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Extracellular RNA (exRNA) is a special form of RNA in the body. RNA carries

information about genes and metabolic regulation in the body, which can

reflect the real-time status of cells. This characteristic renders it a biomarker for

disease diagnosis, treatment, and prognosis. ExRNA is transported through

extracellular vesicles as a signal medium to mediate communication between

cells. Tumor cells can release more vesicles than normal cells, thereby

promoting tumor development. Depending on its easy detection, the

advantages of non-invasive molecular diagnostic technology can be realized.

In this systematic review, we present the types, vectors, and biological value of

exRNA. We briefly describe new methods of tumor diagnosis and treatment, as

well as the difficulties faced in the progress of such research. This review

highlights the groundbreaking potential of exRNA as a clinical biomarker.
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Introduction

Extracellular RNA (exRNA) is a class of nucleic acid molecules first discovered in

serum and plasma (1, 2). Due to the extensive presence of RNA enzymes in the extracellular

space and body fluids, experts previously deduced that exRNA could not be stable outside

the cell. However, two studies (3, 4) demonstrated that RNA could be detected in

microvesicles and exosomes; these structures are characterized by special membrane

structures that permit the protection of the internal RNA from enzyme degradation.

ExRNA can move along microvesicles and exosomes, acting as a signal molecule to affect

neighboring cells or conduct long-distance regulation (5). Further, exRNA was found in
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almost all biological fluids, including blood, urine, and

cerebrospinal fluid, and in the fluids collected in abdominal and

pulmonary cavities (6–12). This is of great significance for the

study of exRNA as a biomarker. A report showing a map of

exRNA indicates the species carrier of exRNA in five human

biological fluids: serum, plasma, cerebrospinal fluid, saliva, and

urine (13). A model containing six exRNA types (CT1, CT2,

CT3A, CT3B, CT3C, and CT4) indicates that each type of exRNA

is associated with its carrier (vesicle and non-vesicle) (14). ExRNA

transport carriers include extracellular vesicles (EVs), lipoprotein

particles, and ribonucleoprotein. These exRNAs can be used as

biomarkers to regulate important biological processes in the body

and monitor the occurrence of various diseases (15). There is no

doubt that exRNA has great potential in the field of biomarkers. If

tumor biomarkers can be accurately located and detected on a

non-invasive basis, exRNA may have groundbreaking impacts in

the field of oncology.

EVs mainly have three forms: microvesicles, exosomes, and

oncosomes. The difference between microvesicles and exosomes

lies in the direction of membrane budding. Microvesicles are

produced by the outward budding of the plasma membrane and

released directly into the extracellular environment. In essence,

exosomes are produced by the inward budding of the

membrane. The first step is the inward budding of the

membrane to form the multivesicular endosomes (MVEs).

Then, intraluminal vesicles (ILVs) are formed in the lumen of

MVEs. ESCRT components, ceramides, tetrasanins, and

syntenins play a key role in this process. When the MVB

membrane fuses with the plasma membrane, exosomes are

released into the extracellular environment. There is also a

class of specialized EVs released by tumor cells, which are

called oncosomes. It is a large EV formed by cancer cells that

carries several cancer-causing molecules. Studies have shown

that the regulatory factors related to EV biogenesis are

overexpressed in cancer, which may be related to the

development, progression, and metastasis of cancer (16).

Other studies have found that the loading of extracellular

RNA involves a complex sorting mechanism. RNA-binding

protein (RBP) can not only bind RNA to prevent the

degradation of exRNA but also play an essential role in the

process of RNA targeting EVs. Some RBPs can also perform

miRNA classification by recognizing specific RNA motifs. For

example, hnRNPA2B1, SYNCRIP, and ANXA2 can mediate

miRNA sorting and then induce the entry and localization of

extracellular RNA to EVs. The regulation of miRNA sorting

involves the expression level of miRNA, the sphingomyelin

pathway, and the posttranscriptional modification of its 3’

terminus. The main components of miRISCs (mirNA-loaded

RNA-induced silencing complex) such as Agos and GW182 can

influence the sorting and loading process of miRNAs by

associating with the endosomal pathway and then further

mediate RNA silencing to affect the sorting and loading

process of miRNA. The inhibition of neutral sphingomyelinase
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2 and ceramide production can prevent multiple miRNAs from

loading into EVs. In addition, uridylation and adenylation at the

3’ end of miRNAs are also associated with the release and

retention of miRNAs in exosomes. When the EV-carrying

information molecules meet the receptor cells, first of all, by

directly triggering the membrane fusion mechanism, the

contents of EVs can be directly released into the receptor cells,

and finally, the transmission of information between cells can be

completed. In addition, EVs can be ingested into recipient cells

by corresponding endocytosis. EVs can also bind to receptors on

the cell membrane, triggering intracellular signal transduction

pathways, and then cascade information transmission process.

When RNA is released from EVs, it can activate a series of

biological functions, such as affecting protein translation

(including promoting and inhibiting effects) and changing

gene expression patterns (17, 18).
Analytical methods of exRNA

Analysis of RNA in extracellular vesicles

EVs can transport many types of RNA (19). These RNAs

have specific biological functions and important clinical

application values. In clinical disease surveillance, it is

extremely important to read the RNA information in EVs.

Giraldez et al. (20) developed a novel RNA sequencing

method, Phospho-RNA-seq, which identifies thousands of

mRNA/lncRNA fragments in plasma. This new RNA assay no

longer misses critical transcriptome information and reveals the

fact that the extracellular transcriptome in human biological

fluids is more complex than previously known. Li et al. (21)

conducted further studies on exRNA and updated the previously

established exRNA database, Exorbase (www.exoRBase.org), to

include more samples and data; this provides a more detailed

detection and analysis for exLRs. Simultaneously, the RNA

mapping program in human EVs/exosomes will be examined

to 1) establish a standard protocol for the detection and analysis

of exLRs and 2) construct the exLR mapping for common

diseases. Uman et al. (22) proposed a natural mechanism for

RNA exchange and cell-to-cell communication by using

eukaryotes. EVs were used as RNA drug delivery vectors.

However, the common vectors for RNA drug delivery are

immunogenic or cytotoxic. The research team used human red

blood cells to produce EVs for RNA therapy. Large numbers of

RBCEVs deliver ASO to leukemia and breast cancer cells. The

proliferation of tumor cells was reduced by the inhibition of

miR-125b (22) (Figure 1). The further development of cancer-

targeting peptides or antibody-coated RBCEVs could potentially

target therapeutic RNA delivery to cancer cells and reduce side

effects in normal tissues. As a potential biomarker for disease

diagnosis, extracellular vesicle RNA is associated with many

pathophysiological processes (23). The study of RNA in
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extracellular vesicles will advance new possibilities for disease

surveillance and provide communities with more precise

information about health and the disease status.
Separation method of exosomes
and exRNA

Exosomes are subtypes of extracellular vesicles secreted by

various cell types such as stem cells, cancer cells, and immune

cells. Faruqu et al. (24) successfully delivered siRNA and

microRNA to target cells using exosomes. This study

confirmed that exosomes can effectively deliver various

biomolecules to recipient cells and play an important role in

the delivery of anticancer and anti-inflammatory drugs. Due to

the advantages of exosomes in drug therapy, the isolation of

exosomes has become very important. The most popular

method of exosome isolation is the precipitation of exosomes

from the original material by hypervelocity centrifugation. With

this method, protein coprecipitation usually occurs. If

supercentrifugation is combined with density-based separation

methods (such as the sucrose gradient), the content of impurities

in isolated exosomes can be significantly reduced (25).

Combining the three methods, hypercentrifugation, iodoxanol

density-gradient centrifugation, and gel filtration can provide

high quantities of exosomes for mass spectrometric analysis (26).

However, it is important to note that the repeated centrifugation
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of samples may damage exosome vesicles, resulting in the poor

quality of isolated exosomes. The ultrafiltration centrifugation

method uses the interception of an ultrafiltration membrane

with different relative molecular weights for selective separation.

This method ensures the quality of exosomes, but the

disadvantage is that exosome separation efficiency is low. Once

exosomes block the filtration pores, the membrane life will

be shortened.

In addition, adhesion between exosomes trapped on the

membrane can also occur, reducing exosome yield (27). To

utilize the specific markers on the surface of exosomes in vivo

(28), researchers attempted to isolate exosomes using a magnetic

bead-based immunoassay. In a clinical breast cancer biopsy

study, a magnetic bead–based exosome immunoaffinity

separation system was developed by using the high-affinity

aptamer of CD63 protein. This system can effectively isolate

exosomes from human breast cancer cell media (29). This assay

fixed the captured receptor on the solid-phase carrier and

targeted the exosome. Exosomes were further isolated and

purified based on receptor–ligand affinity. However, this

method poses challenges due to its low efficiency and potential

errors considering the multistep purification processes. Based on

this method, IBA Life Sciences developed an affinity traceless

separation-based fragment antigen binding (FAB) method,

which uses an affinity chromatography system for exosome

separation without the use of magnetic beads. It works by

utilizing the principle that double-stranded tags and FAB
FIGURE 1

The formation of extracellular vesicles (EVs) and exosomes is based on continuous cell membrane renewal. EVs have three forms: microvesicles,
exosomes, and tumor bodies. Microvesicles arise from the inward budding of the membrane. Exosomes are produced by the outward budding
of the membrane. Tumor bodies are produced by tumor cells. The invagination of the cell membrane forms the endosome, which then
assembles the components within the cell. This results in the formation of multivesicular bodies (MVBs). MVBs then fuse with the cell
membrane. EVs within MVBs are released from the cell. EVs (exosomes) contain nucleic acids, lipids, and proteins from the source cell. These
EVs, which carry information molecules, play an important role in the communication of information between cells. Based on the performance
of exosomes as molecular carriers, therapeutic drugs (e.g., small interfering RNAs) are encapsulated in exosomes in vitro for targeted delivery to
related cells. This opens a new horizon for novel precision therapy methods.
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fragments (FABs) can reversibly bind and release exosomes. The

application of this innovative method, with a simple and

convenient purification process, has markedly improved

exosome isolation as the separation reagents used in

purification are reversible and have no impact on the

biological activity and function of exosomes. Notably,

exosomes can be isolated with high specificity and minimal

contamination even in the setting of several interference factors

in body fluid samples. In addition, functional materials and

microfluidic chips have been used for exosome separation. This

is a microfluidic exosome analysis platform based on a new GO/

polydopamine (GO/PDA) nanointerface. Nanostructured GO/

PDA interfaces greatly improve the efficiency of exosome

immunocapture while effectively inhibiting non-specific

exosome adsorption (30, 31). The innovation and development

of exosome separation technology will greatly accelerate the

application of exosome diagnosis and the treatment of

disease (Table 1).

The exosome isolation strategies are different for different

biological samples. The serum contains more exosomes than

plasma because platelets release a certain amount of EVs during

clotting. When studying the biology of platelets, serum samples

are typically used. Plasma is recommended as a biological sample

for exosome research. If exosomes in plasma are to be extracted,

anticoagulants should be utilized to prevent clotting. The amount

of exosomes in urine samples is lower than that in blood. Some

studies have demonstrated that morning urine and midstream

urine are more suitable biological samples for exosome extraction.

The content of exosomes in the supernatant of the samples treated

by eddy currents increased. Urine also contains specialized

proteins, such as Tamm–Horsfall protein (THP). After inserting

the reducing agent DTT, a large amount of EVs captured by THP

is released, and the purity of exosomes can be effectively improved.

In the case of breast-milk samples, the increase of dead cells after
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refrigeration interferes with exosome extraction. Therefore,

exosomes will be extracted more efficiently by using fresher

milk. Breast milk was centrifuged from high to low density, and

then, the supernatant removed from fat and cells was taken to

ensure further exosome extraction. If direct high-speed

centrifugation is used, it is likely to cause the globulins in breast

milk to agglomerate with extracellular vesicles, making the

isolation of exosomes more difficult. Cerebrospinal fluid is the

best biological fluid to judge the status of the central nervous

system. For such small biological samples, filtration and molecular

exclusion chromatography are usually more suitable.
The role of extracellular RNA in
cancer progression and its potential
as a biomarker for cancer

The role of extracellular RNA in
cancer progression

Some studies have found EVs associated with tumor cells in

the biological samples of cancer patients, carrying relevant

carcinogenic factors and substances that can promote the

occurrence and development of tumors. These factors have a

profound impact on the invasion, immune escape, metastasis,

and other aspects of cancer. For example, in the metastasis of

breast cancer, macrophages can release EV-containing miR-223

to transmit the “invasion ability” of tumor cells from cell to cell.

EV-RNA released by tumor cells can also damage the vascular

endothelial barrier and cause secondary changes in endothelial

permeability. Finally, it promotes the endothelial infiltration of

cancer cells, leading to the enlargement of cancer cell spread, and

even causes metastasis through the circulatory system. In
TABLE 1 Extraction and analysis of exosomes.

Technical method of separation Characteristics Disadvantages

Hypervelocity centrifugation [Ashley et al. Cell 2018] Widely used, low cost Challenging method with low exosome purity

Supercentrifugation combined with density-based
separation [Abramowicz et al. Mol Biosyst 2016]

Simply method with improved exosome purity Method is tedious and time-consuming

Hypercentrifugation combined with iodoxanol
density gradient centrifugation and gel filtration
[Vanaja et al. Cell 2016]

Can yield a large number of exosomes with high purity Repeated complex procedures can alter exosome
quality

Ultrafiltration centrifugation [Zhang et al. J Hematol
Oncol 2015]

Exosome characteristics and quality are largely maintained Low output rate is not conducive to a large
number of analytical experiments

Separation method based on immune magnetic beads
[Song et al. Molecules 2020]

The high specificity of immunoaffinity can isolate high-
purity exosomes

Not all surface markers are clear, the reagent cost
is high, and the biological activity of exosomes
may be affected

Affinity traceless separation technology The method is highly innovative and low in cost. It can
obtain high-specificity and high-purity exosomes and
minimize contamination

This method requires special reagents, and
separation requires highly targeted conditions

Microfluidic exosome analysis platform [He et al. Lab
Chip 2014]

The immune capture efficiency of exosomes is high, and the
output of undesired exosomes is specifically inhibited

The new method requires matching reagents and
instruments and has not been widely used
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addition, the role of EV-RNA from tumor cells in enhancing

endothelial cell proliferation and angiogenesis should not be

underestimated. The growth of tumor cells depends on the rich

blood supply and nutrition. The pro-angiogenic effect of EV-

RNA in tumor cells provides a good basis for tumor growth and

metastasis to a certain extent. This essentially provides a driving

force for tumor migration and invasion. In the process of cancer

development, the communication of information is

bidirectional, and there is mutual interference between tumor

cells and normal cells. Normal cells can inhibit the proliferation

of cancer cells and induce the apoptosis of cancer cells by

releasing EVs rich in inhibitory miRNA, thus inhibiting the

malignant phenotype of cancer cells. However, EV-RNA from

certain normal cells may also help tumors grow and metastasize.

For example, EV-miRNA from hypoxic mesenchymal stem cells

(MSCs) can improve the survival rate of cancer cells and

promote proliferation, migration, and invasion. When the

gene expression of normal cells is regulated by EV-miRNA

from tumor cells, a cancer-promoting effect appropriate to the

biological function of cancer cells may occur, such as cancer-

associated fibroblasts (CAFs) and mesenchymal stem cells in the

tumor microenvironment. Once the balance between normal

cells and cancer cells in the body is disrupted, cancer is endowed

with the ability to metastasize and invade. The EV-RNA of

cancer cells mediated the antitumor immune response by

activating the function of immune cells, but it may also play

an inhibitory effect to mediate the immune escape of the tumor.

Under the interference of tumor EV-RNA, tumor-associated

macrophages in the tumor microenvironment will change the

cell phenotype and promote cancer progression. Studies have

also shown that immune cells associated with hypoxia release

EV-RNA, which can promote tumor growth and migration. In

addition, the EV-RNA-mediated gene reprogramming of

immune cells is one of the main reasons why the function of

T cells is hindered, which promote the escape of cancer cells

(16, 18).
Circulating tumor markers in
liquid biopsy

Currently, the main clinical screening and diagnosis

methods are endoscopies, imaging detection, and tumor

marker detection (32). However, these methods are restricted

to specific cases and are not sensitive enough. In the treatment of

tumors, an accurate and early diagnosis often results in a more

hopeful prognosis; this indicates the importance of primary

diagnoses of tumors. Liquid biopsy is highly sensitive to trace

tumor-derived nucleic acids and other markers, and miRNA,

lncRNA, and mRNA can all be used as tumor-specific markers

in the clinical application (33–35). This provides a new

possibility for the study of the early or even ultra-early
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screening of tumors. In the identification of tumor-specific

gene expression profiles, miRNA is often used as the preferred

biomarker for detection. The miRNAs exist in blood or are

encapsulated in exosomes and are not easily degraded. Specific

serum miRNA expression levels can be used for the initial

screening, diagnosis, and prognostic trackings of common

tumors, such as lung cancer, breast cancer, and liver cancer.

The scope of action of lncRNA includes almost all physiological

and pathological processes, and it plays an important role in

regulating gene silencing and gene expression. LncRNA has high

stability in blood, and its high abundance compared with

circulating tumor cells and cell-free DNA shows its potential

as a more reliable tumor marker. In the current study, some

lncRNAs that are closely related to the tumor diagnosis and

prognosis have been detected in lung cancer, liver cancer, gastric

cancer, and prostate cancer. Circulating lncRNA levels can

reflect the existence of tumors in the body to a certain extent.

This is of great significance for the early screening and diagnosis

of tumors in the future.
exRNA in tumor growth, metastasis,
and metabolism

Studies have shown that host cells or tumor cells are

involved in tumor genesis, growth, invasion, and metastasis

through special signal transduction modes (36, 37). During

cell growth and development, the cell envelope invaginates to

form multiple vesicles. After a series of physiological effects in

the cell, it finally fuses with the cell membrane and then releases,

forming exosomes containing a signal medium (38–42). EVs can

mediate intercellular communication in different ways after

secretion (Figure 1). Protein molecules or lipid ligands on the

surface of exosomes directly activate receptors on the surface of

target cells, generating signaling complexes and activating

intracellular signaling pathways. The researchers engineered

the surface of the cell membrane to drive the antiviral signal

in the receptor breast cancer cell in a protein-free binding form,

resulting in tumor growth (43, 44).

In addition, exosomes can fuse with target cells or enter the

target cells through endocytosis, bringing their proteins, nucleic

acids, lipids, and other active molecules into cells to regulate the

function and biological behavior of cells. Lunavat et al. (45)

determined the amount of EV RNAs released by cancer cells

after treatment with verofenib. The increased expression of miR-

211-5p was observed in EV secreted by verofenib-treated cells

and tumor tissues from xenografted tumor patients. In

conclusion, the treatment of verofenib can induce the

upregulation of miR-211-5p in melanoma cells in vitro and in

vivo. Tumor-derived exosomes contain components associated

with tumor cell miRNAs and have demonstrated the ability to

independently process precursor miRNAs into mature miRNAs
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(46). Roccaro et al. (47) collected many oncogenic proteins,

cytokines, and kinases in exosomes isolated from bone marrow

stromal cells in myeloma.

These tumor-associated miRNAs and proteins are

transported by exosomes, creating an environment that favors

tumor metastasis. Interestingly, certain properties of exosomes

prompt novel possibilities in the treatment of cancer. Pi et al.

(48) found that attaching antibody-like (i.e., Y-shaped) RNA

nanoparticles to microvesicles can deliver effective RNA

therapeutic agents such as small interfering RNA (siRNA)

specifically to cancer cells. By using RNA nanotechnology,

researchers have successfully generated extracellular vesicles

capable of successfully targeting three types of cancer

therapeutics in animal models. Further, its influence on the

metabolism of tumor cells cannot be underestimated. Chen et al.

(49) investigated the mechanism of the aerobic glycolysis of

breast cancer tumor cells with a high quantity of macrophages.

This study demonstrates that tumor-associated macrophages

can transmit signals through EVs containing lncRNA. This

signal enhances the aerobic glycolysis of breast cancer cells

and improves the ability of antiapoptosis. The study also

highlights the potential of lncRNAs as signal transducers,

which propagate between immune cells and tumor cells by

EVs and promote the aerobic glycolysis of tumor cells.

In summary, the growth, metastasis, and metabolism of

tumors have a significant impact on the subsequent treatment

of tumors. Fundamentally understanding the biological

characteristics of tumor cells and further research on tumor

biomarkers can significantly impact the treatment of tumors,

bringing a renewed sense of hope to patients with tumors.
Applications in cancer research

Lung cancer

Cigarettes and environmental pollution are two major culprits

of the high incidence of lung cancer. Lung cancer accounts for a

high proportion of cancers, among which lung squamous cell

carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the

main subtypes (50–52). Cheng et al. (53) performed a circRNA

detection of LUSC and its adjacent normal tissues by using the

ceRNA chip. Through coexpression analysis and qPCR

verification, the target circRNA-circTp63 and the target gene

FOXM1 of circTp63 were first identified. In further bioassay

experiments, circTp63 was considered to promote the cell cycle

progression by acting on FOXM1 and CENPA and CENPB

downstream genes through miR-873-3p. It ultimately promotes

the proliferation and tumor growth of LSC cells. Nigita et al. (54)

combined miRNA sequencing data from 87 samples of non-small

cell lung cancer (NSCLC) and 26 independent exosomes derived

from plasma to investigate RNA editing. This experimental data

suggest that there is an editing event in the dysregulated
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microRNA between the tumor and normal tissue in NSCLC.

The fifth edit of miR-411-5p was significantly dysregulated in the

tissues and plasma exosomes of patients with NSCLC. Hayashita

et al. (55) found that miR17-92 was also associated with lung

cancer, and this miRNA was overexpressed in most lung cancer

cell lines. When exogenous MIR17-92 was introduced, the growth

of lung cancer cells was significantly promoted. Liu et al. (56)

performed differential lncRNA screening on spinal samples from

patients with primary lung adenocarcinoma, patients with spinal

metastases (SM) from lung adenocarcinoma, and normal controls.

Linc00852 and MAPK pathways were associated with lung

adenocarcinoma SM. In addition, in vivo, and in vitro

experiments have shown that the target gene S100A9 of

LINC00852 has a positive regulatory effect on the growth,

migration, invasion, and metastasis of lung adenocarcinoma

cells. S100A9 strongly activates P38 and Rek1/2 kinases and

slightly activates JNK kinase phosphorylation in the MAPK

pathway in A549 (human alveolar basal epithelial cells) and

SPCA-1 cells, thereby promoting the progression and oncogenic

ability of SM in lung adenocarcinoma. This suggests that SM

intervention is a potential novel therapeutic target in the early

stage of lung cancer. Further, evidence suggests that exRNA has a

strong potential as a diagnostic marker for lung cancer. In future

research on lung cancer, the detection of exRNA expression

profiles in lung cancer tissue is expected to become the

principal force of non-invasive detection methods (Table 2).
Esophageal squamous cell carcinoma

Esophageal squamous cell carcinoma (ESCC) is the sixth

leading cause of cancer death worldwide (57, 58). To advance the

study of non-invasive biomarker detection, Lin et al. (59)

extracted and analyzed the G-Nchirna in exosomes from the

tissues and saliva of mice and ESCC patients. The clinical

potential of salivary exosomes G-Nchirna (SEG-Nchirna) as

readily accessible biomarkers was assessed. The G-Nchirna of

exosomes can be detected in ESCC cells and xenograft tumor

models in nude mice. The tumor load was closely related to SEG-

Nchirna levels. This study reveals that SEG-Nchirna can be used

as a reliable biomarker to evaluate the initial detection, treatment

response, and recurrence of ESGG (Table 2).
Gastric cancer

Gastric cancer (GC) is a malignant disease with high

morbidity and fatality rates (60). Yuan et al. (61) measured the

average expression of miR-551b-3p in patients with GC utilizing

a quantitative reverse-transcription polymerase chain reaction

experiment. In the study samples, the expression of miR-551b-

3p was low in 64% of cases. Further analysis indicates that

patients with low miR-551b-3p expression versus patients with
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high miR-551b-3p expression demonstrate varying prognoses.

In addition, it was found that LncRNA SMARCC2 can act as an

upstream regulator of Mir-551b-3p, thereby enhancing the

proliferation and migration of GC cells by inhibiting the

expression of MiR-551b-3p. Lu et al. (62) found that circ-

Rangap1 was significantly upregulated in both the plasma

exosomes and GC tissues of patients with GC. The high

expression of circ-Rangap1 is closely related to TNM staging.

The level of circ-Rangap1 in the plasma exosomes of patients

with GC before surgery is upregulated, which enhances the

migration and invasion ability of GC cells. Circ-Rangap1 may

be a potential prognostic biomarker for GC and a therapeutic

target for GC. Peritoneal dissemination was the most frequent

metastatic method for GC. Hu et al. (63) found higher

expression levels of miR-196, miR-92, and miR-1307 in the

ascites-derived exosomes of GC patients. Moreover, the invasion

of GC cells was closely related to the exosomes detected in the

experiment. Taken together, these results demonstrate the

significance of exRNA in the diagnosis, treatment, and

prognosis of GC (Table 2).
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Hepatocellular carcinoma

The high morbidity and mortality of hepatocellular

carcinoma (HCC) grants urgency to the development of more

effective treatment programs for the disease (64–66). Zhang et al.

(67) used ceRNA microchips to detect the expression of

circRNA in the exosomes of HCC patients with high and low

body fat percentages (BFRs). The results showed that the high

expression of circ-BD in patients with high BFR played a certain

role in promoting the tumor development of HCC. Wang et al.

(68) studied the potential role of the circRNA of HCC exosomes

in tumor cell migration and invasion, helping to clarify its

potential mechanism. Signal transmission between cells with

low or no metastatic potential and HCC cells with high

metastatic potential can be achieved through exosomes. In

another study, Cao et al. (69) selected HCC cells with non-

metastatic (HepG2), low metastatic (97L), and highly metastatic

(LM3) potential and sequenced the circRNAs in the exosomes.

HCC cell–derived exosomes affected the expression of miR-21.

By interfering with the expression process of downstream genes,
TABLE 2 Functional effects of extracellular RNA (exRNA) shuttled by extracellular vesicles.

Cancer ExRNA Downstream
targets

Effect or significance

Lung cancer circTP63 FOXM1 Promotes cell proliferation and tumor growth in vitro and in vivo

miR-411-5p Potential metastatic targets related to lung cancer biology

miR17-92 Enhanced lung cancer cell growth

LINC00852 S100A9/MAPK Promote the progression and oncogenic ability of lung
adenocarcinoma SM

ESCC GLM1-NAA35 RNA Potential biomarkers of esophageal cancer (saliva)

GC miR-551b-3p TMPRSS4 Inhibit the proliferation, migration and invasiveness of gastric cancer
cells

LncRNA SMARCC2 miR-551b-3p Enhanced the proliferation and migration of gastric cancer cells

circ-RanGAP1 miR-877-3p/VEGFA Enhanced the migration and invasion potential of GC cells

miR-196、miR-92、miR-1307 Promote the dissemination of peritoneal tumor cells

HCC has_circ_0025129 miR-34a、USP7/Cyclin
A2

Reduces the DNA damage and promotes tumor growth

CircPTGR1 miR449a–MET Increase the migration and invasion ability of tumor cells

miR-21 PTEN、PTENp1、
TETs

Promote hepatocellular carcinoma growth

miR-23a-3p PTEN-AKT、PD-L1 Promote the escape of tumor cells from immune surveillance

PC miR-21-5p、miR-200c-3p Relatively better differentiating between prostate cancer and prostatic
hyperplasia

Let-7a-5p To distinguish prostate cancer patients with Gleason score ≥8 vs. ≤6

Breast cancer miR-106a Potential biomarker for metastatic breast cancer

hsa_circ_001783 miR-200c-3p Enhanced the proliferation and metastasis of breast cancer cells

Ovarian cancer and endometrial
cancer

miR21 APAF1 Endowing ovarian cancer cells with paclitaxel resistance

hsa_circ_0109046、
hsa_circ_0002577

It may assist in predicting the occurrence and metastasis of
endometrial cancer

GBM circNT5E miR-422a、Akt、
Smad2

Promote glioblastoma tumorigenesis

MM LINC00461 miR-15a/16、Bcl-2 Promoted multiple myeloma cell proliferation and inhibited cell
apoptosis
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it can regulate the physiological function of tumor cells (69). Liu

et al. (70) found that endoplasmic reticulum–stressed HCC cells

acted on macrophages by releasing exosomes containing specific

miRNAs. It can also inhibit the function of T cells by affecting

cell signal transduction pathways, leading to the escape of HCC

cells from the immune monitoring system (Figure 2). From the

direction of immunology, strengthening the immune

monitoring function in the tumor microenvironment may

establish new methods for the treatment of HCC (Table 2).
Prostate cancer

In 2008, Kroh et al. first demonstrated the presence of

miRNAs released from prostate cancer (PC) cells in the blood

(71). The greatest clinical need in PC surveillance is to find

reliable, non-invasive tools to distinguish between PC and

benign prostate disease. Mitchell et al. (72) developed a

“miRScore” based on serum levels of 14 miRNAs. Local and

metastatic resistant prostate cancer (mCRPC), or low-grade and

high-grade PCs, could be distinguished by analysis of free cell-

free miRNAs. The results showed that some free acellular

miRNAs were predictive in the differentiation between PC and

benign prostatic hyperplasia (BPH). However, only a few

miRNA biomarkers have been validated in multiple
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independent studies. Many other miRNAs have no definitive

results and have shown conflicting results in some studies. The

analysis of miRNA is thus regarded as a non-repeatable method.

As research continues, cancer-derived EVs contain highly

specific protocellular biomarkers and protect their RNA from

RNA enzyme degradation in blood. Therefore, EV-based

miRNA analysis may be superior to whole plasma/serum

analysis. Endzelins et al. (73) determined the RNA isolated

from plasma EV samples from 77 patients. The results showed

that four miRNAs showed potential for the diagnosis of PC, and

there were significant differences between the miRNAs

encapsulated in EVs and the miRNA profiles in whole plasma.

Only a small fraction of plasma acellular miRNAs was present in

plasma EVs. MiR-375 was able to distinguish PC versus BPH in

the whole plasma assay, while miR-200c-3p and miR21-5p were

better in plasma EVs. The level of let-7a-5p in non-plasma EVs

could distinguish PC patients with a Gleason score ≥8 vs. ≤6

(40), but plasma let-7a-5p had no diagnostic value. The prostate-

specific antigen (PSA) test is currently recognized as the best

method for early suspected prostate cancer. However, elevated

PSA levels are not unique to prostate cancer and can also be

caused by benign prostate disease. Therefore, in clinical practice,

histopathology is generally obtained through the systemic needle

biopsy of the prostate to make the definitive diagnosis (74–76).

However, invasive procedures pose several challenges for
FIGURE 2

Metabolic functions and mechanisms of extracellular RNA (exRNA) in hepatocellular-derived exosomes. The liver is the body’s largest
detoxification organ. In mice with alcoholic liver disease, liver cells interfere with the cellular function by releasing exRNA-carrying exosomes.
HSP90 targets to macrophages and affects phagocytosis. MiR-155 acts on downstream proteins LAMP, MTRO, and RHEB, affecting autophagy
through specific activation pathways and then interfering with the release of exosomes. In patients with hepatocellular carcinoma (HCC), it was
found that patients with a high fat percentage released more exosomes containing circ-BD. Circ-BD was highly expressed in adipocyte
exosomes. It promotes HCC tumorigenesis by absorbing miR-34a to mediate the expression of USP7 and cyclin A2. In the process of tumor cell
invasion, non-metastatic and low-metastatic cells can obtain the ability of migration and invasion through exosomes containing circ-ptgr1. In
addition, HCC cell–derived exosomes can increase the expression of miR-21, which regulates the apoptosis, growth, metastasis, and invasion of
tumor cells by targeting the expression of downstream genes. Endoplasmic reticulum–stressed HCC cells raise the expression of PD-L1 in
macrophages by releasing exosomes containing specific miRNAs. Subsequently, the miR-23a-PTEN-Akt pathway inhibits the function of T cells,
leading to the escape of HCC cells from the immune monitoring system. PD-L1, programmed death-ligand 1.
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patients. Non-invasive biomarker research is a pioneering field

for the diagnosis and treatment of prostate cancer (Table 2).
Breast cancer

Breast cancer in women surpassed lung cancer for the first

time as the most common cancer globally in 2020, accounting for

approximately 11.7% of incident cancer cases, according to the

latest data on the global burden of cancer for 2020 released by the

International Agency for Research on Cancer of theWorld Health

Organization (77). Circulating miRNAs are formed by the

nuclease degradation of RNA, which are then assembled by

microvesicles and exosomes for transport. Zhao et al. (78)

amplified miRNA by reverse-transcription PCR (RT-PCR) and

analyzed miR-106a in blood by combining it with the miRNA

microarray. It was found that the abnormal expression of miR-

106a could be a potential biomarker for metastatic breast cancer.

Liu et al. (79) designed a set of systematic screening methods for

breast cancer–specific circRNAs and found that hsa_circ_001783

regulates tumor proliferation and metastasis through sponge miR-

200C-3p. This study indicates that hsa_circ_001783 may be a

novel prognostic marker and therapeutic target for breast cancer.

The treatment of breast cancer has developed from simple surgical

treatment to a combination of surgery, chemotherapy,

radiotherapy, hormonal therapy, and/or targeted therapy. This

makes breast cancer treatment more personalized and continuous.

It is suspected that researching breast cancer at the molecular level

will bring advantages for the screening, treatment, and prognosis

of breast cancer, but this remains to be explored (Table 2).
Ovarian cancer and endometrial cancer

Advanced ovarian cancer usually spreads to the visceral

adipose tissue of the greater omentum (80, 81). Au et al. (82)

identified and compared microRNA-21 from exosomes in ovarian

cancer cells, cancer-associated adipocytes (CAAs), and cancer-

associated fibroblasts (CAFs). Our results suggest that miR21 can

metastasize from CAAs or CAFs to cancer cells and then inhibit

ovarian cancer cell apoptosis and enable cancer cells to acquire

drug resistance by binding to APAF1. In the retinal tumor

microenvironment, exosomes secreted by adjacent stromal cells

alter the malignant phenotype of metastatic ovarian cancer cells by

the delivery of miR21. The inhibition of miR21 metastasis from a

stroma has a promising application prospect in the treatment of

metastatic and recurrent ovarian cancer. Endometrial cancer most

often occurs in the endometrial epithelium of menopausal and

postmenopausal women. Xu et al. (83) isolated circRNA in EVs

from the serum samples of three patients with stage III endometrial

cancer aged 50–60 years and three healthy subjects. A total of 209

circRNAs were upregulated, and 66 circRNAs were

downregulated. The abnormal expression of two circRNAs,
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hsa_circ_0109046 and hsa_circ_0002577, was confirmed by RT-

qPCR. These findings help predict the occurrence, metastasis, and

prognosis of endometrial cancer (Table 2).
Human glioblastoma

The intercellular communication between tumor and host

microenvironment can be mediated by exosomes. Wei et al. (84)

studied the cancer-derived exRNA by using glioblastoma (GBM)

as a research model. The study provides a variety of categories of

exRNA that can be used for biomarker discovery. At the same

time, the miRNA with the greatest influence on GBM was also

predicted. It provides additional possibilities for the study of

biomarkers in cerebrospinal fluid. Wang et al. (85) screened

circRNAs differentially expressed in GBM clinical samples by

using the ceRNAmicroarray. The target circNT5E was identified

by TargetScan prediction and an miRNA pulldown experiment.

The phenotypic analysis in vivo and in vitro showed that

AdARB2 can act on linear NT5E precursors and relieve

ADAR-1’s inhibition of circnt5E transcription. The highly

expressed circnt5E can be adsorbed to miRNA-422a to relieve

its inhibition of downstream target genes. Then Akt, Smad2, and

other signaling pathways are activated to promote the

proliferation, migration, and invasion of GBM cells. In general,

exRNA can regulate the occurrence and development of GBM

through regulatory intervention on downstream target genes.

This is a novel mechanism for the study of GBM (Table 2).
Multiple myeloma

Multiple myeloma (MM) is a hematologic cancer caused by the

abnormal expansion of plasma cells. MM is characterized by the

malignant proliferation of monoclonal plasma cells and the secretion

of large amounts of monoclonal immunoglobulins, which then

inhibit the normal function of both polyclonal plasma cells and

polyclonal immunoglobulins (86–88). Deng et al. (89) found that

mesenchymal stem cell–derived exosomes promoted MM

tumorigenesis by regulating the function of miR-15a/16 and Bcl-2

through lncRNA LINC00461. The expression profile analysis of

lncRNA in bone marrow plasma cells showed that the dysregulation

of lncRNA UCA1 was associated with the abnormal serum levels of

albumin and M protein. In addition, lncRNA metastases–related

MALAT1 overexpression was found in newly diagnosed MM

patients compared with healthy individuals after treatment. This

suggests that MALAT1 could be used as a marker to predict disease

progression. The overexpression of specific lncRNA MSL1 was

detected in 40% of MM samples. The knockdown of MSL1 by

short hairpin RNAs significantly increased apoptosis in MM cell

lines, suggesting that MSL1 may be a relevant therapeutic target. In

conclusion, these data suggest that the changes in lncRNA

expression are associated with the occurrence of MM (Table 2).
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Conclusions, challenges,
and perspectives

This review introduces the great potential of exRNA as a

novel biomarker. Each study of the formation process of exRNA

and the complex mechanism of its role in body diseases provides

new possibilities for the detection and treatment of future

diseases. At present, most clinical diagnoses of the disease still

include invasive procedures, such as biopsies. Based on the

special physiological characteristics of exRNA, researchers

foresee much potential in utilizing exRNA for non-invasive

diagnostic methods (5, 8). In addition, as studies continue to

deepen, there is evidence that exRNA has a greater functional

value. The use of extracellular vesicles to transport RNA drugs to

treat diseases is increasingly widely studied (90). Whether in the

detection, diagnosis, treatment, or prognosis of diseases, exRNA

has highlighted a great advantage.

The study of exRNA could lead to the search for new

diagnostic markers or new therapeutic targets. However,

before translating its use into clinical practice, the mechanisms

and pathways of exRNA treatment should be understood. It is

still unknown how to introduce this biomarker into clinical

disease surveillance (10, 91, 92). Further, interspecies exRNA

transfer may occur through contact and feeding, opening a new

entry point for the transboundary transfer of exRNA. Although

information exchange and transmission serve as a bridge

between species, it is not fully understood whether or how

they play an important role in biological interactions (90, 93, 94).

At present, there has been the formation of an exRNA

database (95–98). The existence of a wide spectrum of exRNA

and its diversity suggests that it may be involved in important

biological processes, such as the regulation of normal growth

and development, as well as the occurrence of cancer and

disease. The study of the mechanisms behind the regulatory

functions of exRNA will provide new insights into the

development of certain diseases (99, 100). However, the

maturity of the new technology needs to go through a perfect

development process, and the extensive scope of exRNA has

brought some difficulties to its in-depth research. Exosome

extraction and purification have a great impact on the study of
Frontiers in Oncology 10
exRNA to a large extent (101, 102). Therefore, from the study of

exRNA to its practical application, it still needs to be verified in

practice. It is believed that with the development of science and

extensive research efforts, exRNA will bring widely impact

science and medicine as a whole. The prospect of the clinical

application of exRNA should be more anticipated.
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Glossary

ASO antisense oligonucleotide

BFR body fat rate

BPH benign prostatic hyperplasia

CAAs cancer-associated adipocytes

CAFs cancer-associated fibroblasts

ESCC esophageal squamous cell carcinoma

EV extracellular vesicles

exLR extracellular vesicle long RNA

exLRs extracellular vesicle long RNAs

exRNA extracellular RNA

Fab fragment antigen binding

GBM glioblastoma

GC gastric cancer

HCC hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

mCRPC metastatic castration-resistant prostate cancer

MM multiple myeloma

PC prostate cancer

PSA prostate-specific antigen

PSC primary sclerosing cholangitis

qRT-PCR quantitative reverse-transcription polymerase chain reaction

RBP RNA-binding protein

RBCEVs red blood cell extracellular vesicles

RT-PCR reverse transcription-PCR

RT-qPCR real-time quantitative reverse-transcription PCR

SEG-NchiRNA salivary exosome G-NchiRNA

SM spinal metastases
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