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Cancer is a major medical problem worldwide. Due to its high heterogeneity,

the use of the same drugs or surgical methods in patients with the same tumor

may have different curative effects, leading to the need for more accurate

treatment methods for tumors and personalized treatments for patients. The

precise treatment of tumors is essential, which renders obtaining an in-depth

understanding of the changes that tumors undergo urgent, including changes

in their genes, proteins and cancer cell phenotypes, in order to develop

targeted treatment strategies for patients. Artificial intelligence (AI) based on

big data can extract the hidden patterns, important information, and

corresponding knowledge behind the enormous amount of data. For

example, the ML and deep learning of subsets of AI can be used to mine the

deep-level information in genomics, transcriptomics, proteomics, radiomics,

digital pathological images, and other data, which can make clinicians

synthetically and comprehensively understand tumors. In addition, AI can

find new biomarkers from data to assist tumor screening, detection,

diagnosis, treatment and prognosis prediction, so as to providing the best

treatment for individual patients and improving their clinical outcomes.

KEYWORDS
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Abbreviations: AI, artificial intelligence; ML, machine learning; DL, deep learning; PM, precision

medicine; DSS, decision support system; NGS, next-generation sequencing; WSI, whole slide imaging;

CADs, computer-aided diagnosis system; CT, computed tomography; MRI, magnetic resonance imaging;

CNN, convolutional neural networks; US, ultrasound; PET/CT, positron emission tomography/computed

tomography; DLR, deep learning radiomics; CGHub, Cancer Genomics Hub; TCGA, The Cancer Genome

Atlas; CCLE, Cancer Cell Line Encyclopedia; ICGC, International Cancer Genome Consortium; EGA,

European Genome-phenome Archive; COSMIC, Catalogue Of Somatic Mutations In Cancer; SomamiR,

Somatic mutations altering microRNA-ceRNA interactions; CTRP, Cancer Therapeutics Response Portal;

gCSI, The Genentech Cell Line Screening Initiative; GDSC, Genomics of Drug Sensitivity in Cancer; NCI,

National Cancer Institute; DepMap, Dependency Map; TCIA, The Cancer Immunome Database.
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GRAPHICAL ABSTRACT
Introduction

Cancer is a severe threat to human health with a high

mortality and a rising incidence rate (1). Several types of

cancer can be cured if they are diagnosed and treated early.

However, the treatment of cancer is not ideal at present. Cancer

mortality rates remain high and continue to rise, including for

prostate, colorectal, and cervical cancer (2). These tumors lack

effective screening and treatment methods, resulting in patients

not getting timely and effective treatment. Secondly, the

heterogeneity of tumors is high, which can create great

challenges in their treatment (3). Therefore, new diagnostic

and treatment methods that are tailored to individual patients

are needed. Precision medicine (PM) is a promising approach

that takes individual genetics, environment and lifestyle into

account and concentrates on clarifying, diagnosing and treating

diseases to create a customized treatment plan for patients

through obtaining multi-omics or multi-mode information

from individuals (4). Furthermore, artificial intelligence (AI)

uses computers or machines to carry out tasks by mimicking or

emulating human intelligence, which mainly includes machine

learning (ML) and deep learning (DL) (5). AI can process an

enormous amount of information to promote the brand-new
Frontiers in Oncology 02
discovery of PM. AI has shown extraordinary potential in

processing, mining and analyzing data and can use the data to

develop different models to help achieve PM.

Tumors are generally caught sight of in the following two

situations: one is the screening of high-risk groups (6). The other

one is the discovery of tumors with clinical manifestations. After

the cancer is detected, patients will receive further examinations,

such as physical examination, imaging, pathology, and serum

tumor markers (6). Based on these results, tumors will be

accurately diagnosed, staged, and classified to help the patients

benefit from precision treatment. AI can play a part in tumor

prevention, screening, diagnosis, treatment, and prognosis

prediction (7–10). After AI is injected into the clinical process,

it will improve the detection rate of lesions and make the

screening method more effective. Secondly, AI can promote the

level of diagnosis by helping doctors distinguish between true and

false disease progression (7). Finally, AI can calculate the

advantages and disadvantages of each treatment scheme and

provide the best treatment for patients. In addition, a

framework diagram (Figure 1) is added to this article, which

shows a series of processes from the discovery of tumor patients to

the end of their diagnosis, treatment, and the changes that AI

can bring.
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With the development of next-generation sequencing (NGS)

technology, omics data, such as genomics, proteomics and

transcriptomics, have been accumulated (11). Meanwhile, the

massive growth and wide availability of patients’ clinical data

such as electronic medical records, clinical trial data, and

medical images have led to the era of “big data” (12). The best

analysis method is data analysis based on AI, since ML and DL

can extract the hidden patterns, important information, and

corresponding knowledge behind the data. Based on extracted

data, information about the disease is obtained to help clinical

analysis. For example, ML and DL can be used to analyze omics

data to establish models, generate biomarkers related to

diagnosis, classification, and prognosis, provide molecular

changes such as DNA, RNA and protein, predict drug efficacy

and therapeutic response, and develop targeted drugs (13).

Furthermore, as compared with single-omics, multi-omics

provides an opportunity to understand the information flow

behind a disease (14). Multi-omics integration is crucial to the

comprehensive understanding of complex biological processes.

Combined with the new longitudinal experimental design,

multi-omics can clarify the dynamic relationship between all

layers of omics, distinguish the key roles or interactions in

system exploitation or complicated phenotypes, clarify the

causal relationship and functional mechanisms of complicated

diseases, and promote the discovery of PM (15, 16). Quantitative

image analysis is a suitable candidate for PM and can assist PM

for cancer. ML and DL have been used for quantitatively

extracting image features to establish models for diagnosis,

monitoring, and predicting recurrence and metastasis,

biomarkers and prognosis (17–21). AI can integrate the above

data for comprehensive analysis of tumors for the development
Frontiers in Oncology 03
of a clinical decision support system (DSS) (22). With the

continuous improvement of AI algorithms and the

improvement of computer software and hardware, AI will

mature and will be used more extensively in the medical field

(Figure 2) in the future. Therefore, PM for tumors will

great evolve.

In the present review, we first introduced the application of

AI in omics, and then in pathology and medical imaging, and

expanded on how these applications assist PM. Finally, we

described the challenges and future directions of AI assisted

PM for tumors.
AI-based big data assists PM
for cancer

Big data technology mainly includes data analysis, mining,

and sharing. It may play a revolutionary role in cancer diagnosis,

treatment, prevention, and prognosis, but transforming data into

available information to benefit patients is almost at a standstill

(23, 24). A major reason for this is that data analysis significantly

lags behind data generation (24). The reforms caused by “big

data” have affected nearly all aspects of tumor research. For

example, the technology can analyze data generated by NGS to

discover commonly mutated genes, abnormal gene expression,

and biomarkers in tumors for accurate diagnosis and prognosis

prediction or to determine the cause of disease and develop

targeted drugs for treatment (23, 24). The technology can

analyze features that humans can and cannot see in medical

images, and mine and filter these features to determine

information related to diagnosis, treatment, and prognosis (25,
FIGURE 1

Possible changes caused by AI injection into clinical practice.
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26). In addition, the technology can analyze patients’

demographic and clinical data, as well as outcome information

to predict the factors affecting the prognosis of cancer patients

(27). In addition, AI is used to analyze, mine and process tumor-

related data, build a health care provider platform based on a

significant quantity of tumor-related data, efficiently solve the

problem of difficult medical treatment for patients and reduce

the waste of unnecessary medical resources (28). Big data

reanalysis has been not been sufficiently taken advantage of so

far, but we cannot ignore its potential. It can analyze the data in

an existing database and provide new insights. For example,

Borziak et al. discovered the dedifferentiation markers of liver

cancer by using data from existing databases (29). The current

big data technology is mainly used in certain fields, such as

omics, pathological imaging and medical imaging. However, it

does not combine data from multiple fields for data analysis,

mining, and sharing, which leads to data not being

comprehensively utilized and not meeting clinicians’ and

patients’ needs. The challenges in the diagnosis, treatment and

monitoring of cancer can be overcome by integrating omics and

non-omics data. AI can play an important role in analyzing

high-dimensional data-sets with complexity and heterogeneity,

especially in multi-omics, intergroup methods and data

integration, thus setting forth the cancer molecular
Frontiers in Oncology 04
mechanism, and identifying new dynamic diagnostic and

prognostic biomarkers to provide accurate cancer care (30).

There are certain problems with the current data, such as

poor data quality, unstructured databases, inadequate analytics,

and lack of delivery (23, 31). Therefore, there is a need for a more

authoritative and reliable prospective database. In addition, a

longitudinal database is also needed to understand the cancer

dynamics of patients in the whole study care continuum (23).

Establishing a patient-centered collection of various data-sets

will be crucial in the future (32). On this basis, AI-based big data

analysis may automatically generate patient diagnosis,

personalized treatment plans, and key information for

prognostic prediction, thereby helping clinicians provide the

best treatment for their patients.
AI assists tumor PM in omics

A large amount of data resources (Table 1) generated by

NGS can provide key information about tumors. Combining the

information with AI will help clarify the etiology and

pathogenesis of tumors, and assist the accurate diagnosis, risk

stratification, and disease subtype analysis (30, 33). Moreover, AI

can identify new therapeutic targets, evaluate the sensitivity and
FIGURE 2

Application prospect of AI in tumor.
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resistance of anticancer drugs, develop new targeted drugs,

improve cancer immunotherapy, monitor the recurrence and

evolution of the tumor, discover new biomarkers, and predict

the prognosis and survival analysis of tumor patients (Figure 3)

(34–40). In a few words, AI enables PM for cancer patients,

bridging the distance between omics and the clinic. Since NGS

produces high-dimensional and complex data, NGS methods for

cancer diagnosis usually need higher-dimensional and deeper-

seated data coverage to enhance the possibility of detecting a
Frontiers in Oncology 05
small number of tumor cell mutations and improve the

sensitivity and accuracy of AI algorithms (41).
AI assists tumor PM in genomics

In recent years, genomics, which relies on nucleotide

sequences for data analysis, has become more closely

combined with clinical practice (30). The significant
FIGURE 3

The role of artificial intelligence based on omics database in tumor precision medicine.
TABLE 1 Comprehensive omics database resources for building AI models.

Name Main features Web link

CGHub Overall data repository; enormous data https://cghub.ucsc.edu/

TCGA Comprehensive database; enormous data https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga

CCLE Comprehensive database; enormous data https://sites.broadinstitute.org/ccle

EGA Overall data repository; enormous data https://ega-archive.org/

ICGC Comprehensive genomics data https://dcc.icgc.org/

DepMap High data quality; visualization https://depmap.org/portal/

SomamiR Correlation between cancer somatic mutation and miRNA https://compbio.uthsc.edu/SomamiR/

COSMIC largest and most comprehensive somatic mutation database; regularly-updated https://cancer.sanger.ac.uk/cosmic

MethyCancer integrated data of DNA methylation, cancer-related gene, mutation and cancer
information

http://methycancer.psych.ac.cn/

CTRP connecting sensitivity to cancer feature https://portals.broadinstitute.org/ctrp/

gCSI Large amount of transcriptomics data https://pharmacodb.pmgenomics.ca/datasets/4

GDSC Drug response data; genomics markers of drug sensitivity; update irregularly https://www.cancerrxgene.org/

NCI60 Large amount of drug data and genomics data https://discover.nci.nih.gov/cellminer/loadDownload.do
https://dtp.cancer.gov/databases_tools/bulk_data.htm

canSAR Comprehensive database; discovery drug https://cansarblack.icr.ac.uk/

cBioPortal Large amount of available data https://www.cbioportal.org/datasets

UCSC Synthetical genomics information https://genome.ucsc.edu/

dbNSFP Predictive data http://bib.oxfordjournals.org/

NONCODE database dedicated to non-coding RNAs http://www.noncode.org/

CSD The positive and negative training sets http://bib.oxfordjournals.org/

TCIA A great quantity of medical related image data sets https://www.tcia.at/home

MSKCC Cancer mutation databases http://www.cbioportal.org/

ARCHS4 comprehensive processed mRNA expression data https://maayanlab.cloud/archs4/
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accumulation of data has improved the understanding of cancer

vulnerability and has enabled us to increasingly anticipate

noticeable treatment effects for tumor patients (42). The use of

spatial and single-cell genomics may reconstruct the process of

tumorigenesis to facilitate a more comprehensive understanding

of tumor, decipher the unclear pathogenesis of human beings

and develop targeted drugs based on this mechanism (43–47).

The combination of ML and genomics data can assist the

diagnosis of cancer subtypes, discovering new markers and

drug targets, and understanding cancer-driving genes better,

which contributes to providing customized treatment for

patients (48). For example, Wang et al. developed a

compounded deep network model that can diagnose lung

cancer subtypes by mixing image-genomics data and can help

biomedical professionals determine the potential therapeutic

targets by the attention weights of the model (49). In addition,

Vanderbilt et al. developed and validated a brand-new approach

to identify DNA viruses from corresponding normal or tumor

NGS specimens and inquire about virus-tumor type relevance

without carrying out extra sequencing. Data on these viruses can

provide information for the diagnosis and care of tumor

patients. Their study illustrated the function of DNA viruses

in the tumor (50). Sudhakar et al. used cancer genomics data and

built a pan-cancer model to forecast and identify new driver

genes (51). The identification of driving genes can help

understand the carcinogenic mechanism and the design of

treatment strategies, which has an important biological and

clinical significance (52).
AI assists PM for tumors in
transcriptomics

Transcriptomics is a powerful means to evaluate all transcripts

produced during metabolism (30). Transcriptomics have expanded

our knowledge of cancer occurrence and development, tumor

microenvironment, and immune-oncology, and can directly

determine gene expression levels and analyze the activation of

related molecular pathways (53, 54). Transcriptomics is a bridge

between genomics and proteomics, mainly involving quantitative

reverse-transcription-polymerase chain reaction, microarrays and

NGS (RNA-sequencing) (55). Since RNA-sequencing has a higher

accuracy in measuring gene expression, it is considered the gold

standard for high-throughput gene expression screening (55, 56).

Through data mining or more complex mathematical approaches

using ML or DL, the features are extracted to facilitate tumor

screening and early diagnosis, discover new or previously unknown

cancer biomarkers and potential therapeutic targets, as well as drug

prioritization, and predict cancer drug sensitivity and prognosis

(53–55, 57–62). For example, Warnat-Herresthal et al. found that

ML-based transcriptomics can assist in the diagnosis of acute

myeloid leukemia (63). Moreover, Ben Azzouz et al. used an ML
Frontiers in Oncology 06
approach based on transcriptomics data to calculate triple-negative

breast cancer subtypes, in order to overcome the barrier of

heterogeneity in the treatment of the disease (64). Finally, some

ML-based transcriptomics have also been used in the development

of prognostic biomarkers for prostate cancer (65), the diagnosis of

colorectal cancer (66), and the prediction of immune response (67).
AI assists tumor PM in proteomics

Proteomics can provide comprehensive and quantitative

information about proteins in tissues, blood and cell samples

(68). Protein expression profiles generated by proteomics and

ML-based profile analysis can identify more specific and

sensitive protein biomarkers than other single-omics. These

biomarkers can diagnose cancer, predict prognosis (69), reveal

critical signaling pathways behind disease mechanisms (70, 71),

determine new therapeutic targets, evaluate drug therapy efficacy

and toxicity (72), and predict therapeutic responses, recurrence,

and metastasis (73, 74). Recently, Henry et al. proposed a

method of drug ranking using ML to predict drug response

using proteomics data, and prioritize drugs in order to identify

the most suitable drug for each patient (75). In addition,

Federica et al. built a clearer and more transparent DSS to

assist in diagnosing high-grade serous ovarian cancer (76).

Therefore, AI-based proteomics may play an important role in

the accurate diagnosis and treatment of tumors in the future.

Besides the widely used omics data mentioned above, other

omics data (metabolomics, immunomics and microbiome data)

are also used (77). For instance, disposing of metabolomics data

by AI can assist the diagnosis (78, 79), the of treatment response

evaluation (80–82), discovery of new biomarkers (83, 84), and

determination of patient tolerance (85) and cancer status

(invasive or non-invasive) (86). Moreover, the AI model based

on immunomics data can forecast the emergency immune

characteristics of tumor patients (87).
AI assists tumor PM in multi-omics

Although the current single-omics data can be used for

diagnosis, treatment and prediction, they cannot thoroughly and

systematically reflect the molecular changes of a tumor (88).

Therefore, it is necessary to integrate multi-omics data to

comprehensively understand the tumor information and its

dynamic development process to screen and accurately diagnose

patients, develop tailored treatment strategies, predict prognosis,

and monitor recurrence and metastasis (89–92). Some approaches

and algorithms of using AI to analyze multi-omics data

comprehensively include clustering, factorization, feature

transformation, networks-based means and feature extraction

(89). These approaches can be used for stratifying medicine,
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discovering biomarkers (93), pathway analysis, and drug reuse or

discovery (89, 94) (Table 2). For example, Ma et al. introduced a

new approach that can analyze multi-omics information and

related knowledge to reveal the complex relationship between

molecular features and clinical characteristics (114). In addition,

Wang et al. developed a molecular algorithm for early cancer

detection, which is used to confirm malignant cellular tumors

according to the spectrum of changes in single-cell copy numbers

based on doubtful cells in humoral, resulting in a well-defined

cancer diagnosis (115). Furthermore, Olivier B et al. have developed

an integrated framework of DL andML, which can use multi-omics

data to accurately predict survival and prognosis (95). Furthermore,

except for the above commonly used omics, studies have also

focused on linking radiomics with genomics and transcriptomics

for accurate diagnosis (116). A multi-task DL framework called

OmiEmbed, which can analyze and process several kinds of omics

data and simultaneously handle multiple tasks has recently

emerged. This disruptive technological breakthrough will

significantly promote the development of PM (117). The

application of AI to integrate multi-omics data is shown in Table 2.
AI in pathology assists the accurate
diagnosis of tumors

Pathological analysis is considered the gold standard of the

clinical diagnosis of tumors (118). However, the current shortage

of clinical pathologists and their reliance on subjective

consciousness for diagnosis leads to low repeatability and

unequal diagnostic levels of clinical pathologists, which is not

helpful for clinicians’ decision-making with regards to treatment

(119). Computational pathology has seen significant

developments from the use of improved AI algorithms and

computing power. With the use of image analysis of digital

pathology, ML and DL, AI has been used to evaluate whole slide

imaging (WSI) and produce computer-aided diagnosis systems

(CADs), as well as aid cancer prognosis prediction (120–124). At

present, the diagnostic ability of the AI-based diagnostic model

can be comparable to or even surpass that of experts (125). In

combination with human experts, the precision of diagnosis can

be even better. It also has the advantages of being less time-

consuming, and having a high efficiency and repeatability.

Therefore, an increasing number of AI models are being

developed to assist clinical pathologists and reduce their

workload (120). For example, Ho et al. proposed incorporating

AI models into the pathological workflow as the first reader, the

second reader, triage, and pre-screening (120, 126, 127).

Aiding diagnosis through ML and DL mainly includes three

steps: The first step includes data preprocessing, such as image

sharpening, masking and smoothing, image graying and color

normalization, data standardization, and data annotation. The

second step includes the division of nucleus/tissue. During the
Frontiers in Oncology 07
third step, models are established for training and verification,

diagnosis and prediction (128, 129). For example, the computer-

aided diagnosis and prognosis prediction model of WSI based on

hematoxylin and eosin staining, can screen, classify and grade

tumors (130), and identify micro-metastasis in lymph nodes

(25), and microsatellite instability (128). It can also predict the

changes at the molecular level (131), the risk of metastasis and

recurrence after surgical resection (132) and disease-specific

survival (133). Moreover, Armin et al. used a DL model based

on digital images of immunohistochemistry to calculate the risk

of mortality (134). The role of AI in the digital pathological

image is summarized in Figure 4.

Traditional ML methods analyze pathological tissue by

manually extracting mainly morphological, textural (135) and

spatial features (118). It is easier to understand and explain than

DL, and its training sample size is small, especially suitable for

the analysis of rare tumor subtypes with a limited sample size.

However, manually extracted features have the following

limitations (118): They are extracted in an unsupervised way

and have nothing to do with the subsequent WSI analysis tasks

(136). Only the surface features of the input image can be

learned, which is not enough to show the complex features of

WSI. It is exceptionally arduous to process multiple WSI images

at the same time and the processing speed is slow (137).

Compared with ML, DL can automatically extract the features

in the image for analysis and can also efficiently process a

considerable amount of data (129). The DL model has good

scalability (138), but it is easy to overfit, resulting in the low

generalization ability of the model. Furthermore, it is

characterized by low interpretability and cannot be trusted by

clinical pathologists (139). Recently, diagnostic models

combining various methods of traditional ML, DL have been

developed to integrate their advantages for accurate diagnosis

and prediction (129). For example, Sengupta et al. have proposed

a novel deep hybrid learning model based on nuclear

morphology for accurately diagnosing ovarian cancer (129). It

can be safely assumed that in the near future more high-

performance prediction models will be developed and enter

the clinic to assist clinical pathologists in accurate diagnosis

and prognosis prediction, consequently providing accurate and

personalized medical care for patients.
AI assists PM for tumors in medical
imaging

Imaging is one of the indispensable tools for screening,

diagnosis, treatment and follow-ups for several types of

tumors. At present, the performance of imaging examination

equipment such as thin-layer computed tomography (CT) and

multi-parameter magnetic resonance imaging (MRI), is

continuously improved, detecting more subtle lesions and
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TABLE 2 Application of AI in the Integration of Multi-omics.

Clinical application Data Model/Algorithm Performance References

cancer prognosis and survival
prediction

RNA-Seq, Methylation, and miRNA semi-supervised flexible hybrid machine-
learning framework

Not applicable Poirion, O.B.,
et al. (95)

breast cancer subtype
identification

mRNA expression, miRNA expression and DNA
methylation

deep learning fusion clustering framework 0.664 Shuangshuang,
L., et al. (91)

cancer susceptibility prediction copy number variations, miRNA expression, and
gene expression

multimodal convolutional autoencoder
model

0.9625 Karim, M.R.,
et al. (96)

identifying Neuroblastoma
subtypes

gene expression, copy number alterations,
Sequencing Quality Control project

deep learning 0.74 Zhang, L., et al.
(97)

predict the survival of patients
with lung cancer

TCGA unsupervised learning 0.99 Takahashi, S.,
et al. (90)

survival stratification of gastric
cancer

transcriptomics and epigenomics bidirectional deep neural networks 0.76 Xu, J.M., et al.
(98)

pan-cancer metastasis prediction RNA-Seq, microRNA sequencing, and DNA
methylation

deep learning 0.8885 Albaradei, S.,
et al. (92)

ovarian cancer subtypes
identification

mRNA-seq, miRNA-seq, copy number variation,
and the clinical information

deep learning 0.583 Guo, L. Y.,
et al. (99)

drug repurposing copy number alteration, DNA methylation, gene
expression, pharmacological characteristics for
cancer cell lines

deep learning 0.84 Wang, Y., et al.
(94)

predicting lung adenocarcinoma
prognostication

mRNA, miRNA, DNA methylation and copy
number variations

deep learning 0.65 Lee, T.-Y.,
et al. (100)

Diagnostic Classification of Lung
Cancer

mRNA expression, miRNA-seq data, and DNA
methylation data

deep transfer Learning 0.824 Zhu, R., et al.
(101)

predicting effective therapeutic
agents for breast cancer

copy number variations, miRNA, mutation,
RNA, protein expression and methylation

deep learning 0.94 Khan, D. and
S. Shedole
(102)

predicting survival prognosis for
glioma patients

transcription profile, miRNA expression,
somatic mutations, copy number variation,
DNA methylation, and protein expression

deep learning 0.990 Pan, X., et al.
(103)

Diagnostic classification of cancers mRNA expression, miRNA-seq, DNA
methylation data and clinical information

XGBoost 0.595-0.872 Ma, B., et al.
(104)

identify tumor molecular subtypes copy number, mRNA, miRNA, DNA
methylation and other omics data

consensus clustering and the Gaussian
Mixture model

Not applicable Yang, H., et al.
(105)

predicting outcome for patients
with hepatocellular carcinoma

DNA methylation and mRNA expression data unsupervised machine-learning Not applicable Huang, G. J.,
et al. (106)

predicting the Gleason score levels
of prostate cancer and the tumor
stage in breast cancer

gene expression, DNA methylation, and copy
number alteration

gene similarity network based on uniform
manifold approximation and projection and
convolutional neural networks

0.99 ElKarami, B.,
et al. (107)

patient classification, tumor grade
classification, cancer subtype
classification

mRNA expression, DNA methylation, and
microRNA expression data

Multi-Omics Graph cOnvolutional
NETworks

Not applicable Wang, T. X.,
et al. (108)

cancer prognosis prediction mRNA, miRNA, DNA methylation, and copy
number variation

denoising Autoencoder Not applicable Chai, H., et al.
(109)

cancer subtype classification gene expression, miRNA expression and DNA
methylation data

hierarchical integration deep flexible neural
forest framework

0.885 Xu, J., et al.
(110)

Prediction of prognosis of cancer single nucleotide polymorphism, copy number
variant, gene expression, and DNA methylation
data

deep learning 0.67-0.88 Park, C., et al.
(111)

tumor Stratification deoxyribonucleic acid methylation, messenger
ribonucleic acid expression data, and protein–
protein interactions

Network Embedding; supervised learning;
unsupervised clustering algorithm

0.91 Li, F., et al.
(112)

discovery of cancer subtypes mRNA expression, miRNA expression, DNA
methylation, and copy number alterations

end-to-end variational deep learning-based
clustering method; Variational Bayes

Not applicable Rong, Z., et al.
(113)
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producing increasingly complex data. However, this requires

more time and effort from radiologists to make a diagnosis,

increasing their workload. AI-based data analysis can effectively

process huge amounts of data, with the CADs model based on

medical images exhibiting high precision and standard (140–

142). Introducing AI into clinical practice will help radiologists

make diagnostic decisions quickly, accurately, and efficiently,

will help focus their energy on advanced decision-making, and

promoting accurate medical treatment and personalized

treatment for tumors (141, 143). The role of AI in medical

imaging is summarized in Figure 4.
AI assists radiologists in accurately
diagnosing tumors

AI has three main tasks in tumor imaging: Detecting,

characterizing and monitoring tumors (144). Detection refers

to the location of the region of interest in the image.

Characterization includes tumor diagnosis, and staging.

Monitoring refers to the monitoring of the changes in tumors

with time (144). The process of ML-assisted tumor detection and

diagnosis is as follows: Image data acquisition, image

preprocessing, segmentation of regions of interest, feature

selection, establishing the model and carrying out training,

verification and testing (145). Among them, feature selection is

the most important step, since it is most related to the model’s

performance (145). Moreover, DL can automatically extract the

feature from the image. Therefore, recent research has

increasingly focused on the DL to build “fusion” models for

the diagnosis of tumor lesions, including classification, grading

and staging, which have been proven to be effective (146–148).

For example, Chougrad et al. have built CADs based on deep

convolutional neural networks (CNN) to aid radiologists in

categorizing breast X-ray masses (149). Moreover, Misra et al.

have developed a highly robust DL model for categorizing

benign and malignant neoplastic lesions of the breast. The

model can improve the accuracy of breast cancer classification
Frontiers in Oncology 09
by correcting patients whose traditional methods are

misclassified (150). Overall, these models can make

radiologists more effective in detecting and diagnosing tumors

faster, and will likely be popularized and applied to clinical

medical treatment soon.
AI assists PM for tumors diagnosed
via medical imaging

The choice of treatment depends on the outcome of the

diagnosis. For example, if the detected lesion is benign, it can

reduce unnecessary surgical resection and other treatments, and

provide more targeted medical management for patients. In

addition, the use of radiation imaging, a non-invasive diagnostic

method, can protect patients from the discomfort caused by

biopsy and avoid the risk of implant metastasis in pathological

biopsy (151). Moreover, preoperative evaluation of tumor

grading prediction using radiology can help select more

appropriate treatment options for patients and avoid

unnecessary surgery, thereby reducing the patient’s medical

burden and avoiding excessive medical treatment (152, 153).

In addition to assisting in accurate diagnosis, AI can also

play a significant role in prognosis prediction and treatment of

patients. It can predict patient viability based on imaging

features and determine the level of treatment needed to

achieve optimal survival. The prediction of recurrence,

metastasis, surgical margins and therapeutic responses can be

used to formulate an optimal therapeutic strategy for individual

patients (21, 26).

Accurately identifying and evaluating lesion before an

operation can help create appropriate treatment plans for

patients and avoid unnecessary treatment measures such as

surgery, postoperative radiotherapy, and chemotherapy, which

is beneficial to both patients and doctors. For instance, Zhao

et al. built a neoplasm grade forecast model of pre-operative G1/

2 assessment of nonfunctional pancreatic neuroendocrine

tumors by using radiomics to analyze the multi-slice helical
FIGURE 4

The role of artificial intelligence based on medical images (digital pathological image and medical imaging) in tumor precision medicine.
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CT images (152). In addition, Xie et al. used a CT-based

radiomics ML method to distinguish pancreatic mucinous

cystic neoplasm from atypical serous cystadenomas prior to

surgery (154). The classification and types of tumors are

different, and their treatment methods are inconsistent. For

example, according to the model established by Zhao and Xie,

if the preoperative prediction result is a high-risk or high-grade

tumor, it is necessary to strengthen the follow-up treatment,

such as postoperative neoadjuvant chemotherapy or

radiotherapy (152, 154). Depending on whether the lymph

node is metastatic or not, clinicians will choose different

treatment options for patients. Therefore, the detection of

lymph node metastasis is extremely important. For example,

Song et al. established and verified a radiomics nomogram based

on dynamic contrast-enhanced MRI, which can predict

metastasis of axillary lymph nodes in mastocarcinoma (155).

Similarly, Eresen et al. used the radiomics-derived model

established by ML to detect metastatic lymph nodes in

colorectal cancer patients (156). Predicting preoperative tumor

markers and imaging biomarkers can lead to better clinical

decision-making and help provide the best treatment for

patients. For example, Guo et al. developed LR and LR-

SVMSMOTE models based on CT radiomics to predict

thyroid cartilage invasion in certain cancers types, such as

hypopharyngeal squamous cell carcinoma and laryngeal

carcinoma (157). Similarly, Akbari et al. combined the

advanced mode analysis and ML method of multi-parameter

MRI to provide the prediction space map of tumor invasion and

early recurrence possibility to provide more targeted surgical

and radiotherapy strategies for tumor patients, aiming to

maximize the treatment effect while maintaining neurological

function (158).

The DL model based on one of the subsets of AI can assist

radiotherapy or oncology doctors in accurately outlining tumor

targets, reducing the time doctors take to manually segment

images as well as reducing the variation between observers (159–

163). The model can predict and verify the therapeutic dose, and

allows for the dose prescription to be changed in time to reduce

the impact on the surrounding normal tissue, prevent

unnecessary radiation, and reduce the occurrence of adverse

reactions (164, 165). The model can evaluate the efficacy of

radiotherapy and chemotherapy, as well as the therapeutic

response, so as to achieve better-personalized prescriptions for

patients (166–168). For example, Ermis ̧ et al. have used DL to

depict fully automatic brain resection cavity delineation in

patients with glioblastoma (169). Likewise, Zhou et al. have

developed and tested a three-dimensional DL model capable of

predicting the dosage distribution of three-dimensional volume

units to carry out intensity-modulated radiation therapy (170).

Establishing a dose distribution model prior to treatment helps

adjust the dose distribution in advance and reduce the

probability of complications from radiotherapy. ML and DL

can also assist in post-radiotherapy management, such as
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distinguishing between the true and false progression of the

tumor, radiation necrosis and tumor recurrence, and promoting

clinical medical decision-making, thus improving PM (171–

174). In addition, the image-based AI model can also assist

radiologists in treatment evaluation, including predicting the

response of individual cancer patients to chemotherapy or

immunotherapy, and monitoring recurrence and metastasis

(175–177). Several radiomics-based ML and DL models can

predict patient prognosis, such as recrudesce-free and

progression-free survival, survival rate, mortality, surgical

results, postoperative metastasis and recurrence. According to

the prediction results of the model, the corresponding

processing is carried out to create a customized treatment

scheme for patients and improve the treatment effect and later

quality of life. For example, patients with lower overall survival

prediction need more intensive treatment. Patients with poor

surgical results may want to consider changing the surgical

method or choosing non-surgical treatment. Patients with a

higher risk of tumor recurrence and metastasis should continue

to receive neoadjuvant radiotherapy and chemotherapy (21, 26,

178–180).
Current challenges and future
prospects

Although AI is expected to help improve a series of clinical

applications against cancer, it does have some challenges

and limitations.

One limitation is the lack of standards and imbalance in the

data used to build the model (181, 182). These disordered data

will lead to the low robustness of the model and be unfit for

constructing a DL model with high generalization and precision

(129). For example, medical imaging data is generated under

different parameters for different devices (5). Digital pathological

images are produced by staining with different dyes. The non-

standard operation of pathological specimen collection will also

affect the quality of pathological images (122). Irregularities in

data collection lead to bias. Omics data are also noisy and

heterogeneous (183). These data sets, which are generated by

different technologies and standards limit the promotion and

generalization of AI models, thus limiting their application in

clinical practice. In addition, the sample size of training samples

and verification samples used to establish the AI model is small,

which can easily cause the overfitting of the model (120). Finally,

integrating various types of data, such as genomics,

transcriptomics, proteomics, metabolomics, immunomics,

electronic health records, clinical medical records, pathology

and medical images, wil l help evaluate the tumor

comprehensively and develop the best treatment plan for

patients (77, 184, 185). Therefore, it is necessary to establish

an extensive comprehensive standardized database. However,
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many types of data have a multi-scale nature, which makes the

mechanical connection between data elusive. The biological

knowledge of connecting all these variables in a single model

is limited, so many data variables will be omitted from the model

development process (186). Recently, some studies have

combined dynamic modeling and ML to promote the

integration of mathematics and clinical oncology. This method

can integrate multiple types of data for personalized prediction

to assist PM (187). More in-depth research to promote the

combination of mechanical modeling and ML approaches is

required in the future, so that mathematical oncology can be

introduced into clinics. Building deep fusion models such as

multi-modality DL is the primary method to develop AI models

that can effectively integrate multimodal data information.

However , the current method mainly focuses on

representation fusion (feature- and decision-level fusion). The

main challenge of this method is that the data is highly

dimensional, noisy, heterogeneous, and has a small sample

size, and there will be data loss during processing (91, 96, 188,

189). Here are some methods to address these barriers: T-

distributed stochastic neighborhood embedding, autoencoder,

random forest deep feature selection, a stacked autoencoder,

gradient descent method, multi-view factorization autoencoder,

co-expression network analysis, and regulation techniques (88,

91, 114, 190–193).

In addition, data from patients are governed by privacy laws

(194). The lack of supervision of these data may lead to

breaching patient privacy rules; therefore, appropriate

intervention and the improvement of laws and regulations are

required. Certainly, studies have focused on solving the privacy

problem with regards to patient data. Under the same

performance, the privacy vulnerability is reduced by

vocabulary selection means (194). At the same time, fusing

these data should comply with the principles of medical ethics.

Another limitation is that AI algorithms have been regarded

as “black boxes” (139), since the process of their output results is

unknown and unexplained, which makes clinicians have low

trust in AI and a low willingness to introduce it into the clinical

workflow (181). Developing a knowledge-embedded DL model

for multi-dimensional data fusion is a hopeful means for this

problem (195). An increasing number of studies on AI

interpretability and transparency are being conducted. The

research aims to make AI transparent and interpretable so that

its results can be convincing and easy to introduce into the

clinical (128). Traditional ML and DL have their advantages and

disadvantages, prompting more research on hybrid learning

methods. The current research results show that the hybrid

learning model exhibits a better performance, better

interpretability, higher transparency and more accurate

prediction (129, 148). Although AI has shown the ability to

surpass people, since it cannot produce 100% correct results,

doctors’ participation is still required for the final diagnosis and

treatment decisions (183). Future research will focus on
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improving the interpretability and performance of AI, because

it is an important step for AI to realize clinical application (31).

AI model may be necessary to carry out clinical experiments

similar to clinical drug trials because when AI models are

initially applied to clinical practice, unexpected clinical

conditions will inevitably occur. Only through continuous

practice can we better find problems and solve them to

improve AI models. However, as AI differs from drugs, its

clinical trial plan should also be distinguished from drug

clinical trials.

AI can be deployed before, during, and after diagnosis, which

respectively stands for cancer prevention, screening, diagnosis, and

treatment. For example, before diagnosis, AI can be combined with

gene detection, endoscopic examination, and other technology to

predict the risk of disease occurrence earlier and carry out risk

management for patients to reduce the possibility of disease

occurrence (196). Augmented or virtual reality can simulate

experiences to improve patient compliance (165). During

diagnosis, AI can roughly ask patients for relevant information

and process it. Secondly, AI can analyze medical image, blood

biochemistry, and other clinical overall data to automatically

generate a diagnosis report and a variety of feasible as well as

optimal treatment methods. Furthermore, after diagnosis, AI can

assist clinicians cut down the damage and maximizing the benefits

for patients in surgery, radiotherapy, and chemotherapy. The

deployment of AI in clinical practice will improve the efficiency

of clinicians, reduce the possibility of clinical errors, improve the

medical status in areas with low medical levels, and reduce

unnecessary procedures, interventions, and medical costs. In a

word, patients and doctors will benefit from AI to achieve a win-

win situation.

Most people believe that AI cannot replace doctors (7). AI is an

assistant in clinical practice, so the final decision must be made by

doctors; the responsibility should also be borne by doctors.

However, the clinician cannot control AI because it can make

self-development and its development process illegible. Therefore,

doctors should not be fully responsible for AI errors. Despite that,

when using AI, clinicians should not lose their ability to doubt AI to

make accurate diagnoses and treatments and develops the doctor-

patient relationship in a sound direction.
Conclusion

AI has shown promising results in certain fields of oncology,

including tumor screening, detection, diagnosis, treatment, and

prognosis prediction. With the progress of AI, the improvement

of computer performance, and the explosive growth of various

data, new learning methods, such as the hybrid learning method,

will continue to emerge, further improving the overall

performance of the model, such as efficient data analysis and

accurate prediction. The recent model generated by the ML and

DL that can analyze various data sets will also improve the
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prospects of PM. In conclusion, AI-assisted PM can help detect,

diagnose and treat cancer early, as well as assist in the selection

of the best treatment scheme, consequently improving the

prognosis of patients and improving their treatment results.
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