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The diagnostic performance
of radiomics-based MRI in
predicting microvascular invasion
in hepatocellular carcinoma:
A meta-analysis

Gao Liang1, Wei Yu1, Shuqin Liu1, Mingxing Zhang1,
Mingguo Xie1*, Min Liu2 and Wenbin Liu1

1Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu,
Sichuan, China, 2Toxicology Department, West China-Frontier PharmaTech Co., Ltd. (WCFP), Chengdu,
Sichuan, China
Objective: The aim of this study was to assess the diagnostic performance of

radiomics-based MRI in predicting microvascular invasion (MVI) in hepatocellular

carcinoma (HCC).

Method: The databases of PubMed, Cochrane library, Embase, Web of Science, Ovid

MEDLINE, Springer, and Science Direct were searched for original studies from their

inception to 20 August 2022. The quality of each study included was assessed

according to the Quality Assessment of Diagnostic Accuracy Studies 2 and the

radiomics quality score. The pooled sensitivity, specificity, positive likelihood ratio

(PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated.

The summary receiver operating characteristic (SROC) curve was plotted and the area

under the curve (AUC) was calculated to evaluate the diagnostic accuracy. Sensitivity

analysis and subgroup analysis were performed to explore the source of the

heterogeneity. Deeks’ test was used to assess publication bias.

Results: A total of 15 studies involving 981 patients were included. The pooled

sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.79 (95%CI: 0.72–0.85), 0.81

(95%CI: 0.73–0.87), 4.1 (95%CI:2.9–5.9), 0.26 (95%CI: 0.19–0.35), 16 (95%CI: 9–

28), and 0.87 (95%CI: 0.84–0.89), respectively. The results showed great

heterogeneity among the included studies. Sensitivity analysis indicated that the

results of this study were statistically reliable. The results of subgroup analysis

showed that hepatocyte-specific contrast media (HSCM) had equivalent sensitivity

and equivalent specificity compared to the other set. The least absolute shrinkage

and selection operator method had high sensitivity and specificity than other

methods, respectively. The investigated area of the region of interest had high

specificity compared to the volume of interest. The imaging-to-surgery interval of

15 days had higher sensitivity and slightly low specificity than the others. Deeks’ test

indicates that there was no publication bias (P=0.71).

Conclusion: Radiomics-based MRI has high accuracy in predicting MVI in HCC,

and it can be considered as a non-invasive method for assessing MVI in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver malignant tumor, which is also the third leading cause of cancer

death (1, 2). Hepatectomy and liver transplantation are still the main

treatments for HCC (3, 4). Despite curative therapies, the prognosis of

HCC patients remains poor, with 5-year recurrence rates reaching

50%–70% after hepatectomy and <35% after liver transplantation

(5–7). It was proven that 15.0%–57.1% of patients presented

microvascular invasion (MVI) after hepatectomy, which is a well-

established risk factor for postoperative recurrence (8–10). In

addition, the 5-year survival rate of patients with MVI significantly

declined (11). For the MVI-positive patients, a wide resection margin

is recommended. Therefore, an accurate prediction of MVI before

operation is of great importance for clinical treatment decision and

prognosis evaluation.

MVI is defined as the cancer cell nest in small vessels lined with

endothelium, which is visible only under microscopy (12).

Conventional imaging methods are of limited value and pose a

challenge for non-invasive diagnosis in assessing MVI in HCC. In

recent years, radiomics has been widely applied in the tumor

diagnosis, the evaluation of response to treatment, and prognosis

prediction. As a new and non-invasive technology, radiomics can

high-throughput-extract features from large quantities of images to

improve diagnostic or prognostic accuracy, which is also effective to

preoperatively predict MVI (13). As imaging markers, the extracted

radiomics feature can reflect the microscopic pathological changes of

the tumor (Supplementary Figure S1), which is promising in the

diagnosis of carcinomas (14).

MRI can also provide better soft-tissue resolution, multiparameters,

and more stable features for assessing tumor heterogeneity. Previous

similar studies have included CT-, MRI-, and US-combined radiomics

original studies (13–15). Although they made a subgroup analysis of

different imaging modalities, the number of MRI-based radiomics

studies included was small. There is no unified conclusion regarding

the accuracy of radiomics-based MRI for predictingMVI in HCCs. The

current meta-analysis aimed to comprehensively and systematically

assess the accuracy of radiomics-based MRI in evaluating the MVI

of HCCs.
Materials and methods

Patients, public-involvement patients, and the public were not

involved in this study.
Searching strategies

The literature search was independently performed by two

radiologists. The databases were searched from their inception to 20

August 2022 including PubMed, Cochrane Library, Embase, Web of

Science, Ovid MEDLINE, Springer, and ScienceDirect. The search

terms were “hepatocellular carcinoma,” “liver malignant tumor,”

“liver cancer,” “liver cell carcinoma,” “texture analysis,”

“radiomics,” “advanced analysis,” etc. The titles and abstracts were
Frontiers in Oncology 02
searched for their relevance. Disagreements were discussed and

resolved to reach a consensus. In addition, the search strategy is

presented in detail in Supplementary File 1.
Study selection

Studies were selected according to the following criteria: (1)

original research studies. (2) HCC patients with MVI were

confirmed by biopsy or histopathology. (3) Data were available and

could be extracted for calculating the true-positive (TP), false-positive

(FP), true-negative (TN), and false-negative (FN) values. (4) MRI-

based radiomics was applied to predict MVI in HCC. (5) English

literature: the excluding criteria were case reports, reviews, abstracts,

meta-analyses, insufficient calculable data, or animal studies.
Data extraction

The relevant information extracted from the original study was as

follows: the first author, the year of publication, country and language,

sample size, research type, gold standard, the age of patients, TP, FP,

FN, TN, MRI field strengths, and radiomics software. When there is a

disagreement in the process of document screening and data

extraction, the third radiologist will discuss and resolve it.
Quality assessment of included studies

The quality of each study was assessed on the basis of the

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)

guideline and the radiomics quality score (RQS) (16, 17), which is

recommended by the Cochrane collaboration web. The QUADAS-2

tool consists of four parts: (1) patient selection; (2) index test; (3)

reference standard; and (4) flow and timing. The RQS checklist is

described in Supplemental Table S1.
Statistical analysis

Meta-analysis was performed by Stata version 15.1, and Review

Manager software, version 5.3. We adopted a bivariate random

effects model to calculate the pooled estimates in advance. The

Cochran-Q method and inconsistency index (I2) were used to

investigate heterogeneity among the studies. If I2 > 50%, P < 0.05, the

observed heterogeneity was significant. If I2 < 50%, P > 0.05, the observed

heterogeneity was not significant. If there were obvious heterogeneity, the

Spearman’s correlation coefficient was used to assess the threshold effect

between the sensitivity logit and the specificity logit. If there were no

threshold effect, sensitivity analysis and subgroup analysiswere performed

to further investigate the cause of the heterogeneity.

Pooled sensitivity (Sen), specificity (Spec), PLR, NLR, and DOR

were calculated to assess the diagnostic performance of radiomics-

based MRI. The summary receiver operating characteristic (SROC)

curve was plotted, and the area under the curve (AUC) was calculated.

Deeks’ test was used to evaluate publication bias, and P > 0.05, which

indicates that there was no significant bias.
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Clinical utility

A Fagan plot was used to evaluate the clinical utility, which

demonstrated the posttest probability (P post) of MVI when pretest

probabilities were calculated.
Results

Research and selection of studies

A total of 661 relevant studies were initially identified from

multidatabases, and 229 duplicated articles were excluded.

Additionally, 385 records were removed after reading their titles

and abstracts and being deemed irrelevant. Subsequently, after

reading the full texts, 28 articles were found to be reviews or not

related to the MVI of HCC, and 4 articles were unavailable for data

extraction. Ultimately, 15 articles were included (18–32). The

literature search process is shown in Figure 1.
Study characteristics

The characteristics of the included studies are shown in

Tables 1, 2. All 15 studies were retrospective cohort studies. The

total number of patients was 981. From the included studies, the

number of MVIs and no MVIs were reported and the pathological

histology was used as reference standards. Six studies used

hepatocyte-specific contrast media (HSCM). The LASSO method
Frontiers in Oncology 03
and other methods were used as the method for selection in 11

studies and 4 studies, respectively.
Quality assessment and publication bias

The quality of the included studies was evaluated according to the

QUADAS-2 checklist, and the results are shown in detail in Table 3. It

was observed that the ‘index test’ in the ‘risk of bias’ and ‘applicability

concerns’ revealed uncertain shortcomings, which may suggest bias

regarding inclusion. Overall, the quality of all included studies was

satisfactory. Deeks’ funnel plot asymmetry test was used to assess the

potential publication bias. The results indicated that there was no

significant bias (P = 0.71), which are shown in Figure 2. The 15 studies

reached a mean ± standard deviation RQS of 14.80 ± 1.57, median 16,

and range 12–17. The average percentage RQS was 20.6% with a

maximum of 47.2%. The RQS individual scores and inter-rater

agreement are presented in Supplemental Tables S2, S3.The RQS

was reached with good inter-rater agreement (ICC 0.977, 95% CI

0.934–0.992).
Meta-analysis

The results of the meta-analysis are presented in Figures 3, 4.

Pooled sensitivity and specificity were 0.79 (95% CI 0.72–0.85) and

0.81 (95% CI 0.73–0.87), respectively. The values of PLR, NLR, and

DOR were 4.1 (95% CI 2.9–5.9), 0.26 (95% CI 0.19–0.35), and 16 (95%

CI 9–28), respectively. The AUC of SROC was 0.87 (95% CI 0.84–
FIGURE 1

Included study selection process for this meta-analysis.
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TABLE 1 Characteristics of included studies in the meta-analysis.

VI
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MRI parameters Radiomics
software

Gold
standard

Data

Contrast
media

Field
strength

(T)

TP FP FN TN

0 HSCM 3.0 A.K Histology 18 7 2 23

7 Other 3.0 MATLAB Histology 21 15 5 32

6 Other 1.5 Python Histology 28 11 2 65

2 Other 3.0 Omni-
Kinetics

Histology 28 17 9 45

4 Other 1.5 or 3.0 TexRAD Histology 15 5 7 9

5 NA 3.0 A.K Histology 26 5 8 20

8 Other 1.5 Python Histology 49 8 12 30

8 HSCM 3.0 Python Histology 26 0 7 48

0 Other 3.0 MATLAB Histology 27 7 2 33

1 NA 3.0 Python Histology 16 9 15 62

7 HSCM 1.5 or 3.0 Python Histology 14 1 12 26

9 Other 3.0 Python Histology 17 12 7 17

1 HSCM 3.0 R software Histology 9 1 1 10

6 HSCM 3.0 R software Histology 17 4 2 12

2 HSCM 3.0 R software Histology 11 14 2 18
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Author Year Country Study
design

Imaging-to-
surgery
interval

Tumor size (cm), mean (range) Tumor
number

Patient
number
(all)

(Male/
female)

MVI
(+)

M

Feng
(18)

2019 China Re Within 1
month

4.3 (2.7, 6.0) 50 50 46/4 20

Zhang
R (19)

2019 China Re Within 1
month

MVI(+)
5.13 (1.4–10.2), MVI(-)

4.00 (0.8–9.7)

73 73 64/9 26

Chong
(20)

2018 China Re Within 1
month

within 5.0 106 106 88/18 30

Zhu YJ
(21)

2019 China Re 15 days
(range, 7–35

days)

MVI(+)3.82 ±0.88, MVI(-)
3.21 ± 0.94

99 99 32/54 37

Willson
G (22)

2020 USA Re Within 3
months

4.5 (2.3–6) 36 36 32/4 22

Zhang
Y (23)

2021 China Re Within a week MVI(+)4.00 (2.73–5.00), MVI(-)
3.20 (2.00–5.00)

59 59 50/9 34

Nebbia
(24)

2020 USA Re Within a week MVI(+)3.45, MVI(-)
3.84

99 99 83/16 61

Chen Y
(25)

2020 China Re Within 2
weeks

NA 81 81 NA 33

Dai (26) 2020 China Re Within a
month

MVI(+) 5.54 ± 2.68 (2.3–11.3),
MVI(-) 4.49 ± 2.12(1.4–9.2)

69 69 65/4 29

Meng
(27)

2021 China Re Within a
month

3.4 (2.4–4.7) 102 102 84/18 31

Yang Y
(28)

2021 China Re Within a
month

NA 53 53 40/13 26

Qu C
(29)

2022 China Re Within a
month

MVI(+) 2.98 ± 1.13, MVI(-)2.94
± 1.04

53 53 45/8 24

Jiang T
(30)

2022 China Re NA MVI(+) 5.70 ± 3.97, MVI(-) 3.91
± 1.92

21 21 17/4 10

Gao L
(31)

2022 China Re Within a
month

NA 35 35 29/6 19

Tian Y
(32)

2022 China Re Within a
month

Within 3.0 45 45 35/10 13

HSCM, hepatocyte-specific contrast media; NA, not attended; Re, retrospective; A.K, Artificial Intelligent Kit software.
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TABLE 2 Radiomic characteristics of included studies in the meta-analysis.

Author Investigated
area

Segmentation
method

Feature
extraction

Radiomic feature categories Machine-
learning

method for
feature
selection

Number of
selected
features

AUC of radiomic
model with the
best performance

AUC of
radiomic–
clinical
model

Feng
(18)

VOI: tumor Manual
delineation

1,044
radiomic
features

Gray-level histogram, texture
analysis, wavelet features

LASSO/LR 10
radiomic
features

Training 0.850,
Validation 0.833

NA

Zhang
R (19)

ROI: tumor
and

surrounding
tissue

Manual
delineation

484
radiomic
features

Intensity features, texture
features, wavelet features

mRMR/LR mRMR
features

Training 0.784,
Validation 0.820

Training
0.753,

Validation
0.729

Chong
(20)

VOI: tumor Manual
delineation

854
radiomic
features

Shape, size, intensity, and
texture features

LASSO/RF,
LR

4 subsets
of

radiomic
features

Training 0.999,
Validation 0.918

Training
0.798,

Validation
0.725

Zhu YJ
(21)

VOI: tumor Manual
delineation

58 texture
features

Texture features LR/texture
analysis

10, 12
texture
features
AP, PP

Training 0.765,
Validation 0.773

Training
0.810,

Validation
0.794

Willson
G (22)

ROI: largest
cross section

manual drawn 6 type
texture
features

Texture features NA/LR NA 0.83 NA

Zhang
Y (23)

VOI: tumor Manual
segmentation

396
radiomic
features

GLCM, GLSZM, RLM,
formfactor, haralick features

LASSO/LR 6 subsets
of

radiomic
features

Training 0.889,
Validation 0.822

Training
0.901,

Validation
0.840

Nebbia
(24)

VOI: tumor
and margin

Manual
segmentation

100
radiomic
features

Shape features, first-order
features, texture features

LASSO/
SVM,
decision
trees, LR

NA 0.808 NA

Chen Y
(25)

VOI: tumor Manual
segmentation

1,395
radiomic
features

First-order features, texture
features, high-order features

LASSO/
SVM,

XGBoost,
LR

6 subsets
of

radiomic
features

Training 1.00,
Validation 0.842

NA

Dai (26) ROI: axial
slice

Manual
segmentation

167
radiomic
features

Shape features, intensity
features, texture features

mRMR,
LASSO/RF,
SVM, LR

68
radiomic
features

0.792 NA

Meng
(27)

VOI: tumor Manually
drawn

10,304
radiomic
features

Shape features, first-order
features, high-order features

LASSO/LR 2,114
radiomic
features

0.804 0.872

Yang Y
(28)

VOI: tumor
and margin

Manual
segmentation

851
radiomic
features

First-order features, shape
features, texture features,

wavelet-transformed features

LASSO/
mRMR

NA Training 0.896,
Validation 0.788

Training
0.932,

Validation
0.917

Qu C
(29)

VOI: tumor
and margin

Manual
segmentation

874
radiomic
features

Shape, first-order statistics,
GLCM, GLRLM, GLSZM,

GLDM

RFE
algorithm

560
radiomic
feature

Training 0.89,
Validation 0.66

Training
0.90,

Validation
0.70

Jiang T
(30)

ROI: largest
cross section

Manual
segmentation

1,967
radiomic
features

Shapes, first-order statistics,
filter-transformed features,

GLCM, GLSZM, GLDM, GLCM

LASSO/
least

absolute
shrinkage

11
radiomic
features

Training 0.807,
Validation 0.835

NA

Gao L
(31)

VOI: tumor
and margin

Manual
segmentation

107
radiomic
features

Shape-based characteristics, first-
order statistics, textural features

LR, SVC,
RFC,

adaboost

NA Training 0.823,
Validation 0.740

Training
0.915,

Validation
0.868

Tian Y
(32)

VOI: tumor
and margin

Manual
segmentation

1,561
radiomic
features

Shape-based features, first-order
statistics features, GLCM,
GLRLM, GLSZM, GLDM

LASSO/
least

absolute
shrinkage

43
radiomic
features

Training 0.842,
Validation 0.800

Training
0.934,

Validation
0.889
F
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NA, not available; ROI, region of interest; VOI, volume of interest; LASSO, least absolute shrinkage and selection operator; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone
matrix; LR, logistic regression; SVM, support vector machine; RLM, run length matrix; mRMR, minimum redundancy maximum relevance; GLRLM, gray-level run length matrix; GLDM, gray-level
dependence matrix; RFE, recursive feature elimination; SVC, support vector classifier; RFC, random forest classifier.
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0.89). These findings indicated that radiomics-based MRI has a high

diagnostic performance for evaluating MVI in HCC.
Exploration of heterogeneity

Heterogeneity was tested using Cochran-Q and I2. In Figure 3, the

P-value of the Cochran-Q test was 0.00 (P < 0.05), and I2 was 61.12%

in pooled sensitivity. Additionally, the P-value of the Cochran-Q test

was 0.00 (P < 0.05), and I2 was 71.58% in pooled specificity. These

results indicated that there was significant heterogeneity in pooled

sensitivity and specificity among the included studies.
Frontiers in Oncology 06
The result of sensitivity analysis showed that the bivariate model

was moderately robust in goodness-of-fit and bivariate normality

analyses (Supplemental Figure S2A, B). Influence analysis and outlier

detection identified two outliers (Supplemental Figure S2C, D). After

we excluded these outliers, the overall results did not change

significantly, which suggested that the results of this study were

statistically reliable.

Subgroup analysis was performed by comparing included studies

with different variables. Six studies using HSCM had equivalent

sensitivity (0.737 vs. 0.729) and specificity (0.816 vs. 0.820)

compared to nine studies using the other. There were 11 studies

with the LASSOmethod that had high sensitivity (0.775 vs. 0.620) and

high specificity (0.842 vs. 0.765) than other methods. There were 11

studies using the investigated area of VOI that had equivalent

sensitivity (0.731 vs. 0.730) and low specificity (0.814 vs. 0.844)

than those studies with ROI. The imaging-to-surgery interval of 15

days had higher sensitivity (0.823 vs. 0.682) and slightly low specificity

(0.790 vs. 0.837) than the others. The details of the subgroup analysis

are shown in Table 4 and Figures 5A–D.
Evaluation of clinical utility

The clinical utility of radiomics-based MRI was evaluated by

using the likelihood ratio to simulate a Fagan nomogram. The results

are shown in Figure 6. With a 20% pretest probability of MVI, the

posttest probabilities of MVI and given positive and negative results

of radiomics-based MRI are 51% and 6%, respectively. The Fagan

nomogram revealed that the posttest probability increased by 31% in
TABLE 3 Results of the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) quality assessment of included studies.

Study Risk of bias Applicability concerns

Patient
selection

Index test Reference standard Flow and timing Patient selection Index test Reference
standard

Feng (18) + + + + + + +

Zhang.R (19) + + + + + + +

Chong (20) + + + + + + +

Zhu YJ (21) + + + + + + +

Willson G (22) + ? + + + + +

Zhang Y (23) + ? + + + + +

Nebbia (24) + + + + + + +

Chen Y (25) + + + + + ? +

Dai (26) + + + + + ? +

Meng (27) + + + + + + +

Yang Y (28) + + + + + + +

Qu C (29) + + + + + + +

Jiang T (30) + + + + + ? +

Gao L (31) + ? + + + + +

Tian Y (32) + + + + + + +
+: Low risk; -: High risk;?: Unclear risk.
QUADAS, Quality Assessment of Diagnostic Accuracy Studies.
FIGURE 2

Deeks’ funnel plot to test publication bias.
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positive pretest patients but decreased by 14% in patients with a

negative pretest, indicating that radiomics based-MRI was useful in

clinical practice.
Discussion

MVI is defined as the presence of cancer cells in the portal vein,

hepatic vein, or a large capsular vessel of the surrounding hepatic

tissue lined by the endothelium, which is visible on microscopy (12).

MVI is recognized as the strongest independent predictor of the early

recurrence and poor prognosis of HCC (8–10). Previous studies

found that some conventional imaging features, such as the tumor

margin, size, number, capsule, shape, apparent diffusion coefficient
Frontiers in Oncology 07
values, and enhancement pattern, may contribute to the diagnosis of

MVI before surgery (33). However, imaging features have some

limitations, such as the fact that the reviews of medical images rely

on subjective experience. The quantitative radiomics features

can reflect the microscopic pathological changes of HCC by

extracting features from the overall level of the tumor on the basis

of conventional imaging images and evaluating the internal

heterogeneity of the tumor (34, 35). Several previous similar studies

have demonstrated that radiomics has high accuracy in evaluating

the MVI in HCC; however, all of these studies analyzed CT-, MRI-,

and ultrasound-based radiomics (13–15). This meta-analysis

demonstrates that radiomics-based MRI has high diagnostic

performance for predicting the MVI of HCC and can be used as a

reliable and quantitative method for the non-invasive diagnosis of

MVI in clinical practice. MRI can provide better soft-tissue

resolution, multiparameters, and more stable features for assessing

tumor heterogeneity.

However, obvious heterogeneity between included studies was

noted. HSCM gadoxetate disodium was proven effective to assess the

presence of MVI. The study demonstrated that the specificity of the

hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine

pentaacetic acid Gd-EOB-DTPA-enhanced MRI combined with

tumor margins and low signal intensity around the tumor to

predict MVI is as high as 92.5% (36), but the contrast agent is

expensive and not widely used in clinical practice. Subgroup analysis

found that different contrast media (HSCM and others), the

investigated area, and the method for selection were not the factors

of significant heterogeneity. Furthermore, different imaging-to-

surgery interval times have different. Therefore, the procedure and

method should be standardized by conducting further research.

This study still has some limitations: (1) MRI scanning

parameters (including the scanner machine model, field strength,

and radiomics software) have not yet been unified; external datasets

and different MRI scanning parameters are necessary for confirming

the prediction value of the radiomics model. (2) Only English

literatures of studies were included, which may result in applicable
FIGURE 3

Coupled forest plots of the sensitivity and specificity of radiomics-based microvascular invasion (MRI) for predicting the MVI of hepatocellular carcinoma
(HCC).
FIGURE 4

Summary receiver operating characteristic curve to evaluate the MVI
of HCC.
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TABLE 4 Results of subgroup analysis.

Variate Studies (n) Sensitivity (95% CI) Specificity (95% CI) PLR NLR DOR

Contrast media

HSCM 6 0.737 (0.547–0.867) 0.816 (0.715–0.888) 4.118 (2.513–6.748) 0.182 (0.059–0.563) 17.769 (5.572–56.079)

Other 9 0.736 (0.654–0.804) 0.824 (0.735–0.887) 3.885 (2.626–5.747) 0.320 (0.239–0.430) 14.027 (8.626–25.021)

Method for the selection of radiomic features

LASSO 11 0.775 (0.678–0.849) 0.842 (0.770–0.895) 4.719 (3.307–6.734) 0.182 (0.099–0.335) 23.092 (12.505–42.642)

Other methods 4 0.620 (0.533–0.700) 0.765 (0.586–0.865) 2.625 (1.690–4.079) 0.484 (0.344–0.681) 6.042 (3.440–10.611)

Investigated area

VOI 11 0.731 (0.630–0.812) 0.814 (0.747–0.866) 3.862 (2.681–5.213) 0.228 (0.123–0.421) 14.566 (8.007–26.498)

ROI 4 0.730 (0.581–0.840) 0.844 (0.625–0.946) 4.684 (1.765–12.435) 0.387 (0.246–0.609) 16.222 (4.113–63.984)

Imaging-to-surgery interval

Within 15 days 4 0.823 (0.636–0.925) 0.790 (0.701–0.858) 3.816 (2.573–5.659) 0.145 (0.045–0.470) 15.291(6.250–37.411)

Other 10 0.682 (0.596–0.757) 0.837 (0.747–0.899) 4.035 (2.631–6.188) 0.327 (0.199–0.538) 13.491(6.699–27.168)
F
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PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio.
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FIGURE 5

(A, B) The forest plots of subgroup analysis. (C, D) The forest plots of subgroup analysis.
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articles not being included in the review. (3) There was great

heterogeneity in pooled estimates between the included studies. All

of these factors may reduce the reliability of the results of this study.

In the future, a large number of unified and standardized prospective

studies are still needed to confirm the value of radiomics based-MRI

in predicting the MVI of HCC.

Conclusion

In conclusion, this study demonstrated that radiomics based on

MRI has high accuracy for predicting MVI in HCC, and it can be used

as a reliable method to predict the presence of MVI in HCC before

surgery in clinical applications.
Frontiers in Oncology 09
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