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Introduction: Preoperative evaluation of the mitotic index (MI) of

gastrointestinal stromal tumors (GISTs) represents the basis of individualized

treatment of patients. However, the accuracy of conventional preoperative

imaging methods is limited. The aim of this study was to develop a predictive

model based on multiparametric MRI for preoperative MI prediction.

Methods: A total of 112 patients who were pathologically diagnosed with GIST

were enrolled in this study. The dataset was subdivided into the development

(n = 81) and test (n = 31) sets based on the time of diagnosis. With the use of T2-

weighted imaging (T2WI) and apparent diffusion coefficient (ADC) map, a

convolutional neural network (CNN)-based classifier was developed for MI

prediction, which used a hybrid approach based on 2D tumor images and

radiomics features from 3D tumor shape. The trained model was tested on an

internal test set. Then, the hybrid model was comprehensively tested and

compared with the conventional ResNet, shape radiomics classifier, and age

plus diameter classifier.

Results: The hybrid model showed good MI prediction ability at the image

level; the area under the receiver operating characteristic curve (AUROC), area

under the precision–recall curve (AUPRC), and accuracy in the test set were

0.947 (95% confidence interval [CI]: 0.927–0.968), 0.964 (95% CI: 0.930–

0.978), and 90.8 (95% CI: 88.0–93.0), respectively. With the average

probabilities from multiple samples per patient, good performance was also

achieved at the patient level, with AUROC, AUPRC, and accuracy of 0.930 (95%

CI: 0.828–1.000), 0.941 (95% CI: 0.792–1.000), and 93.6% (95% CI: 79.3–98.2)

in the test set, respectively.
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Discussion: The deep learning-based hybridmodel demonstrated the potential to

be a good tool for the operative and non-invasive prediction ofMI in GIST patients.
KEYWORDS

deep learning, radiomics, magnetic resonance imaging, convolutional neural
network, gastrointestinal stromal tumor
Introduction

Gastrointestinal stromal tumors (GISTs) are the most

common mesenchymal tumors of the digestive tract wall in

that they are more common in the stomach and small intestine

(1). It is widely believed that GIST originates in Cajal cells, which

are involved in gastrointestinal motility (2). GIST occurs at a

median age of 60 years (10–100 years), with no sex difference in

the distribution (3). Before the advent of tyrosine kinase

inhibitors, the most common treatment for most GIST cases

was radical surgical resection without any residual tumor.

However, even after complete tumor resection, the patients

still have a high rate of recurrence and metastasis (4). Another

approach for the treatment of GIST was presented through the

invention and rational application of targeted drugs, such as

imatinib, which significantly improved the recurrence-free

survival and overall survival of GIST. The prognosis of GIST is

closely related to its risk grade (5). Joensuu and colleagues

proposed an improved National Institutes of Health (NIH)

grading system to grade the risk of a tumor based on its size,

location, mitotic index and whether it is ruptured (6). Different

risk grades correspond to different prognoses and treatment

methods. For very-low-risk patients, regular follow-up may be

used without immediate surgery. For low-risk patients, routine

resection similar to benign tumors can be performed without

targeted therapy and follow-up. Intermediate- or high-risk

patients should receive targeted therapy to shrink the tumor

before resection; after surgery, targeted therapy and long-term

follow-up should be continued for a period of time (7).

Therefore, accurate preoperative assessment of the tumor risk

grade has important guiding significance for the treatment plan.

The mitotic index (MI) is an important indicator of GIST risk

grading. However, it may be more difficult to perform a

preoperative assessment of MI than to obtain morphological

information, such as tumor location and size. Pathological

examination is still the gold standard to accurately quantify the

GIST mitotic index (8). However, as an invasive examination, it

may lead to tumor hemorrhage and intraperitoneal spread; hence,

a preoperative pathological biopsy is not a routine examination for

GIST (9). The application of endoscopic ultrasonography has

greatly improved the success rate of preoperative pathological

biopsy for mesenchymal tumors. However, a biopsy cannot be
02
performed in some tumors at specific sites (10). For intermediate-

or high-risk tumors with active mitosis, preoperative application

of the GIST therapy can significantly reduce the tumor size, thus

effectively improving the resection rate of surgery and reducing

the risk of recurrence (11). In addition, small GIST is usually

treated by clinicians as a general benign tumor. However, once its

MI > 5 or even 10/HF, it may also be highly invasive and

dangerous; thus, it is obviously not suitable to apply the watch-

and-wait treatment strategy. Nevertheless, the accurate prediction

of tumor MI is of great significance to evaluate the risk of tumor

recurrence and guide the treatment strategy before and

after surgery.

Morphological information about tumors can be obtained

through endoscopic ultrasonography, computerized

tomography (CT), and magnetic resonance imaging (MR);

hence, they can be used as a basis to determine the location

and size of GIST and indicate the occurrence of rupture or

hemorrhage before surgery (12–14). Some prior recent CT-

based studies have correlated the morphological features of

GIST with the NIH risk classification, prediction of mutation

status, and prognosis (15, 16). In clinical practice, CT may be the

favored imaging method for GIST preoperative assessment, but

MR may provide more tumor information because of its multi-

sequence advantage. However, whether CT or MR, the

advancements in these conventional imaging methods are

limited by subjective human eye observation, which does not

provide enough information on the internal heterogeneity of

tumors. Moreover, it is difficult to characterize the MI of tumors,

which represents important pathological information.

Radiomics was first proposed by Lambin in 2012. It

emphasizes the high-throughput extraction of image

information (including shape, gray scale, and texture) from

medical images and adopts traditional statistical models such

as support vector machine, random forest, and XGBoost to

achieve tumor segmentation, feature extraction, and model

establishment (17). Using radiomics, researchers can transform

image information into a large number of features for a

quantitative study, which has been widely used in tumor

grading, staging, and prognosis research (18–20). The concept

of deep learning (DL) was proposed by Hinton et al. in 2006,

which is a new field in machine learning research. Its motivation

lies in the establishment of neural networks that simulate the
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analysis and learning process of the human brain, so as to

interpret image data by imitating the mechanism of the

human brain (21). Unlike radiomics, which relies on

predefined artificial features, deep learning algorithms can

extract more abstract high-dimensional features in a more

automatic way that is not susceptible to subjective influence

(22). Therefore, such algorithms have been widely used in the

automatic recognition, segmentation, and classification of lung

cancer, breast cancer, rectal cancer, and other tumors (23–25). In

this study, we trained a convolutional neural network (CNN)

classifier based on an integration of two-dimensional (2D)

multimodal MR images and three-dimensional (3D) shape-

based radiomics features to perform preoperative prediction of

mitotic index in GIST.
Materials and methods

This is a retrospective study, and the patients’ information

was anonymized. The ethics committee of our hospital approved

the study and waived the need for informed consent from

the patients.
Frontiers in Oncology 03
Data

A total of 141 patients who were newly diagnosed with GIST

and underwent MR examination in our hospital from January

2013 to May 2022 were initially enrolled. The inclusion criteria

were as follows: 1) GIST was confirmed by postoperative

pathology after radical resection in our hospital; 2) mitotic

index was obtained through postoperative pathological

examination; 3) preoperative MR examination is available,

including T2-weighted imaging (T2WI) and diffusion-weighted

imaging (DWI) sequences. The exclusion criteria were as follows:

1) preoperative MR examination occurred more than 14 days

before surgery; 2) two radiologists with 5 years of experience in the

diagnosis of abdominal and pelvic MR evaluated the image quality

and excluded those whose image quality was too poor to delineate

the region of interest due to motion or other artifacts; 3) the

patients were treated with imatinib or other tyrosine kinase

inhibitors before surgery; 4) the patients were younger than 18

years. The patient inclusion process is shown in Figure 1. Then,

based on postoperative pathology results and modified NIH risk

classification criteria (6), the patients were classified into the group

with the low mitotic index (MI ≤ 5/50 HPFs, 55 patients) and the
FIGURE 1

The flowchart of dataset setup. Low-MI, low mitotic index; High-MI, high mitotic index.
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group with high mitotic index (MI > 5/50 HPFs, 68 patients). The

2008 modified NIH risk classification criteria are discussed in

detail in Supplementary Table 1. The data were divided into the

development set, consisting of 81 patients who were diagnosed

between January 2013 and September 2018, and the test set,

consisting of 31 patients who were diagnosed between October

2019 and May 2022.
Image acquisition and processing

All images were scanned using a 1.5T Siemens Avanto MR

system (Siemens, Munich, Germany) equipped with an eight-

channel phased-front coil dedicated to the abdomen. In order to

reduce gastrointestinal motion artifacts, the patients were

instructed to abstain from water and food for 4 h before the

scan. The imaging sequences included coronal fast imaging,

employing the steady-state acquisition (FIESTA) sequence, axial

fat-suppression T2WI, axial DWI, and axial in-phase and out-

of-phase T1-weighted imaging (T1WI). DWI was collected by

echo-planar imaging (EPI), with b values of 0 and 800. The

respiratory trigger technique was used for T2WI and DWI, and

the end-expiratory breath-holding method was used for FIESTA

and T1WI scans to reduce respiratory motion artifacts. Table 1

lists the detailed image acquisition parameters.
Region of interest segmentation
and three-dimensional shape
feature extraction

The images of all patients were downloaded in the digital

imaging and communications in medicine (DICOM) format from
Frontiers in Oncology 04
the picture archiving and communication system (PACS) of our

hospital. Apparent diffusion coefficient (ADC) maps were registered

to T2WI images using the Statistical Parametric Mapping software

v.12 (SPM12, University College London). A radiologist with more

than 5 years of experience in abdominal and pelvic MR diagnoses

segmented the entire tumor in three dimensions on T2WI images,

such that the segmentation was strictly along the edges of the tumor

and included areas of necrosis and cystic degeneration. In addition,

the maximum diameter of the tumor was measured, and the tumor

location was recorded during segmentation. The abovementioned

information was confirmed and corrected by another radiologist

with 10 years of experience in abdominal and pelvic MR imaging. In

case of any disagreement, consultation continued until an agreement

was reached.

Shape radiomics features were extracted using the PyRadiomics

package (https://www.radiomics.io/pyradiomics.html), which

contained 14 features, as follows: mesh volume, voxel volume,

surface area, surface area to volume ratio, sphericity, maximum

3D diameter, maximum 2D diameter (slice), maximum 2D

diameter (column), maximum 2D diameter (row) major axis

length, minor axis length, least axis length, elongation, and

flatness. The definitions and calculation methods of each of these

features can be found on the package documentation page https://

pyradiomics.readthedocs.io/en/latest/features.html#module-

radiomics.shape.
Convolutional neural network classifier
for mitotic index status prediction

The CNN structure is shown in Figure 2. The CNN classifier

used in this study is derived from the famous 50-layer ResNet

structure (hereinafter referred to as conventional ResNet). As

shown in Supplementary Figure 1, the network structure
TABLE 1 MRI protocols.

Image acquisition parameter Parameter values

FIESTA T2WI DWI T1WI
Acquisition plane Coronal Axial Axial Axial

Fat saturation No Yes Yes No

TR/TE (ms) 3.63/1.82 2,000/96 4,600/63 75/2.38,4.79

Angle (°) 60 70 150 70

Slice thickness (mm) 5 6 6 6

FOV (mm2) 350 × 350 379 × 284 379 × 308 380 × 320

Matrix 512 × 460 384 × 202 192 × 128 320 × 189

Voxel size (mm3) 1.0 × 1.0 × 5.0 1.0 × 1.0 × 6.0 2.0 × 2.0 × 6.0 1.2 × 1.2 × 6.0

Interslice gap 10% 10% 10% 10%

Delay (s)

Scan time (s) 12 165 97 69

b-Value (s/mm2) 0, 800
f

FIESTA, fast imaging employing steady-state acquisition; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; T1WI, T1-weighted imaging; TR, repetition time; TE, echo time.
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contained the initial 7 × 7 convolution and layers 1 to 4

comprising three, four, six, and three residual blocks, such that

each residual block had one 3 × 3 convolution and two 1 × 1

convolutions. For the hybrid model, we included an additional

fully connected layer to the conventional ResNet, which used

additional image input and numerical input. The image input to

the hybrid model comprised axial T2WI and ADC and tumor

masks with the size of 128 × 128. To train a model with a high

performance given the insufficient sample size, we selected all

the images containing GIST for each patient, instead of a certain

layer of images. Therefore, based on tumor segmentation, there

may be multiple axial sections per patient, which would be used

for the development and testing of classification models. As for

the numerical input to the hybrid model, it included 14

morphologic features based on general imaging as well as the

patient’s age and tumor diameter. Before adding the above

features to the neural network, we standardized them

according to the following formula:

xn
! =

xn
! − xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21n + x22n +… + x2mn

p

where xn
! is the nth feature and m is the number of samples.

The training process of the CNN classifier is discussed in

detail below. First, the DICOM image was converted to PNG
Frontiers in Oncology 05
format, which was used for the training and validation of the

CNN model. Since our input data size is 384 × 202, which is

bigger than the original residual neural network (224 × 224), the

image and mask were resampled. Based on tumor segmentation,

all layers of each patient’s tumor were selected as independent

samples; this approach might have a better effect on data

enhancement than image flipping or rotation. In this way, our

convolutional residual neural network and our CNN classifier

obtained 891 development samples and 531 test samples. To

train our model, the transfer learning method was used, which is

widely used in computer vision, for efficient training and

accurate classification performance. A weight file obtained by

training an ResNet50 network was used on the large ImageNet

dataset to extract the features of target datasets, and the model

parameters were fine-tuned via the target datasets (891

development samples and 531 test samples) to obtain an

optimal conventional ResNet model. Then, the weight value of

the optimal pretrained conventional ResNet from the initial 7 ×

7 convolutional layers to the third layer, and the mixed model

was imported and set as untrainable. During the training of the

hybrid model, only the weights from the fully connected layers

that received shape, age, and maximum diameter as numerical

inputs from layer 4 and below were trained to maximize the

synergy between the image features from the pretrained weights
A B

FIGURE 2

Hybrid model for mitotic index prediction. (A) shows the process of 3-dimensional and 2-dimensional image segmentation. We convert a three-
dimensional mask to several two-dimensional masks. (B) shows the structure of hybrid mitotic index prediction model. In this model, layers 1–4
consisted of three, four, six, and three residual blocks, with each block containing 3 × 3 convolution once and 1 × 1 convolution twice.
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and numeric inputs. The input images were dynamically

enhanced by translation, scaling, rotation, shearing, Gaussian

noise, and blur. The Adam optimizer was used to optimize the

network (beta1 = 0.9, beta2 = 0.999, initial learning rate = 1e

−04), batch size was set to 30, and the maximum training epoch

was set to 100, and training was stopped when the lost value of

the validation set dropped to a stable level. The resulting model

had the lowest validation set loss value. Our CNN model was

implemented in PyTorch 1.1.0 (https://pytorch.org) and trained

on an NVIDIA Tesla 3080 12 G with a memory of 64 G.
Cross-validation

To generalize the reliability of the networks, threefold cross-

validation was performed on the 111 subjects by randomly

shuffling the dataset and distributing it into three groups by

stratified randomization (27 subjects for each group: 17 low MI

and 20 high MI in Group 1, 17 low MI and 20 high MI in Group

2, and 17 low MI and 21 high MI in Group 3). During each fold

of the cross-validation procedure, two of the three groups of

subjects were combined as the internal training set, and the

remaining group was used as the internal validation set. The

internal validation set helped improve network performance

during training. Note that each fold of the cross-validation

procedure represents a new training phase on a unique

combination of the three groups. Network performance was

reported on the internal validation set for each fold.
Statistical analysis

In this study, the predictive performance of the model was

studied at the image level and patient level separately such that

the results of the image level prediction can finally be used for

patient-level prediction. For a certain patient, the average

prediction probability of all images was calculated as the

prediction probability of the patient. The probability

threshold of the calculation accuracy was set as 0.5, so a

prediction probability ≥0.5 was classified as high MI, while a

prediction probability <0.5 was classified as low MI. The model

discrimination ability was evaluated by drawing the area under

the receiver operating characteristic curve (AUROC) and the

area under the precision–recall curve (AUPRC). In addition to

the hybrid and conventional ResNet models, a traditional

shape radiomics feature-based classifier was established in

this study; the random forest (RF) algorithm was used in the

development set, and the 10-fold cross-validation was

performed to evaluate the model, with each fold repeated

three times using X&Y software (X&Y Solutions, Inc.,

Boston, MA, USA) based on the R language. The RF

algorithm selected and ranked the parameters according to

their importance. The constructed “forest” represents the
Frontiers in Oncology 06
integration of decision trees (DTs) and was trained with the

“bagging” method. Bagging methods involve randomly

selecting samples of the derivation dataset with replacement,

building classifiers, and finally combining the learned models

to increase overall performance. In this study, the number of

trees in the RF model was 400, with the variables leading to the

minimum “out-bagging” error in the model selected as the

optimal model. The feature importance was derived from the

mean decrease in impurity (MDI). When the RF model has the

best effect, the hyperparameters are set as follows: max_depth =

400, max_features = 4, min_sample_leaf = 1, min_sample_split

= 2, and n_estimators = 400. In order to evaluate whether the

hybrid model achieved better diagnostic efficiency, the DeLong

test was used to compare AUROC values (26). A p-value <0.05

was considered statistically significant. Statistical analysis was

performed using the R software (V3.6.1).
Results

Characteristics of the study population

The clinical characteristics of 112 patients are summarized

in Table 2. The number of patients with low and high MI was 40

and 41 in the development set and 11 and 20 in the test set,

respectively. There was no significant difference in the

proportion of patients with high MI between the development

and test sets (p = 0.186). In the development set, there was a

significant difference in age between patients with high and low

MI, such that patients with high MI were older (p = 0.032). In

the test set, no significant age difference was observed (p =

0.438). In both the development set and test set, there was no

significant difference between the high MI group and low MI

group in terms of sex (p = 0.224 and p = 0.709, respectively), but

the tumor diameter was significantly larger in the high MI group

(p < 0.001 and p = 0.003, respectively).
Model evaluation

After the image was provided as an input, the conventional

ResNet was pretrained for 30 epochs. Among the 14 shape

features, the following four features were screened out by the RF

algorithm: Elongation, Maximum 2D Diameter row, Sphericity,

and Surface Volume Ratio. The variable importance of the shape

features and their different distributions according to MI are

shown in Supplementary Figures 2 and 3, respectively. The

abovementioned four features along with age and maximum

tumor diameter were used as the numerical input to the hybrid

model. Then, part of the weights was imported from the

pretrained conventional ResNet and fine-tuned by 30 epochs

to produce the hybrid model. Table 3 and Figure 3 show the

performance of the hybrid model in the development set and test
frontiersin.org
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set. At the image level, the AUROC, AUPRC, and accuracy were

0.960, 0.968, and 91.4%, respectively, in the development set and

0.947, 0.964, and 90.8, respectively, in the test set. In addition,

with the average probabilities from multiple samples per patient,

the hybrid model also showed good discrimination ability at the

patient level. It achieved AUROC, AUPRC, and accuracy of

0.913, 0.887, and 91.4%, respectively, in the development set and

0.930, 0.941, and 93.6%, respectively, in the test set.

The performance evaluation results of conventional ResNet,

shape radiomics classifier, and prediction using age plus diameter

are shown in Table 4. In the development set, the conventional

ResNet (per slice), conventional ResNet (per patient), shape

radiomics classifier, and age plus diameter achieved AUROCs of

0.951, 0.889, 0.677, and 0.698, respectively; AUPRCs of 0.960, 0.871,

0.665, and 0.761, respectively; and accuracies of 0.899, 0.889, 0.680,

and 0.716, respectively. In the test set, they achieved AUROCs of

0.927, 0.880, 0.754, and 0.659, respectively; AUPRCs of 0.929, 0.918,
Frontiers in Oncology 07
0.851, and 0.824, respectively; and accuracies of 0.887, 0.871, and

0.772, respectively.
Model explanation

Comparison of the hybrid model with
other models

The comparison results of AUROCs and accuracies between

the hybrid model and age plus diameter, shape radiomics

classifier, and conventional ResNet are shown in Supplementary

Table 2 and Supplementary Figure 4. In both the development set

and the test set, the hybrid model outperformed the prediction of

age plus diameter, and there were significant differences in

AUROC and accuracy between the two models (all p < 0.05 for

accuracy and AUROC). In addition, the hybrid model was also

superior to the shape radiomics classifier (p < 0.05 for both
TABLE 2 Patient characteristics.

Development set (n = 81) Test set (n = 31)

Low MI (n = 40) High MI (n = 41) p Low MI (n = 11) High MI (n = 20) p

Age (years) 0.032 0.438

Mean ± SD 52.9 ± 12.8 60.7 ± 18.8 53.7 ± 16.0 59.5 ± 21.0

Sex 0.224 >0.999

Male 19 (47.5%) 25 (61.0%) 5 (45.5%) 10 (50.0%)

Female 21 (52.5%) 16 (39.0%) 6 (54.5%) 10 (50.0%)

Tumor site 0.320 >0.999

Gastric 21 (52.5%) 17 (41.5%) 4 (36.4%) 8 (40.0%)

Non-gastric 19 (47.5%) 24 (58.5%) 7 (63.6%) 12 (60.0%)

Diameter (cm) <0.001 0.003

Mean ± SD 6.1 ± 1.9 10.8 ± 3.6 4.3 ± 2.5 9.6 ± 6.3
frontiers
Data are presented as mean ± SD or number (percentage). Independent samples t-test was applied in continuous variables. Chi-squared test or Fisher’s exact test was applied to categorical
variables. Bold type indicates statistically significant difference.
Low MI, low mitotic index; High MR, high mitotic index.
TABLE 3 Diagnostic performance of the hybrid model for the prediction of mitotic index.

Development set Test set

Per slice Per patienta Per slice Per patienta

AUROC (95% CI) 0.960 (0.947–0.973) 0.913 (0.851–0.975) 0.947 (0.927–0.968) 0.930 (0.828–1.000)

AUPRC (95% CI) 0.968 (0.956–0.977) 0.887 (0.787–0.954) 0.964 (0.930–0.978) 0.941 (0.792–1.000)

Acc (95% CI) 91.4 (89.3–93.0) 91.4 (83.2–95.8) 90.8 (88.0–93.0) 93.6 (79.3–98.2)

Sen (95% CI) 91.6 (88.5–93.9) 92.7 (79.0–98.1) 92.1 (88.5–94.6) 95.0 (73.1–99.7)

Spe (95% CI) 91.1 (88.0–93.5) 90.0 (75.4–96.7) 88.5 (82.9–92.5) 90.9 (57.1–99.5)

PPV (95% CI) 91.4 (88.3–93.7) 90.5 (76.5–96.9) 93.4 (90.1–95.7) 95.0 (73.1–99.7)

NPV (95% CI) 91.3 (88.2–93.7) 92.3 (78.0–98.0) 86.2 (80.4–90.6) 90.9 (57.1–99.5)
AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision–recall curve; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive
value; NPV, negative predictive value.
aSince each patient yielded multiple tumor slices, the diagnostic accuracy per patient was calculated from the mean value of the all-predicted probabilities per patient.
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accuracy and AUROC). However, compared with conventional

ResNet, the hybrid model has slightly higher AUROC and

accuracy, but the difference between them is not significant.

Ablation analysis
The results of the ablation analysis are discussed in detail in

Supplementary Table 3. Compared with the conventional ResNet,

as we reduced the number of input images per patient and reduced

the sequences or masked tumor area, we observed a decrease in the

diagnostic performance, with accuracies, AUROCs, and AUPRCs at

70.4%–84%, 0.840–0.704, and 0.676–0.814, respectively, in the

development set and 61.3%–83.9%, 0.639–0.834, and 0.746–0.873,

respectively, in the test set. When we masked the tumor area from

image inputs, the lowest diagnostic performance was achieved, with

accuracy, AUROC, and AUPRC of 61.7%, 0.618, and 0.602,
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respectively, in the development set and 54.8%, 0.548, and 0.676,

respectively, in the test set.
Cross-validation

To ensure that the performance of the hybrid model was not

due to the random selection of the internal test set, we performed

a patient-level threefold cross-validation on the entire cohort (n =

112). In the internal validation set, the mean AUROC was 0.910

(range, 0.896–0.927) and 0.903 (range, 0.849–0.980) in the hybrid

model (per slice) and hybrid model (per patient), respectively

(Supplementary Table 4), similar to those in the test set. The

cross-validation results show that the hybrid model has

good robustness.
TABLE 4 Diagnostic performance of the conventional ResNet, shape radiomics classifier, and age plus diameter in the prediction of mitotic index.

Dataset AUROC (95% CI) AUPRC (95% CI) Acc (95% CI)

Conventional ResNet (per slice) Development set 0.951 (0.937–0.966) 0.960 (0.947–0.970) 89.9 (87.8–91.7)

Test set 0.927 (0.901–0.953) 0.929 (0.880–0.959) 88.7 (85.7–91.1)

Conventional ResNet
(per patient)a

Development set 0.889 (0.820–0.958) 0.871 (0.769–0.946) 88.9 (80.2–94.0)

Test set 0.880 (0.760–1.000) 0.918 (0.746–0.979) 87.1 (71.2–94.9)

Shape radiomics classifier Development set 0.677 (0.641–0.712) 0.665 (0.629–0.709) 68.0 (64.9–71.0)

Test set 0.754 (0.712–0.797) 0.851 (0.823–0.876) 77.2 (73.5–80.6)

Age plus diameter Development set 0.698 (0.574–0.803) 0.761 (0.657–0.852) 71.6 (61.0–80.3)

Test set 0.659 (0.465–0.853) 0.824 (0.690–0.915) 61.3 (43.8–76.3)
AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision–recall curve.
aSince each patient yielded multiple tumor slices, the diagnostic accuracy per patient was calculated from the mean value of the all-predicted probabilities per patient.
A B

FIGURE 3

Performance of the hybrid model in the prediction of mitotic index. (A) Receiver operating characteristic (ROC) curves of the hybrid model in
the development and test set. (B) Precision-recall (PR) curves of the hybrid model in the development and test set.
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Discussion

In this study, based on a ResNet50 CNN, we developed a

hybrid model to predict the MI status of GIST patients. The

CNN integrating 2D tumor signal intensity, 3D tumor shape,

patient age, and tumor size showed good predictive power in

both the development and test sets.

GIST mitotic index is an important indicator of metastasis

and prognosis, which is independent of the tumor size and

location; this led to the integration of this indicator in the NIH

system. Although radical resection is still the most commonly

used standard treatment for GIST, due to the high risk of

postoperative recurrence for patients with high MI, surgical

resection following neoadjuvant therapy may improve the

prognosis (27). Preoperative prediction of MI potentially helps

in setting the treatment plan, which leads to the investigation of

radiological findings to predict the MI status. A previous CT

study showed that GIST with high MI and high-risk grade is

more prone to internal necrosis, neovascularization, and

peripheral invasion, while low MI tumors have more regular

morphology and clearer boundaries with the surrounding tissues

(28). In addition, an MR study with higher soft tissue resolution

showed that tumor enhancement was significantly stronger in

patients with high MI compared with patients with low MI,

which may be related to the formation of new tumor vessels

inside (29). Some studies tried to evaluate the grading of GIST

using a DWI-based ADC map and PET-CT parameter map, and

they found the ADC value to be negatively correlated with the

grading of the GIST tumor, while the metabolic rate was

negatively correlated with it (30, 31). Changes in ADC caused

by targeted therapy may be related to a variety of cell death

mechanisms, including mitotic catastrophe, which indicates that

ADC can provide more information to evaluate mitosis from a

therapeutic perspective (32). Therefore, the ADC map was taken

as one of the sequences of the multimodal study in this study.

Radiomics can be used to obtain high-level features of tumor

images, which can reflect the heterogeneity of tumors and

provide a basis to evaluate biological behavior (33). A recent

enhanced CT-based study found a close relationship between the

mitotic number and 14 radiomics features of GIST, which

suggests that it may be another possible method to predict the

number of GIST (34). However, this study was based only on 2D

images of the maximum cross-section of the tumor, which did

not fully obtain the overall information about the tumor.

Moreover, the study only included enhanced CT images, with

a single type of image. As a result, the accuracy of its prediction

model in the test set was only 85.4%. In this study, the accuracy

of the hybrid model reached 93.6% after including the

information at all layers of the tumor.

Deep learning refers to a technology that combines low-level

features to form more abstract high-level features or categories

and then learns effective features from a large number of input

elements and uses these features to perform classification,
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regression, and information retrieval. There are many kinds of

DL models, among which CNN is most widely used in the field

of medical imaging. Unlike traditional radiomics based on

manual feature extraction, high-throughput image features can

be directly extracted from deep neural networks (DNNs)

without additional feature extraction operations; thus, no

additional error occurs in the analysis due to feature

calculation, and the effectiveness of the feature is only related

to the segmentation quality (35, 36). At present, CNN has been

successfully applied in many aspects, such as genotype

prediction, preoperative staging, lymph node metastasis

prediction, and prognosis evaluation of malignant tumors (37–

39). The application of the DL algorithm to extract image

information can overcome the influence of observer subjectivity.

Researchers have begun to explore the application of DL in

the diagnosis and evaluation of GIST. Previously, a DL model for

predicting the mitotic index of GIST was preliminarily

established by providing venous images as input into CNN.

The results showed that the image-based DL model could

evaluate the MI of GIST before surgery (40). However, the

generalization ability of the model proposed in their study was

not high, and the area under the curve (AUC) in the internal test

set was only 0.771–0.800. In our study, the AUC of the

conventional ResNet model reached 0.880–0.927 in the test

set, while the hybrid model achieved an even better predictive

ability, with an AUC of 0.930–0.947. The reason may be that MR

has a higher soft tissue resolution as compared with CT, so

images may contain more information, and the extracted DL

features may have better discrimination ability. The input

images in this study were multimodal MR images (including

T2WI and DWI images). Previous studies have confirmed that

multimodal images can improve the final effect of the DL model.

In a previous study, researchers also fed endoscopic ultrasound

images into neural networks for auxiliary diagnosis of GIST and

gastrointestinal leiomyoma. Their study showed that the two

tumor types could not be distinguished based on naked-eye

observation, and the accuracy was only 63%, while the accuracy

of the CNN system reached 86.98% (41). Another study

confirmed that an EUS–CNN system can be helpful not only

for less-experienced endoscopists but also for experienced

ones (42).

ResNet50 CNN was selected as the basic model in this study.

ResNet50 is a network framework of residual learning that solves

the degradation problem of decreasing accuracy caused by

increasing the network depth. Compared with previous

models, the residual network is easier to optimize and can

derive accuracy from a significantly increased depth (43).

Many previous studies have used this network to classify

tumors and achieved good results (44–46). The transfer

learning method was adopted, and a fully connected layer was

added to the hybrid model. The results of multi-slice CT images

can better reflect the overall biological behavior and mitotic rate

of the tumor than that of single-slice CT images (47).
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In addition to the multi-modal image input, the construction

process of the proposed hybrid model proposed was different

from that of the image-based CNN model reported in previous

studies (40). While the hybrid model combined shape features

and clinical indicators, in order to ensure the robustness of the

model, only shape features in traditional radiomics were selected

to establish the model. The main factor limiting the repeatability

of radiomics features is that the extraction results of first-order

and texture features depend on the range and number of bins of

signal intensity, and there is currently no accepted standard to

set the signal strength-related parameters (48, 49). Unlike the

intensity feature, the morphological feature is independent of the

abovementioned settings and can thus remain stable across

studies. This improves the stability of the research model.

The hybrid model fuses the 3D tumor morphology and

mitotic-related clinical indicators (age and tumor size) with the

CNN model, thus producing an enhanced model performance

compared with image-based CNN alone. Previous studies

showed that age and tumor size are independent risk factors

for prognosis in GIST patients (50). In this study, there were

significant differences in the age and maximum diameter

between the high MI group and low MI group. It was

previously shown that older patients with meningiomas are

more likely to have more active mitosis and larger tumors,

which indicates that they have faster tumor division and may

have a higher MI (51). However, the relationship between MI

and the factors of age and tumor size needs to be further

confirmed in GIST. Despite the differences between groups,

the prediction efficiency of these two indicators alone for MI is

very low, which also indicates that it is difficult to use only

clinical indicators for the MI status of tumors in clinical practice,

and we need to combine more indicators reflecting the internal

heterogeneity of the tumor.

This study used radiomics and deep learning analysis based on

MR plain scan images to predict mitosis in GIST. However, due to

the limited time resolution, MR is highly susceptible to respiratory

movement and intestinal peristalsis during abdominal imaging,

which limits its application in GIST assessment. Compared with

MR, CT is more widely used in the preoperative evaluation of GIST

in clinical at present, which has the advantages of low cost, short

examination time, and low susceptibility to motion artifacts (52).

However, plain CT has the inherent defect of insufficient soft tissue

resolution, so contrast-enhanced CT is often adopted for

preoperative evaluation of GIST, which may increase the renal

burden and allergy risk of patients. In addition, CT imaging is

single-parameter imaging based on tissue density, which provides

limited information. However, MRI has the advantage of multi-

sequence and arbitrary angle imaging, which is more conducive to

displaying the relationship between tumors and surrounding organs

from different angles. Given the above advantages of MR, GIST can

be accurately assessed clinically using only MR plain scan sequences

(53). In addition to higher tissue contrast, the application of

functional imaging sequences such as DWI can provide
Frontiers in Oncology 10
microscopic information about the tumor from the tissue level

and even the cell level (30). Radiomics or deep learning features

based on such specially weighted images may better reflect the

heterogeneity of the tumor.

This study has some limitations that merit discussion. First,

the sample size of this study is small, so future studies should

continue the data collection and use a larger sample size. Second,

this study is a single-center study. Although internal verification

has been performed, the repeatability and generalization ability

of the model should be further verified by external datasets.

Finally, because GIST is irregular in shape and may occur in any

part of the digestive tract and its adjacent tissues and organs are

complex, it is difficult to achieve automatic segmentation of the

tumors. In this study, manual segmentation was adopted, which

is more difficult but more accurate.

In conclusion, we developed a deep learning-based model

that used radiomics and clinical features to reliably predict the

MI status in GIST based on conventional, unenhanced MR

images. Our model is expected to serve as a practical tool for

the non-invasive characterization of GIST to support

personalized treatment plans.
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