in the validation dataset (GSE20711)

in the GEO database and it performed excellently. According to the risk model,

patients with BRCA were divided into high-risk and low-risk groups. Also, the

unique immune characteristics and TME between the two subgroups and 10

promising small molecule drugs targeting BRCA patients with different ICDRGs

risk have been investigated. The low-risk group had good immunity indicated by T

cell infiltration and high immune checkpoint expression. Moreover, the BRCA

samples could be divided into three immune subtypes according to immune

response severity (ISA, ISB, and ISC). ISA and ISB predominated in the low-risk

group and patients in the low-risk group exhibited a more vigorous immune

response. In conclusion, we developed an ICDRGs-based risk signature that can

predict the prognosis of BRCA patients and offer a novel therapeutic strategy for

immunotherapy, which would be of great significance in the BRCA clinical setting.
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1 Introduction
Breast cancer (BRCA) is one of the most common cancers,

accounting for approximately 30% of female cancers, with a

mortality-to-incidence ratio of 15% (1). BRCA is a biologically and

clinically heterogeneous disease that can be divided into 3 recognized

subtypes (hormone receptor-positive, ERBB2-positive, and triple-

negative BRCA) based on the presence or absence of distinct

proteins (2). Patients with different histotypes of BRCA generally

have varying aetiologies and profiles, and present diverse responses to

treatment and prognosis (3, 4). As for the molecular level, the most

frequent pathogenic genome alternations in BRCA tend to be HER2

activation and BRCA1/2 mutations (5). Moreover, the next-

generation sequencing in BRCA is largely depended on gene panels

and PALB2, CHEK2, and TP53 have been identified as the key genes

in BRCA development (6). Mono-allelic PALB2 germline alterations

contribute to a 53% elevated risk of BRCA (7). These data emphasize

the core role of genetic mutations in BRCA development

and progression.

Despite the great breakthrough in cancer treatment strategies,

effective clinical management for patients with metastatic BRCA

remains a challenge. The standard treatment protocol includes

target therapy, for example, CDK4 and CDK6 inhibitors, PI3K

inhibitors, and anti-PD-L1/PD-1 immunotherapies depending on

tumor subtype and molecular environment (8). The variety of

treatment approaches reflects the complex nature of BRCA

molecular subtypes. However, reliable prognostic markers are still

lacking, hindering the improvement and individualization of

therapeutic interventions (9, 10). Increasingly, calls have been made

for a novel signature to prognosis prediction, with a focus on

accurately identifying the overall survival and on guiding

management and treatment strategies.

As a unique form of regulated cell death (RCD), immunogenic

cell death (ICD), provoked by specific infectious pathogens,

chemotherapeutics agents, radiation therapy, photodynamic

therapy, and physicochemical therapy, is sufficient to stimulate an

adaptive immune response by emitting danger signals or damage-

associated molecular patterns (DAMPs) in an immunocompetent

setting, in particular when it derives from cancer cells (11–13).

Mechanistically, ICD induction is associated with the exposure or

release of DAMPs, which operate as natural adjuvants, interacting

with pattern recognition receptors (PRRs) to generate an ideal

condition for the initiation of antigen-specific immune responses

(14–16). The clinical response of anticancer chemotherapy

application has shown that tumor-specific immune responses can

determine the efficacy of anticancer therapies with conventional

cytotoxic drugs. This implied that dying tumor cells in BRCA

patients proceed as a vaccine that was sufficient to induce tumor-

specific immune responses, thus governing or even eradicating

residual cancer cells (17, 18). Indeed, the antitumor effects of

extensively employed cancer treatment strategies, including

conventional chemotherapy, radiotherapy, and more selective

targeted therapy, are partly attributed to the induction of ICD (19).

ICD has been confirmed to serve as a novel treatment strategy by

directly attacking cancer cells or induce antitumor immune responses
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in a broad range of solid tumors. The vaccine-like functions of ICD,

indicated by transforming a “cold” tumor microenvironment to

become an immunogenic, “hot” tumor microenvironment,

enhances the efficacy of immunotherapy (20). The studies on ICD

in BRCA are still limited. As a result, we were attempting to explore

the function of ICD in BRCA by investigating ICD-related genes

(ICDRGs). The mechanisms that determine ICD susceptibility to

tumor cells have been researched extensively over the past several

decades. However, studies on ICDRGs in BRCA are still scarce. In

addition, it remains unclear whether ICDRGs were associated with

BRCA prognosis. This study was designed to construct an ICDRGs

risk signature in BRCA and identify its correlation with tumor

immunity and immunotherapeutic response in BRCA patients. Our

findings may provide clues for significant judgment and decision-

making concerning BRCA treatment.
2 Materials and methods

2.1 Data collection

Captured from the recent literature, 34 ICDRGs were tailored to

our study (21). FPKM transcriptome data of BRCA were sourced at

the UCSC Xena database (http://xena.ucsc.edu/) from the TCGA

database (https://portal.gdc.cancer.gov/). Integrating with clinical

survival information, we annotated the available data, which is

suitable for our further analysis. The RNA-seq data set of BRCA

(GSE20711; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE20711) was also retrieved from the GEO database for

verification. Then, the protein-protein interaction analysis (PPI) of

ICDRGs was investigated with the String database (https://string-db.

org/). All the statistic analyses were performed by using the R software

(version 4.0.1). For data that did not meet with the normally

distribution pattern, non-parametric test was used to test the

differences between different groups.
2.2 ICDRGs expression profile and survival
analysis in BRCA

The mRNA expression was calculated employing the “limma”

package in R to map the expression profile of ICDRGs in BRCA. In

order to obtain differentially expressed ICDRGs between BRCA and

normal samples, the P<0.05 and |fold change| >2 were considered as

the criteria. Univariate cox analysis was used to obtain prognostic

differentially expressed ICDRGs. Kaplan-Meier survival curve was

applied for the survival analysis. Log-rank test was employed to

evaluate pronounced differences in survival rates between

distinct groups.
2.3 Construction and validation of ICD-
related risk signature

Patients with BRCA from the TCGA database were randomly

classified into training set and test set according to 8:2 using the
frontiersin.org
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“caret” package in R. We also used GSE20711 as an external dataset

for verification. Univariate cox analysis was then performed to dissect

prognosis-associated ICDRGs. With the purpose of further narrowing

down the ICDRGs, the least absolute shrinkage and selection operator

(LASSO) regression was employed in the training set. Then, an ICD-

related risk signature that was capable of predicting BRCA survival

was ultimately constructed in the training set by exploiting the

“glmnet” R package. The prognostic risk score formula was as follows:

riskScore =o
n

i=1
Coefi   ∗    xi

wherein, n, Coefi, and xi represent the number, coefficient, and

corresponding expression data of prognostic ICDRGs, respectively.

Patients were divided into two subgroups (ICDRGs high and low

groups) based on the median risk score. Meanwhile, prognostic value

of the risk model was validated in the test set, all TCGA cohort and an

external verification set (GSE20711).

Next, receiver operating characteristic (ROC) curves were

exploited to assess the accuracy of the risk model in predicting the

overall survival of BRCA patients. Univariate and multifactor cox

regression were used to determine independent risk factors. In

addition, the Chi-square test was used to analyze the association

between clinicopathological characteristics and ICDRGs risk groups,

and the Wilcox test, together with the Krusil test was taken to analyze

the risk score variations between different pathological groups.
2.4 The accuracy evaluation of ICD-related
risk signature

Combined with the risk model and clinicopathologic

characteristics, a clinical prediction column line graph (nomogram)

was constructed to predict 1-, 3-, and 5-year survival of BRCA

patients using the “rms” R package. Also, calibration curves and

ROC curves were used to assess the predictive accuracy.
2.5 Drug sensitivity analysis and gene set
enrichment analysis

The “pRRophetic” package was utilized to evaluate variations in

the drug sensitivity between the ICDRGs high and low groups.

Alternatively, the “Camp” database was used for identifying novel

small molecule compounds with anti-tumor effects in the ICDRGs

high or low groups. GSEA was conducted to illustrate the enrichment

landscape between the ICDRGs high and low cohorts using the

“clusterProfiler” package in R.
2.6 Characterization of the immune
microenvironment in two ICDRG subgroups

We then investigated the MCPcounter, the signature scores

(calculated as geometric mean) of seven immune features, and the

differential expression of six immune checkpoints to unveil the

immune characteristics of patients in two ICDRGs subgroups. The

results could be visualized in the heatmap.
Frontiers in Oncology 03
2.7 Prediction of response
to immunotherapy

TIDE is a computational method that is capable of predicting

immunotherapy response through modeling two major mechanisms

of tumor immune evasion: induction of T-cell dysfunction with high

cytotoxic T lymphocytes (CTL) levels and inhibition of T-cell

infiltration with low CTL levels (22). Then, the TIDE score was

employed to predict the immunotherapy response and cancer stem

cell characters in high and low‐risk groups.
2.8 Immune clustering

Based on the results of MCPcounter, the BRCA patients in the

TCGA cohort were stratified into distinct immune subtypes using the

sum of squares of deviations. At the same time, the immune subtypes

were validated in the verification set (GSE20711). Subsequently, the

results of MCPcounter, the signature scores of seven immune

features, as well as the differential expression of six immune

checkpoints were displayed in the heatmap. The difference among

the immune subgroups was also analyzed. Finally, the TIDE score was

calculated to identify the immunotherapy response and tumor

stemness between different immune subtypes.
3 Results

3.1 PPI network analysis of ICDRGs

34 ICDRGs obtained from the recent literature were enrolled in

our study for further analysis. STRING database was then proceeded

to delineate the intrinsic connections among these ICDRGs by

conducting the PPI network analysis. 34 ICDRGs were categorized

into 7 functional subtypes, including Danger signal-degraders,

Danger signaling components, Innate Immune Effectors, Purinergic

Receptor-Inflammasome-interleukin1b axis, Toll-like Receptor

Signaling, T cell infiltration pattern, and T cell effectors

(Figure 1A). Furthermore, CD4, CD8A, IL6, IL1B, TNF and TLR4

exhibited the most significant interact ions with other

ICDRGs (Figure 1B).
3.2 Survival analysis of ICDRGs in BRCA

We further disclosed the expression landscape of 34 ICDRGs in

BRCA samples. 20 of 34 ICDRGs were differentially expressed

between BRCA and normal samples, among which BAX1, CALR,

PDIA3, and HSP90AA1 were overexpressed, while IFNGR1, TLR4,

IL-6, IL1R1, NT5E, and PIK3CA were lowly expressed in tumor

compared to normal samples (Figure 2A). These findings indicated

the ICDRGs played a double role in BRCA. In addition, there was a

positive correlation between almost each ICDRG and the

others (Figure 2B).

Before performing univariate Cox regression analysis, we verified

that cox was consistent with the hazard proportionality assumption

(Supplementary Table 1). And univariate Cox regression analysis
frontiersin.org
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suggested that some differentially expressed ICDRGs (e.g.,

HAP90AA1, CXCR3, and CASP1) were significantly associated

with the prognosis of BRCA patients (Figure 2C). Among them,

HAP90AA1 was considered as a risk gene, while CXCR3, and CASP1

were considered as protective genes. Moreover, CD8B, CASP1, PRF1,

IFNG, HAP90AA1, and CXCR3 displayed a great impact on the

overall survival of BRCA patients (Figures 2D-I). Intriguingly,

patients with high expression of HAP90AA1 generally had an

unfavorable prognosis, suggesting HAP90AA1 may be an attractive

candidate for predicting the survival status of BRCA (Figure 2H).
3.3 Construction of the risk signature based
on ICDRGs

Having performed a univariate cox regression analysis, 12

prognostic ICDRGs were identified (Figure 3A). LASSO Cox

regression analysis was used to taper the ICDRGs and 6 key

ICDRGs were finally figured out for the subsequent establishment

of the risk model (Figure 3B). In addition, the partial likelihood

deviance curve was plotted versus log(l) (Figure 3C). The risk

signature was drawn premised on the algorithm below: riskScore =

HSP90AA1*0.148408207 + CASP8*(-0.136139881) + PIK3CA*

(0.281022938) + MYD88*(-0.233379899) + CD8A*(-0.184609669)

+ CD8B*(-0.042169179). As a result, a risk signature including 6

key ICDRGs was formulated in the training set. Patients with BRCA

were divided into low-risk and high-risk groups according to the

median value of risk scores.The survival analysis showed that BRCA

patients in the high-risk group had worse overall survival than those

in the low-risk group in the training set and all TCGA cohort

(Figures 3D, F). The test dataset also showed a similar trend,

though no significant value was found, which was likely attributed

to the limited samples (Figure 3E). In addition, another independent

cohort (GSE20711) from the GEO database was used to successfully

verified these results (Figure 3G).
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3.4 Risk signature validation and clinical
characterization analysis

In the BRCA TCGA cohort, the ROC curves of the risk model at 1-,

3-, and 5 years demonstrated the good power of risk signature in

predicting BRCA survival (AUC values were all more than 0.6)

(Figure 4A). Additionally, in consideration of the heterogeneity of

BRCA, prognostic and treatment options could be affected by

clinicopathological features (23, 24). With this in mind, the ROC

curves for the risk signature, age, T stage, N stage, M stage, and

pathological stage were mapped in Figure 4B. Notably, followed by the

pathological stage and N stage, the risk signature had a relatively higher

AUC value, further confirming its better performance across prediction

tasks (Figure 4B). Both the univariate Cox regression analysis and

multivariate Cox regression analysis exhibited the great potential of the

risk model in distinguishing the survival status of BRCA (Figures 4C,

D). Thus, the presence of the risk signature based on ICDRGs emerged

as an independent predictor of BRCA. Also, it could be viewed as a

competitive candidate for the development of novel clinically valuable

prognostic biomarkers. As for other clinical characteristics, age and T

stage exhibited a significant difference between the high-risk and low-

risk groups (Figure 4E). Further investigation showed that it was the

existence of distinct risk scores among samples stratified by age that

mattered (Figure 4F). Moreover, the risk score was higher for T4 and

also varied for all other T stages (Figures 4G–J).
3.5 Establishment and verification of
predictive nomogram

To further verify the predictive efficacy, we then generated a

predictive nomogram, which included the risk model, age, sex, T

stage, N stage, M stage and pathological stage, to predict the 1, 3, 5-

years over survival rate of BRCA patients (Figure 5A). Calibration

plots and ROC curves presented excellent predictive accuracy of the

nomogram, with the AUC value of 0.751 (Figures 5B, C).
BA

FIGURE 1

(A, B) Protein-protein interactions among the ICDRGs.
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3.6 Drug susceptibility assays

Despite improvements in cancer management and treatment,

effective clinical therapies for cancer remain challenging today,

primarily due to the presence of chemoresistance, which renders a

deliberate obstacle to cancer care (25). Expanding literature reported

that a significant proportion of patients with metastatic and local
Frontiers in Oncology 05
BRCA suffered from primary or acquired resistance to therapies and

ultimately succumbed to disease (26, 27). Therefore, it is of great

importance to illustrate the role of ICDRGs in the drug resistance of

BRCA. We found that multiple chemotherapy drugs exhibited

different sensitivities to high and low‐risk groups. The top 10 most

paramount drugs (Bortezomib, PD.0325901, BMS.536924, AZD6244,

Vinblastine, CEP.701, Rapamycin, Roscovitine, PF.02341066, and
B C

D E F

G H I

A

FIGURE 2

Identification of prognostic ICDRGs. (A) The expression profile of ICDRGs between the normal and tumor groups. (B) Correlation analysis of the
relationship among ICDRGs. (C) Univariate Cox regression analysis showed the correlation between ICDRGs and BRCA prognosis. (D-I) Survival analysis
of several ICDRGs in BRCA. **P<0.01; ***P<0.005; ****P<0.001.
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LFM.A13) manifested higher sensitivity to BRCA patients with low-

risk score, and could be considered as chemotherapy agents for low-

risk BRCA patients (Figure 6A). The Camp was used for further

exploring the efficacy of small-molecule inhibitors during BRCA

treatment. Patients in the high-risk group were susceptible to
Frontiers in Oncology 06
fasudil, TOCK1N.35874, arachidonyltrifluoromethane, MK.886, and

X4.5.dianilinophthalimide, while patients in the low-risk group were

impressionable to TTNPB, imatinib, NU.1025, PHA.00816795, and

AH.6809 (Figures 6B, C). These findings may provide clues for more

comprehensive clinical medication.
B

C D

E F

A

G

FIGURE 3

Identification of prognostic ICDRGs to establish a risk signature. (A) Forest plots of the results of the univariate Cox regression analysis of 12 prognostic
ICDRGs in BRCA. (B, C) LASSO Cox regression analysis manifested that 6 out of the 10 ICDRGs were good candidates for constructing the prognostic
signature. (D-G) Kaplan-Meier curves of patients in the high- and low-risk groups based on the 6 ICDRGs signature in the training set, test set, all TCGA
cohort, and GSE20711.
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3.7 GSEA analysis

To further determine salient enriched pathways associated with

ICDRGs landscape in BRCA, GSEA was conducted between the high

and low-risk groups. Gene sets were dramatically enriched in the

immune pathways such as primary immunodeficiency and allograft

rejection signaling pathways (Figure 7).
3.8 Immune characteristics between two
risk groups

As a general principle, patients with BRCA presented distinct

immunological portraits due to different pathological and molecular
Frontiers in Oncology 07
characteristics (28). It was observed that immune features were

markedly distinguished between patients in the high and low-risk

groups. As previously mentioned, a restricted panel of

chemotherapeutics could provoke a combination of stress and cell

death that was immunogenic, thus activating the tumor-specific

immune response. Apparently, the immune response including T-cell

infiltration and immune checkpoint expression was more robust in the

low-risk group compared to the high-risk group (Figure 8A).

Furthermore, emerging evidence implicated that ICDRGs had an

impressive impact on the activation of certain antitumor immune

responses. To predict the likelihood of response to immunotherapy,

the TIDE algorithm was employed to reveal the tumor immune

dysfunction and exclusion score. Incorporating the TIDE algorithm

analysis, we discovered that low-risk BRCA patients with lower TIDE
B

C

D

E

F G

H I

J

A

FIGURE 4

The risk model verification and its relationship with clinical characteristics. (A) ROC curve to evaluate 1, 3, and 5-year survival prediction efficiency of the
risk model in the TCGA cohort. (B) ROC curve to assess prediction efficiency of the risk model, age, T stage, N stage, M stage, and pathological stage.
(C, D) Univariate and multivariate Cox analysis showed that the risk model could be an independent prognostic indicator for BRCA patients (P<0.001).
(E) Differences of clinical features in the high-risk and low-risk groups. (F-J) Clinicopathological characteristics evaluation by the risk score.
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scores were more encouraged in reacting to immunotherapy

(Figure 8B). In addition, patients in the low-risk group had lower

cancer stem cell properties, allowing patients to benefit from

immunotherapy, thus contributing to improved prognosis (Figure 8C).
3.9 Correlation between immune subtype
and risk subgroups

In the immune cell infiltration of BRCA tissue, the infiltration of

tumor-associated immune cells varies greatly among patients (29).

According to the different immune cell infiltrating landscapes, BRCA

patients in the TCGA database were divided into three immune

subtypes (namely immune subtype A, B, and C; ISA, ISB, and ISC)

(Figure 9A). Moreover, ISA and ISB predominated in the low-risk

group (Figure 9B), suggesting patients in the low-risk group exhibited

a more vigorous immune response. These findings were also validated

in GSE20711 (Figures 9C, D). ISA subtypes presented higher TIDE
Frontiers in Oncology 08
scores and lower tumor stemness, indicating that patients in the ISA

subtype were more responsive to immunotherapy (Figures 9E, F).
4 Discussion

A substantial amount of research and improved clinical processes

have accelerated the identification and treatment of BRCA patients,

while prognostic and predictive markers are still lacking. More

importantly, the exact function of ICDRGs in BRCA development

has been increasingly appreciated for their crucial role in the

evolution of BRCA as well as their potential as useful fingerprinting

biomarkers (21, 30). In the present study, 34 ICDRGs were finally

identified to meet our subsequent research. We first conducted the

PPI analysis among the 34 ICDRGs in BRCA to reveal their

relationships with protein signaling. And the expression of ICDRGs

was significantly correlated with prognosis. Among these,

overexpressed HAP90AA1 was commonly associated with an
B C

A

FIGURE 5

Construction of the predictive nomogram. (A) Predictive nomogram of the risk signature and clinicopathological characteristics. (B) Calibration curve of
the nomogram for 1/3/5-year survival rates. (C) Time-dependent ROC curves for overall survival prediction of ICDRGs risk model and clinicopathological
features.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1047973
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1047973
B C

A

FIGURE 6

Drug sensitivity analysis between the two subgroups. (A) The 10 chemotherapeutic agents showed different sensitivities for patients in the high-risk and
low-risk groups. (B) Chemotherapeutic agents sensitive to high-risk patients. (C) Chemotherapeutic agents sensitive to low-risk patients.
FIGURE 7

GSEA of signaling pathways between two risk groups.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2023.1047973
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1047973
unfavorable prognosis, suggesting its potential as a promising

prognostic candidate. We also found other crucial ICDRGs, such as

IFNG, participated in BRCA progression and had a great impact on

the overall survival of patients.

Indeed, IFNG signaling antagonizes both adaptive and innate

immune responses through an inhibitory feedback circuit

orchestrated by cancer cells. Coerced immune functions could be

unleashed through blocking IFNG signaling within tumors, albeit the

extent to which each of these effector’s arms contributed to the

response largely depended on the immune context (31). Our

findings extend the current knowledge by highlighting the essential

role of IFNG in BRCA survival. IFNG, a key regulator of immune

suppression, may also be a vital determinant in ICD, which can

eradicate epibiotic BRCA cells. Thus, targeting IFNG signaling may

be an effective approach to ablating the constraint of the immune

system and improving therapeutic outcomes.

Patients may have significantly different clinical outcomes despite

the exhibition of similar clinicopathological characteristics. As a

consequence, patients with early-stage BRCA, in particular, those

with ER/PR-positive and HER2-negative cancers, may be overtreated
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with chemotherapy according to clinical and pathological features

alone. Approximately 60% of early-stage BRCA patients endure toxic

side effects during adjuvant chemotherapy, of which only a small

subset (15%) will finally derive benefit (32). Therefore, there is a

growing interest in developing reliable and efficient prognostic

biomarkers to precisely recognize patients with high-risk diseases,

allowing them to benefit from intensive treatment. Herein, we

demonstrated that 6 vital ICDRGs (HSP90AA1, CASP8, PIK3CA,

MYD88, CD8A, and CD8B) were identified to be associated with

survival by univariate cox and LASSO regression analysis. A risk

signature based on the 6 ICDRGs was developed and our risk model

had a powerful ability in evaluating prognosis. Subsequently, the

BRCA samples were committed into two groups according to the risk

score calculated by risk signature. Kaplan-Meir survival curves

showed that the high risk subtype was associated with a dismal

prognosis. Those conventional characteristics that represent

patients’ overall survival mainly comprise tumor size, TNM stage,

malignancy grade, and subtype that could be effectively employed for

specific subgroups; however, these prognostic profiles have

considerable limitations in predicting an individual’s survival
B C

A

FIGURE 8

Differences in the immune landscape between the two groups. (A) Heatmap of immune characteristics in the high-risk and low-risk groups. (B, C) The
association of ICDRGs risk score with immunotherapy response. **P<0.01; ***P<0.005; ****P<0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1047973
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1047973
outcomes as the presence of tumor heterogeneity (33). Considering

this, we integrated the clinicopathological features for a

comprehensive prognostic analysis. The results manifested that this

risk model had a good performance in predicting the overall survival

of BRCA patients and might serve as an independent prognostic

indicator in clinical settings.

Due to increased awareness and modern screening methods, the

prevalence of BRCA has been increasing over the last decades (34).

Traditionally, treatment decisions for BRCA have been driven by risk

stratification based on standardized clinicopathologic risk factors.

Furthermore, the development of treatment concepts taking into

account the heterogeneity of BRCA will make a valuable

contribution to the design of individualized treatments (35). In an

attempt to find personalized chemotherapy agents for patients with

distinct risk groups, we illuminated the sensitivity of Bortezomib,
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PD.0325901, BMS.536924, AZD6244, Vinblastine, CEP.701,

Rapamycin, Roscovitine, PF.02341066, and LFM.A13 between the

high-risk and low-risk groups. With the increasing research on

molecular targets in tumors, small molecule drugs are receiving

increasing attention as a resource for drug discovery (36). With this

in mind, we defined several small-molecule drugs for two risk groups.

On one hand, some small molecule agents, such as fasudil,

TOCK1N.35874, arachidonyltrifluoromethane, MK.886, and

X4.5.dianilinophthalimide, displayed a high reactivity to BRCA

patients in the high-risk group. On the other hand, drugs like

TTNPB, imatinib, NU.1025, PHA.00816795, and AH.6809 seemed

to be suitable for patients with low-risk scores.

Increasing emphasis is being placed on the role of TME in BRCA

occurrence and development. For example, cancer-associated fibroblasts

(CAFs), derived from tissue-resident fibroblasts, frequently confer
B

C D

E F

A

FIGURE 9

Relationship between risk groups and immune subtypes. (A) Patients in the TCGA cohort were divided into three immune subtypes based on the
immune infiltrating landscape. (B) The distribution of three immune subtypes between the two risk groups. (C, D) Validation of the immune subtypes and
their distribution in GSE20711. (E, F) Association of risk scores of immune subtypes with response to immunotherapy.
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protection to tumor cells in the context of cytotoxic and targeted

therapies (37). Emerging evidence demonstrates that angiogenesis and

immunosuppression frequently occur simultaneously in response to this

crosstalk between cancer cells and the surrounding microenvironment

(38). The anti-angiogenic therapy working in synergy with

immunotherapies reshape the TME and improve treatment response

(39). Numerous studies have demonstrated various inflammatory

immune cells; such as, the high abundance of CD8+ T cells is closely

correlated to the immune escape of BRCA (40). Likewise, the landscape

of tumor-infiltrating CD8+ and CD4+ T cells is generally associated

with the prognosis of BRCA patients (41, 42). Here, we found that

robust immune responses including CD8+T cell infiltration and

immune checkpoint expression were mainly augmented in the low-

risk group, implying the good immunity of the low-risk group. Based on

the TIDE scores, we observed that patients in the low-risk group

exhibited attenuated stemness. Indeed, recent work demonstrated that

fueling Hh signaling in CAFs ascended stemness in BRCA by fibroblast

growth factor 5 (25). Tumor stemness was significantly increased in the

high-risk group of BRCA patients. Thus, targeting ICDRGs or ICDRGs-

associated signaling may be a promising strategy to decrease stemness

and improve therapeutic sensitivity.

Recently, the development of immunology has witnessed the

prosperity of combining immunogenic therapeutic and new

immunotherapeutic regimens for the treatment of malignancies (20,

43). Herein, we identified 3 immune subgroups (ISA, ISB, and ISC)

according to the immune infiltrating landscape. This could reflect, to

some extent, the fact that patients in distinct immune subgroups

exhibited different responses to immunotherapy. Our observations

were also confirmed in the external validation set. Transformed tumor

cells remodel the TME in their favor, frequently hastening inflammation

and pro-tumorigenic microenvironmental communications along with

tumor progression of BRCA (44). And such crosstalk can lead to

immune signaling dysregulation, which is generally correlated to

augmented resistance and cell cytotoxic during targeted therapies (45).

Considering that the clinical trial data based on the precision and

individualized approaches will make it more convincing and surprising

in the ICD therapy, more detailed research will be needed to classify the

internal regulation network between ICD signal and immune therapy.

Besides, as another limination, experiments on the function of the key

ICDRGs in BRCA cell lines and animal models will be further

performed, which is also our next research project.
5 Conclusion

In conclusion, our study emphasized the association between the

ICDRGs and the TME in BRCA. Also, we established an ICDRGs

prognostic signature, which proved pronounced value in predicting

the survival of BRCA patients. These findings may offer cues to

BRCA immunotherapy.
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