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Background: Lung cancer is one of the top causes of cancer-related death

worldwide. Cellular senescence is a characteristic of cell cycle arrest that plays

a role in carcinogenesis and immune microenvironment modulation. Despite

this, the clinical and immune cell infiltration features of senescence in lung

squamous cell carcinoma (LUSC) are unknown.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) were used to get RNA-seq data and clinical information for LUSC. The

least absolute shrinkage and selection operator (LASSO)-Cox regression,

receiver operating characteristic (ROC), and Kaplan-Meier analysis were used

to evaluate a risk model for predicting overall survival based on six differentially

expressed genes. The tumor microenvironment (TME) and immunotherapy

response were also studied.

Results: To discriminate LUSC into high- and low-risk subgroups, a risk model

comprised of six cellular senescence-related genes (CDKN1A, CEBPB, MDH1,

SIX1, SNAI1, and SOX5) was developed. The model could stratify patients into

high-risk and low-risk groups, according to ROC and Kaplan-Meier analysis. In

the TCGA-LUSC and GSE73403 cohorts, the high-risk group had a worse

prognosis (P<0.05), and was associated with immune cell inactivation and

being insensitive to immunotherapy in IMvigor210.
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Conclusions: We discovered a new LUSC classification based on six cellular

senescence-related genes, which will aid in identifying patients whowill benefit

from anti-PD-1 treatment. Targeting senescence-related genes appears to be

another option for improving clinical therapy for LUSC.
KEYWORDS

senescence, immune microenvironment, immunotherapy, lung squamous cell
carcinoma, overall survival
Introduction

Lung cancer ranks as one of the major causes of cancer-

related mortalities globally, with an approximate 5-year survival

rate of 16.6% (1, 2). Non-small-cell lung cancer (NSCLC) and

small-cell lung cancer (SCLC) are the two most common types

of lung cancer (3–5). One subtype of NSCLC is lung squamous

cell carcinoma (LUSC), which accounts for about 40% of lung

cancer cases (6–8). LUSC is associated with poor outcome and

lacks accessible targeted therapies as compared to lung

adenocarcinoma (9). As a result, finding possible biomarkers

and elucidating their mechanisms in the development and

progression of LUSC is critical.

Cellular senescence is a stress-induced process that results in

irreversible cell cycle arrest. Recent studies have also identified

that various processes, including oncogene activation (10–12),

radiation (13, 14), chemotherapy (15, 16), and mitochondrial

dysfunction (17, 18), were associated with the development and

progression of cellular senescence. Apart from physiological

roles for cellular senescence during tissue development,

accumulating evidence have revealed that senescence was also

related to pathological process, including atherosclerosis (19,

20), wound healing (21, 22), tumor progression (23, 24).

However, despite several beneficial effects on the organism,

cellular senescence has been reported to contribute to immune

escape, drive therapeutic resistance and hamper therapeutic

efficacy of cancer treatments (25–27). Thus, clarifying the

senescence related biomarkers may be a promising way for the

diagnosis and treatment of LUSC.

In this study, the Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases were used to collect and

evaluate RNA data and clinical information from LUSC. To

create a risk model, six cellular senescence-related differentially

expressed genes (DEGs) were discovered. The TCGA and GEO

databases were used to divide patients into high- and low-risk

groups. The high-risk group had a worse prognosis, was related

with immune cell inactivation, and was less susceptible to

immunotherapy, according to ROC and Kaplan-Meier analyses.
02
Materials and methods

Data processing

In this study, the TCGA database (https://portal.gdc.cancer.

gov/repository) was used to retrieve the RNA-Seq dataset

(n=551), mutation data (n=549), and clinical characteristics

data (n=504) for LUSC. The GEO database (https://www.ncbi.

nlm.nih.gov/geo/GSE73403) was used to download RNA-seq

data and clinical information (n=69) for the external validation

cohort .The cl inical and prognostic information of

immunotherapy cohort (n=348) was downloaded form

IMvigor210 database (http://research-pub.gene.com/

IMvigor210CoreBiologies/).
Identification of differentially expressed
genes

TCGA and GEO expression data were normalized to values

of fragments per kilobase millions (FPKM), the sample’s tumor

mutational load was computed as follows: the number of

mutationsper million genes in each sample and the number of

mutations in the sample where the gene is located were

combined, a collection of senescence genes related to cell aging

were downloaded from the website (https://genomics.

senescence.info/cells). TCGA and GEO data were analyzed

using R “limma” package, and the expression levels of

overlapping genes were extracted. According to the differential

expression level between normal and tumor samples of LUSC

(Fold change = 1.5 and p < 0.05), 141 differentially expressed

genes (DEGs) were identified.
Immunohistochemistry analysis

To investigate the protein expression levels of the DEGs, as

per the strategy described by our previous studies (28, 29), the
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expression of DEGs in lung cancer samples was further revealed

based on the Human Protein Atlas database (https://www.

proteinatlas.org/). All captured pictures were physically clarified

by certified pathologists. To validate the expression of hub genes

and immune microenvironment, the CDKN1A and SOX2 were

further analyzed by anti-CDKN1A (CST, #2947) and anti-SOX2

(CST, #14962) in LUSC (n=4), immune cell infiltration by anti-

PD-L1 (CST, #13684) and anti-FOXP3 (CST, #12653) between

benign pulmonary nodule and LUSC.
Establishment and validation
senescence-related prognostic model

The gene data and clinical data of TCGA were merged using

the R “limma” “survival” packages, and the genes were cycled to

screen out the genes related to clinical prognosis. P < 0.05

indicated that it was a prognostic gene. The expression levels

of significant genes were extracted and analyzed by univariate

analysis. The HR>1 was identified as a high-risk gene, otherwise

it was considered as a low-risk gene, and a total of 21 prognosis-

related genes were obtained. At last, 9 genes were obtained after

the intersection with 141 DEGs.

To evaluate the prognostic value of cellular senescence-

related genes, LASSO regression was used to construct the

clinical model using R “glmnet” “survival” packages, the model

formula is output and cross-validated, and six prognostic genes

were retained. The risk score was listed as following: Risk

Score=∑i
6Xi ×Yi (X: coefficients, Y: gene expression level).

According to the risk score, high and low risk groups were

identified in TCGA as the experimental group and GEO as the

verification group.
Survival analysis

To compare the survival curves of low and high risk groups,

Kaplan-Meier was used. A ROC curve for the 1/3/5 years

survival rate was also evaluated. Univariate and multivariate

Cox regression models were used to reveal the age, stage and

gender variables in the TCGA cohort. Sub-group analysis was

further used to explore the risk model.
Gene set enrichment analysis

Based on 59,428 genes and 495 samples in both the high and

low risk groups, expression data and phenotypic data were

collected. Using the GSEA software (http://www.gsea-msigdb.

org/gsea/login.jsp), the top 100 enriched pathways in the

genome were displayed. Normalized Enrichment Score > 0

was identified as high risk group, < 0 was identified as low risk

group, and the low risk group was used as the control group. A
Frontiers in Oncology 03
total of 247 high-risk group pathway samples and 248 low-risk

group pathway samples were extracted, and the top 5

standardized scores were reserved (5 in each of the high-low

risk groups). R language “GGplot2” “Grid” “gridExtra” was used

to evaluate the pathway activity. The chemokines, growth factors

and regulators, proteases and regulators, soluble or shed

receptors or ligands and interleukins were further annotated

and classified.
Tumor mutation burden

Prognosis-related cellular senescence genes and tumor

mutation burden (TMB) data were processed through

“ggpubr”, “survival” and “survminer”, and the intersection of

the two data was taken and merged to compare the correlation

between high and low risk groups, the optimal cutoff of tumor

mutation burden and the difference between groups were further

obtained. The survival difference and the survival curve of TMB

combined with risk score were further analyzed.
Immune cell infiltration analysis

Immune cell infiltration files (http://timer.cistrome.org) and

literature summaries of immune checkpoint-related genes were

downloaded the TCGA (30, 31). The immune cell infiltration,

the correlation analysis, immune checkpoint gene expression,

the survival analysis were analyzed useing R-packages “scales”,

“ggplot2”, “ggtext”, “tidyverse”, “ggpubr”.
Immunotherapy analysis

To validate immunotherapy value of risk score, the

expression data and survival status from the IMvigor210

cohort were screen out using the R language “survival” “caret”

“glmnet” “survminer” packages. The risk score according to the

formula of the model were calculated, the clinical benefit status

and survival difference were obtained.
Statistical analysis

Two or more groups were compared by Wilcoxon, while

differences among three or more groups were compared using

Kruskal-Wallis tests and one-way analysis of variance

(ANOVA). By LASSO Cox regression, receiver operating

characteristic curve (ROC) analysis, and Kaplan-Meier

analysis, the risk score model was constructed and evaluated.

Statistical significance was determined by P<0.05 and all P values

were two-sided. All data were processed using R 4.0.3 software

(R Foundation for Statistical Computing, Vienna, Austria).
frontiersin.org
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Results

Identification of prognostic senescence-
related genes

The NSCLC data from TCGA-LUSC (n = 551) and GSE13213

(n = 69) were analyzed and shown in Figure S1 and Table S1. As

shown in Figures 1A, B, 141 DEGs between tumor (n=502) and

adjacent normal tissues (n=49) and 21 prognostic genes in tumor

samples were identified. Intersection analysis showed

that CCN1, CDKN1A, CEBPB, MDH1, PDCD10, SIX1, SNAI1,

SOX2 and SOX5 were the significant senescence-related genes

(Figure 1C). Correlation analysis indicated that nine senescence-

related genes showed a close association, such as CCN1 and

SNAI1 (R=0.41), CEBPB and SOX2 (R=-0.37) (Figure 1D and

Table S2).

To know the genetic alternation of the nine senescence-

related genes, we firstly evaluated the copy number variations, as

shown in Figure S2A, three copy number variations were

identified in LUSC, CDKN1A, SOX5, SNAIL, CEBPB, MDH1,

PACD10 and SOX2 were heterozygous amplification, while
Frontiers in Oncology 04
CCN1 and SIX1 were heterozygous deletion. Single nucleotide

variation analysis showed the SNV frequency of the regulators

was 100% among 38 LUSC samples. Variant type analysis

showed that missense mutations were the main SNP type.

SNV percentage analysis indicated that the mutation

percentages of SOX5, SNAIL, PDCD10, SIX1, CDKN1A,

SOX2 and MDH1 were 47%, 16%, 11%, 11%, 8%, 8% and 5%,

respectively (Figure S2B). Methylation analysis indicated that

SIX1, SNAIL, CCN1, CEBPB, MDH1, PDCD10 and SOX5 were

significantly hypermethylated in LUSC and CDKN1A and SOX2

were significantly hypomethylated (Figure S3). These results

indicated that the genetic alternation of senescence-related

genes are mainly involve in regulating senescence in LUSC.
Development of a senescence-related
risk model

We further explored the protein expression of

CCN1, CDKN1A, CPBEB, MDH1, PDCD10, SIX1, SNAI1,

SOX2 and SOX5. However, as there was no pathological
A B

DC

FIGURE 1

Genes linked to prognostic senescence. (A) The TCGA-LUSC heatmap of 141 DEGs. (B) The study of 21 hub genes using Univariate Cox
regression. (C) A Venn diagram depicting DEGs linked to OS. (D) Correlation network of genes linked to cellular senescence.
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expression of SOX5 in the human protein altas (THPA).

Consistent the results of Figure 1B, as shown in Figures 2A, B,

SNAI1 (n=10; 100%), CCN1 (n=11; 81.8%), CEBPB (n=12;

86.7%), CDKN1A (n=12; 58.3%) were upregulated in lung

cancer, while SOX2 (n=12; 41.7%), PDCD10 (n=11; 36.4%),

SIX1 (n=12; 86.7%) and MDH1 (n=11; 18.2%) were

downregulated in lung cancer. Further immunohistochemistry

analysis found that CDKN1A (n=4; 75%) and SOX2 (n=4;

100%) were significantly up-regulated in LUSC (Figure 2C).

Using the LASSO analysis, Several risk (CDKN1A, CEBPB,

SNAI1) and protective (MDH1, SIX1, SOX5) mRNAs were

identified in patients with LUSC. Thus, a prognostic risk score

formula was developed as follows: risk score = (0.103*CDKN1A

exp.)+(0.057*CEBPB exp.)+(0.118* SNAI1 exp.)+(-0.127*

MDH1 exp.)+(-0.044*SIX1 exp.)+ (-0.072* SOX5 exp.)

(Figures 2D, E).

Risk scores were calculated for TCGA-LUSC using median

scores as a cutoff value for classifying patients as high-risk (n =

247) or low-risk (n = 248). As shown in Figures 3A–C, the
Frontiers in Oncology 05
distribution of risk scores and the survival status of patients.

Survival analysis showed that TCGA-LUSC in the low-risk

group displayed better OS than those in the high-risk group

(P < 0.001; Figure 3D). To determine the prognostic capacity of

the formula, ROC analyses were performed, with areas under the

ROC curve for 1-, 3-, and 5-year OS of 0.620, 0.65, and 0.630,

respectively, implying that the risk score could be used as a

biomarker of prognosis in LUSC (Figure 3E).
Validation of a senescence-related
risk model

LUSC from GSE73403 were analyzed in order to validate the

senescence-related risk model. Patients were classified into high

(n=38) and low risk (n = 31) groups, whose distributions are

shown in Figures 4A–C. A survival analysis revealed that

GSE13213 patients in the low-risk group experienced a better

overall survival than their high-risk counterparts (P < 0.001;
A

B

D E

C

FIGURE 2

The expression of DEG and identification of hub gene. (A, B) Immunohistochemistry image of eight cellular senescence-related genes (A) and
quantitative analysis (B), the high and medium expression means positive expression and low and not detect means negative expression. (C)
Immunohistochemistry image of CDKN1A and SOX2. (D) Regression of the six OS-related genes using LASSO. (E) In the LASSO regression,
cross-validation is used to fine-tune the parameter selection.
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A B

D

E

C

FIGURE 3

The TCGA-LUSC cohort was used to develop a risk model. (A) A heatmap of six hub genes involved in cellular senescence. (B) The TCGA
cohort’s risk scores. (C) Survival status distribution. (D) Survival analysis of high and low risk groups. (E) The risk model’s AUC.
A B

D

E

C

FIGURE 4

Validation of risk model in the GSE73403 cohort. (A) The heatmap of 6 hub cellular senescence-related genes. (B) The risk scores in GSE73403
cohort. (C) Distribution of survival status. (D) Survival analysis in the high risk and low risk groups. (E) AUC of the risk model.
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Figure 4D). ROC analysis showed the areas under the ROC curve

for 1-, 3-, and 5-year OS were 0.786, 0.780, and 0.675 (Figure 4E).

These result suggested the risk score could be a prognostic

biomarker in patients with LUSC.

Additionally, the risk score could be used independently to

predict OS by using both univariate (HR: 3.175; 95% CI: 1.744–

5.782; P < 0.001) and multivariate Cox regression (HR: 2.878;

95% CI: 1.569–5.278; P < 0.001) analysis (Figures 5A, B). To

evaluate the clinical characteristics of the TCGA-LUSC cohort,
Frontiers in Oncology 07
the patients were stratified by clinical stage (I–II/III–IV), T stage

(T1–2/T3–4), age (≤65/> 65). The senescence-related risk model

was significantly divided into high- and low-risk subgroups

based on multiple clinical characteristics, particularly I–II (P =

0.004; Figures 5C, D), T1–2 (P = 0.003; Figures 5E, F), > 65 (P <

0.001; Figures 5G, H). The results revealed that senescence-

related risk models can be impacted by multiple clinical

characteristics, leading to the heterogeneity of senescence

in LUSC.
A B

D

E F

G H

C

FIGURE 5

Univariate Cox regression, Multivariate Cox regression and stratified analysis. (A) Univariate Cox regression in TCGA cohort. (B) Multivariate Cox
regression in TCGA cohort. (C–H) stratified analysis by clinical stage (I–II/III–IV) (C, D), T stage (T1–2/T3–4) (E, F), age (≤65/> 65) (G, H).
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Immune cell infiltration and immune
therapy analysis

To identify the molecular function of hub senescence-related

genes, GSEA enrichment analysis showed that cytokine-cytokine

receptor interaction, complement and coagulation cascades,

ECM-receptor interaction, viral myocarditis, leukocyte

transendothelial migration were enriched in high risk groups

(Figure 6A). Immune check-point expression analysis showed a

significant correlation was observed among CD27, TIGT,

TNFSF18, LAIR1, CD200, CTLA4, BTLA, TNFRSF8, NRP1,

TNFRSF9, IDO2, CD70, CD244, PDCD1, TNFRSF4,

ADORA2A, IDO1, ICOSLG, HAVCR2, CD28, TMIGD2,

KIR3DL1, ICOS, TNFSF14, CD80, TNFSF4, CD40LG,

TNFRSF14, LAG3, CD40, CD48 and PDCD1LG2 in high risk

group (P<0.05; Figure 6B), while BTNL2, CD86, HHLA2 in low

risk group (P<0.05; Figure 6B). These results indicated the

senescence-related genes might involve in regulating tumor

immune microenvironment.

Correlation analysis between senescence-related genes and

immune cell infiltration showed that senescence-related genes

were associated with distinct immune cell infiltration by

CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, TIMER

and XCELL analysis (Figures S4A–F). The cross-talk between
Frontiers in Oncology 08
risk scores and immune check-points regarding patient survival

was studied. The TCGA-LUSC patients could be significantly

stratified by both the risk score and the immune check-point

using Kaplan–Meier analysis (P<0.05; Figure S5). To explore the

immune cell infiltration in LUSC, we further validate the

expression of PD-L1 and FOXP3 between benign nodule and

LUSC and found that compared with benign nodule, PD-L1 was

significantly up-regulated and FOXP3 was down-regulated in

LUSC (Figure 6C). Despite widespread use of tumor mutation

burden (TMB) as a biomarker for immunotherapy, the

expression of TMB did not differ significantly between high

risk and low risk groups. However, the low risk/high TMB

group, however, had a better survival rate than the high risk/

low TMB group (P<0.05; Figure 7A). To explore the value of risk

model, immune therapy analysis revealed that low risk had

better clinical outcome than the high risk group in IMvigor210

cohort (P=0.002; Figure 7B). Similarly, the low risk group with

PD-L1 high expression had a better overall survival than high

risk group (P<0.001; Figure 7C). The survival of low PD-L1

expression had no survival benefit (P=0.585; Figure 7D). Sub-

group analysis also identified that the IMvigor210 patients could

be significantly stratified by both the risk score and the immune

check-point using Kaplan–Meier analysis (P<0.05; Figure S6).

These results revealed that senescence-related genes involved in
A

B

C

FIGURE 6

Immune cell infiltration in LUSC. (A) GSEA analysis between high risk and low risk groups. (B) The expression of immune check-point. (C) The
Immunohistochemistry of CDKN1A and SOX2 between benign pulmonary nodule and LUSC. * means p<0.05; ** means p<0.01.
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immune cell infiltration and associated with the response of

immune therapy.
Discussion

Cellular senescence is a phenotype of cell cycle

arrest that can be induced by different stresses (32–34).

However, despite its involvement in diverse physiological

processes, it has been proven that senescence inhibits tumor

development in different types of cancer (35–37). In the tumor

microenvironment, Senescence-associated secretory phenotypes

(SASP), triggered by senescent tumor cells, cause immune cells

to be recruited and activated, resulting in both antitumor and

tumor-promoter actions (36–38). Herein we comprehensively

performed clinical and immunological analysis of cellular

senescence-related genes in LUSC. A novel risk model was

developed to predict LUSC prognosis and respond to

immunotherapy. The LUSC patients could be stratified by the

cellular senescence-related risk model. The results of both

multivariate and univariate Cox regressions revealed that the

risk score may serve as a biomarker for overall survival and early

diagnosis of LUSC with >65, T1-2 and stage I-II.

The risk model was composed of six senescence-related

genes: CDKN1A, CEBPB, SNAI1, MDH1, SIX1 and SOX5.

CDKN1A, encodes cyclin-dependent kinase inhibitor proteins

p21Cip1/Waf1, which could activate cellular senescence (39–41).
Frontiers in Oncology 09
CEBPB could act as a critical determinant of cellular senescence

to oncogenic Ras signaling (42). Snail, a zinc finger transcription

protein, suppressed cellular senescence and promoted cancer

invasion (43). Snail regulated cell survival and inhibits cellular

senescence in human metastatic prostate cancer cell lines (44).

Cytosolic malate dehydrogenase (MDH1) regulated senescence

in human fibroblasts (45). SIX1, one member of homeobox

transcriptional factors, repressed senescence by regulating

cellular plasticity during tumorigenesis (46). SIX1 can also

regulate cellular senescence by the regulation of p16INK4A

and differentiation-related genes (47). SOX5, a member of the

high-mobility group, inhibits dermal glioma formation in

mice with ink4a deficiency by induction of acute cellular

senescence (48).

In this study, senescence-related genes were found to control

immune cell infiltration and immune treatment response in function

enrichment and immunological check-point analyses. Because of its

antitumorigenic and tumor-promoting properties in cancer, the

SASP has been regarded as a double-edged sword. Senescence,

according to recent research, can generate an immunosuppressive

microenvironment that promotes cancer (49, 50). Senescent cell

immunogenic switchcouldbe identifiedbyadaptive immunesystem,

resulting in delayed tumor growth (11, 51, 52). Inmice,macrophages

recruited by CCL2 release and stimulated further by CD4+ T cells

destroy NrasG12V-senescent premalignant hepatocytes. SASP factors

producedby senescent cells aided invascular remodelling, facilitating

drug delivery and promoting the concentration of CD8+ T cells, the
A B

DC

FIGURE 7

The prognostic of risk model. (A) The survival crosstalk between the risk score and TMB. (B) The prognosis between high and low risk group in
IMvigor210 cohort. (C) The overall survival of high and low risk group in PD-L1 high expression group. (D) The overall survival of high and low
risk group in PD-L1 low expression group.
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cytotoxicity of which may be improved by antibody-mediated PD-1

suppression. Furthermore, CDK4/6 inhibition-induced cellular

senescence evoked antitumor immunity via regulatory T cell

suppression and re-expression of endogenous retroviral elements,

which provoked an interferon response (53). Our findings further

indicated that tumor-specific cellular immunity was downregulated

in high-risk individuals compared to low-risk patients and

immunohistochemistry analysis found that FOXP3+ Treg was

significantly downregulated in LUSC. Furthermore, the GSEA

suggested that the immunological pathways in high-risk patients

were dramatically altered.Meanwhile, the low risk grouphad a better

survival benefit, especially with high expression of immune check-

point and TMB. Thus, therapeutic interference with key factors

regulating immune responses is a promising strategy to improve the

clearance of premalignant senescent cells in high-risk LUSC and

prevent tumour growth.

There were several drawbacks to this study as well. To begin,

public data were acquired in order to create and validate a

senescence-related risk model; however, prospective data from

multicenter studies must be investigated further. Second, the

immune cell infiltration mediated by senescence-related genes in

TME need be further explored in vivo. Third, the risk model was

constructed based on senescence-related genes, the diagnostic

performance need be further improved combined with clinical

index. Last, function and mechanism of senescence-related genes

were theoretical, the concrete mechanism need to be

further explored.
Conclusion

In conclusion, we systematically analyzed the clinical and

immunological characteristics of cellular senescence-related genes

in LUSC. We developed and validated a novel senescence-related

risk model that can serve as a biomarker for prognosis and clinical

immune therapy. Targeting senescence-related genes may be an

alternative way to improve clinical therapy for LUSC.
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