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Epigenome-wide gene–age
interaction study reveals
reversed effects of MORN1
DNA methylation on survival
between young and elderly
oral squamous cell
carcinoma patients

Ziang Xu1,2†, Yan Gu1,3,4†, Jiajin Chen5† , Xinlei Chen1,2,
Yunjie Song5, Juanjuan Fan5, Xinyu Ji5, Yanyan Li1,2,
Wei Zhang1,2* and Ruyang Zhang5,6*

1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China, 2Department
of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University,
Nanjing, China, 3Department of Orthodontics, Affiliated Stomatological Hospital of Nanjing Medical
University, Nanjing, China, 4Jiangsu Province Engineering Research Center of Stomatological
Translational Medicine, Nanjing Medical University, Nanjing, China, 5Department of Biostatistics,
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China,
6China International Cooperation Center for Environment and Human Health, Nanjing Medical
University, Nanjing, China
DNA methylation serves as a reversible and prognostic biomarker for oral

squamous cell carcinoma (OSCC) patients. It is unclear whether the effect of

DNA methylation on OSCC overall survival varies with age. As a result, we

performed a two-phase gene–age interaction study of OSCC prognosis on an

epigenome-wide scale using the Cox proportional hazards model. We

identified one CpG probe, cg11676291MORN1, whose effect was significantly

modified by age (HRdiscovery = 1.018, p = 4.07 × 10−07, FDR-q = 3.67 × 10−02;

HRvalidation = 1.058, p = 8.09 × 10−03; HRcombined = 1.019, p = 7.36 × 10−10).

Moreover, there was an antagonistic interaction between hypomethylation of

cg11676291MORN1 and age (HRinteraction = 0.284; 95% CI, 0.135–0.597; p = 9.04

× 10−04). The prognosis of OSCC patients was well discriminated by the

prognostic score incorporating cg11676291MORN1–age interaction (HRhigh vs.

low = 3.66, 95% CI: 2.40–5.60, p = 1.93 × 10−09). By adding 24 significant gene–

age interactions using a looser criterion, we significantly improved the area

under the receiver operating characteristic curve (AUC) of the model at 3- and

5-year prognostic prediction (AUC3-year = 0.80, AUC5-year = 0.79, C-index =

0.75). Our study identified a significant interaction between cg11676291MORN1
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and age on OSCC survival, providing a potential therapeutic target for

OSCC patients.
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Introduction

Oral squamous cell carcinoma (OSCC) is the most common

subtype of head and neck malignancies as well as the most

prevalent oral cancer worldwide (1), with an estimated 377,713

new cases and 177,757 deaths in 2020 (2). Despite recent

breakthroughs in diagnosis and therapy, the prognosis of OSCC

is still poor, with a 5-year survival rate of approximately 50% (3).

As a complex disease, the progression of OSCCmay be driven by a

complex association pattern between genetic and environmental

factors, i.e., gene–environment interaction (4).

DNA methylation is a reversible epigenetic modification

without changing the DNA sequence (5). Nevertheless, its

aberrant alterations play a decisive role in the occurrence and

progression of various cancers (6, 7), including OSCC (8).

Emerging evidence has demonstrated that DNA methylation

may potentially serve as a prognostic biomarker of OSCC and a

target for improved therapy (9, 10). However, the majority of

these previous studies merely focused on identifying DNA

methylation with marginal effect but overlooked gene–

environment interaction. Age is a wel l-recognized

environmental risk factor for the progression of many cancers

(11), including OSCC (12, 13). Our previous gene–age interaction

study of lung cancer revealed the reversed effects of PRODHDNA

methylation on survival between young and elderly patients (14).

Anyway, whether the effect of DNA methylation on OSCC

survival varies with age remains largely unclear.

As a result, we hypothesized that there could be a gene–age

interaction associated with OSCC survival at the DNA

methylation level, and the age-specific epigenetic signatures

could be more precise for therapeutic target discovery and

prognostic prediction accuracy. Thus, we performed a two-
; TCGA, The Cancer

quality control; SNP,

Quantile; HR, hazard

y rate; SD, standard

Genomes; GO, Gene

C, receiver operating

haracteristic curve; C-

.

02
phase epigenome-wide gene–age interaction study using

subjects in The Cancer Genome Atlas (TCGA) as the

discovery phase and subjects in the Gene Expression Omnibus

(GEO) as the validation phase to identify age-specific, prognostic

epigenetic biomarkers. A series of downstream analyses, i.e.,

sensitivity analysis, methylation–transcription analysis, gene

network analysis, and immune cell composition analysis, were

also conducted to explore the potential functions of the

identified biomarkers.
Methods

Study populations

The level-3 TCGA-HNSCC DNA methylation data were

downloaded from the UCSC XENA browser. Only samples

whose tumors occurred in the oral cavity, tongue, floor of

the mouth, buccal mucosa, hard palate, alveolar ridge, or

lip were included in the discovery phase. In the validation phase,

we retrieved and obtained OSCC patients’ clinical and DNA

methylation data from the GEO (GSE75537) for further analysis.
Quality control process for DNA
methylation data

DNA methylation was assessed by the Illumina Infinium

Human Methylation 450 Array. We used the R package CHAMP

to process level-3 data from TCGA and the GEO. Ineligible CpG

probes were removed if they met any of the quality control (QC)

criteria: (i) non-CpG probes, (ii) common SNPs located in the

position of the CpG probe or 10 bp flanking regions, (iii) cross-

reactive probes, (iv) sex chromosome probes, (v) deletion rates

>20%, and (vi) failed QC in either TCGA or GEO cohorts. Types

I and II probe corrections were normalized using BMIQ

normalization. They were further adjusted for batch effects

(ComBat function in R package sva) according to the best

pipeline by a comparative study (15). Supplementary Figure S1

describes the details of the QC process. Subjects with no overall

survival time were also removed. Finally, 372 subjects (Table 1)

and 361,060 CpG probes remained in the subsequent

association analysis.
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Study populations and gene
expression data

In TCGA cohort, 307 OSCC patients had complete mRNA

sequencing data. TCGA mRNA sequencing data processing and

quality control were performed by TCGA working group. Level-3

mRNA expression data were downloaded from the UCSC XENA

database and further checked for quality. The expression value of

each gene was transformed on a log2 scale before association analysis.
Frontiers in Oncology 03
Statistical analysis

A two-phase gene–age interaction study
The statistical analysis pipeline was depicted in Figure 1,

showing a two-phase study to examine gene–age interactions

associated with OSCC overall survival on the epigenome-wide

scale. In the discovery phase, the interaction between DNA

methylation and age on overall survival was tested in the
TABLE 1 Demographic and clinical descriptions of subjects in the discovery phase (TCGA), the validation phase (GEO), and the combined dataset,
respectively.

Characteristic TCGA (N = 319) GEO (N = 53) Combined (N = 372)

Age (years) 61.76 ± 13.15 49.36 ± 13.47 59.99 ± 13.87

Gender (N (%))

Male 212 (66.5) 42 (79.3) 254 (68.3)

Female 107 (33.5) 11 (20.7) 118 (31.7)

Smoking status (N (%))

Never 89 (28.7) – 89 (28.7)

Former 125 (40.3) – 125 (40.3)

Current 96 (31.0) – 96 (31.0)

Unknown 9 53 62

T stage (N (%))

T1 19 (6.0) 13 (24.5) 32 (8.7)

T2 100 (31.6) 15 (28.3) 115 (31.2)

T3 79 (25.0) 12 (22.7) 91 (24.7)

T4 113 (35.8) 13 (24.5) 126 (34.1)

Tx 5 (1.6) 0 (0) 5 (1.3)

Unknown 3 0 3

N stage (N (%))

N0 165 (52.2) 25 (47.2) 190 (51.5)

N1 57 (18.0) 8 (15.1) 65 (17.6)

N2 83 (26.3) 20 (37.7) 103 (27.9)

N3 2 (0.6) 0 (0) 2 (0.5)

Nx 9 (2.9) 0 (0) 9 (2.5)

Unknown 3 0 3

M stage (N (%))

M0 302 (95.6) 45 (84.9) 347 (94.0)

M1 2 (0.6) 0 (0) 2 (0.5)

Mx 12 (3.8) 8 (15.1) 20 (5.5)

Unknown 3 0 3

Clinical stage (N (%))

Early (I–II) 88 (28.3) 17 (34.0) 105 (29.1)

Late (III–IV) 223 (71.7) 33 (66.0) 256 (70.9)

Unknown 8 3 11

Race (N (%))

White 276 (89.3) – 276 (89.3)

Other 33 (10.7) – 33 (10.7)

Unknown 10 53 63

Survival months

Mean (95% CI) 95.0 (93.8–96.3) 71.2 (60.5–81.8) 91.6 (89.6–93.7)

Death (%) 148 (46.4) 15 (28.3) 163 (43.8)
Restricted mean survival time is provided because the median was not available.
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TCGA cohort using a histology-stratified Cox proportional

hazards model adjusted for age, smoking status, gender, and

TNM stage. Hazard ratios (HRs) and 95% confidence intervals

(CIs) were calculated for incremental methylation per 1% level.

Multiple test corrections were performed by controlling the false

discovery rate (FDR) at the 5% level, and further replications

were performed in the validation phase. Significant probes were

finally retained if they met all the following criteria: (i) FDR-q ≤

0.05 in the discovery phase; (ii) p ≤ 0.05 in the validation phase;

and (iii) consistent effect direction across two phases. Patients

were excluded if their methylation values were out of range to

mean ± 3 × standard deviations (SD) in the sensitivity analysis.

Kaplan–Meier survival curves were used to describe the

difference in survival between hypomethylated and

hypermethylated patients.

Functional analysis of CpG probes with
significant interactions

Potential genes trans-regulated by epigenetic biomarkers in

TCGA were identified by genome-wide methylation–

transcription correlation analysis using a linear regression

model adjusted for the same covariates aforementioned.

Functional annotation and gene enrichment pathway analysis

(FDR-q ≤ 0.05) of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) for potential

trans-regulated genes were performed using the R Package

WebGestaltR. Furthermore, these genes associated with overall

survival were selected for gene network analysis using the

Cytoscape application plugin GeneMANIA (16). Gene hubs
Frontiers in Oncology 04
which highly connected to nodes in the module were defined

as those having the highest connectivity. To explore the

difference in tumor immune cell subtypes among subgroups,

we quantified the composition of 22 tumor-infiltrating immune

cells (TIICs) using CIBERSORT, a linear support vector

regression-based deconvolution algorithm (17).

Development of a prognostic prediction model
By using a looser criterion (FDR-q ≤ 0.10 in the discovery

phase; p ≤ 0.05 in the validation phase), more gene–age

interactions were further selected and incorporated into a

prognostic prediction model of OSCC. The accuracy of

prediction was represented using the time-dependent receiver

operating characteristic (ROC) curve and was measured by the

area under the ROC curve (AUC) using the R package

survivalROC. The 95% CI and p-value for AUC increments

were calculated from 1,000 bootstrap samples. The concordance

index (C-index), an average accuracy of predictive survival

across follow-up years, was also calculated to estimate

predictive performance.

In order to illustrate the different DNA methylation effects

on survival in populations of different ages, we used two

classification criteria to define young and elderly patients: (1)

the UN standard age of 65 as the threshold (18), (2) the

boundary of 95% CI (BoCI) threshold calculated based on the

HR of CpG probe. Furthermore, continuous variables were

summarized as mean ± standard deviation (SD), while

categorized variables were described by frequency (n) and

proportion (%) in description analysis. All statistical analyses
FIGURE 1

Flow chart of study design and statistical analyses. Patients from TCGA were used in the discovery phase for biomarker screening, whereas
patients from the GEO were used for biomarker validation.
frontiersin.org

https://doi.org/10.3389/fonc.2022.941731
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.941731
were performed in R version 4.0.3 (The R Foundation for

Statistical Computing, Vienna, Austria).
Results

A significant gene–age interaction was
identified in the two-phase study

In the discovery phase, four gene–age interactions were

identified with FDR-q ≤ 0.05, of which only one remained

significant (p ≤ 0.05) in the validation phase and showed a

more robust association in the combined data (Supplementary

Table S1). The CpG probe, cg11676291MORN1, located in the

MORN Repeat Containing 1 (MORN1) (Supplementary Table

S2), together with age, showed a significant interaction effect on

OSCC survival (HRinteraction = 1.018, 95% CI: 1.011–1.025,

p = 4.07 × 10−07, FDR-q = 3.67 × 10−02 in the discovery phase;

HRinteraction = 1.058, 95% CI: 1.015–1.103, p = 8.09 × 10−03 in the

validation phase; HRinteraction = 1.019, 95% CI: 1.013–1.025,

p = 7.36 × 10−10 in the combined data). Furthermore, in the

sensitivity analysis, by removing outliers in the methylation

data, the significant interaction effect was again confirmed in

the two-phase study (Supplementary Table S3). Stratified

analyses by gender, TNM stage, and smoking status showed

no significant heterogeneity among those subgroups.

Meanwhile, the association between cg11676291MORN1–age

interaction and overall survival remained significant in all

subgroups (Supplementary Figure S2), except for the current

smoker subgroup with a very limited sample size (n < 100).

Statistical interaction between two factors can be defined as a

phenomenon where the effect of one factor is modified by another

one (19). Combined with our results, we observed that the effect of

cg11676291MORN1 was modified by age, where the CpG probe

changed from a protective factor for OSCC survival in young

patients to a risk factor in elderly patients (Figure 2A). Thus, age

was obviously a modifier of the association between

cg11676291MORN1 and overall survival. By categorizing patients

intoyoung and elderly groups according toUNcriteria (≤65 vs. >65

years) orBoCIboundaries (<57vs. >64 years) in the combineddata,

both stable results showed the reversed effects of cg11676291MORN1

between two age subgroups (Supplementary Table S4).

Hypermethylation of cg11676291MORN1 favored survival in

young OSCC patients (HRUN = 0.900; 95% CI: 0.838–0.967;

p = 3.89 × 10−03; HRBoCI = 0.849; 95% CI: 0.760–0.950; p = 4.23 ×

10−03) but was not conducive for survival in elderly OSCC patients

(HRUN = 1.345; 95% CI: 1.127–1.605; p = 1.04 × 10−03; HRBoCI =

1.240; 95%CI: 1.068–1.440; p = 4.71 × 10−03) (Figure 2B). Based on

theoptimal cutoff valueof cg11676291MORN1,Kaplan–Meier curves

also confirmed the reversed effects across two age groups (HRhigh vs.

low = 0.573; 95% CI: 0.377–0.871; p = 9.10 × 10−03 in young OSCC

patients; HRhigh vs. low = 4.217; 95% CI: 1.782–9.984; p = 1.06×10-03

in elderly OSCC patients) based on BoCI criteria (Figure 2C). All
Frontiers in Oncology 05
these results indicated that young OSCC patients with

hypermethylation of cg11676291MORN1 had better survival, while

the conclusion only held for the elderly OSCC patients with

hypomethylation of cg11676291MORN1.

In addition, we also assessed the interaction pattern of

cg11676291MORN1 methylation level (low vs. high) and age

(young vs. elderly) on OSCC survival using the group with the

highest survival rate (young patients with cg11676291MORN1

hypermethylation) as a reference (Supplementary Table S5).

The main effect of cg11676291MORN1 hypomethylation was

HR = 1.629 (95% CI: 0.935–2.839), and the main effect of

advanced age was HR = 2.461 (95% CI: 1.463–4.138).

However, their joint effect was HR = 1.138 (95% CI: 0.635–

2.042), which was less than the product of the two main effects

(1.629 × 2.461 = 4.009), indicating there was an antagonistic

interaction between cg11676291MORN1 hypomethylation and

advanced age (HRinteraction = 0.284; 95% CI: 0.135–0.597;

p = 9.04 × 10−04).
Genome-wide trans-regulation analyses
of cg11676291MORN1

Genome-wide methylation–transcription analysis by the

linear regression model indicated that the expressions of 586

genes were significantly trans-regulated by cg11676291MORN1

(Figure 3A). Among them, 50 genes were further significantly

associated with OSCC overall survival, which were evaluated by

the Cox proportional hazards model adjusted for the same

covariates aforementioned. The gene network identified two

hub genes (LCE3D and LCE2B) with the highest degree of

connectivity (Figure 3B). Meanwhile, these epigenetically

trans-regulated genes were significantly enriched in 22 KEGG

pathways (Figure 3C), including several cancer-related

pathways. In addition, GO enrichment analysis identified

71 biological process pathways (Figure 3D), 10 cellular

component pathways (Figure 3E), and 16 molecular functional

pathways (Figure 3F). Moreover, MORN1 expression was

significantly (Pp = 0, q = 1 = 1.88 × 10−02 and Pp = 1, q = 1 =

2.75 × 10−02) associated with OSCC overall survival as shown by

Kaplan–Meier survival curves Supplementary Figure S3 which

was confirmed by the Harrington–Fleming test that was

designed for the late or delayed effect of the variable during

the follow-up (20).
Gene–Age Interaction-Empowered
Prognostic Prediction Model

We developed a prognostic prediction model incorporating

cg11676291MORN1–age interaction and clinical information. All

patients in the combined dataset were categorized into low-,

middle-, and high-risk groups by the tertile of the prognostic
frontiersin.org
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score, which was a weighted linear combination of all

variables in the model. Compared to the low-risk group,

the mortality risk was 2.20 and 3.66 times higher in the

middle- and high-risk groups, respectively (HRmedium vs. low =

2.20, 95% CI = 1.41–3.44, p = 5.47 × 10−04; HRhigh vs. low = 3.66,

95% CI = 2.40–5.60, p = 1.93 × 10−09) (Figure 4A). The

prognostic score was significantly associated with overall

survival in almost all subgroups (Figure 4B), except for

the N2/N3 subgroup exhibiting a boundary significance

(p = 5.71 × 10−02) with a limited sample size (n < 100). Also,

the risk score was correlated with survival status. As displayed

in Figure 4C, we observed more deaths in these patients with

high-risk scores.

Furthermore, six types of TIICs were significantly and

differently distributed among low-, medium-, and high-risk

groups (Figure 5A), including CD4 memory resting T cells,
Frontiers in Oncology 06
NK cells resting, activated NK cells, M2 macrophages, dendritic

cells activated, and resting mast cells. By Pearson correlation

analysis of 22 TIICs and prognostic score (Figure 5B), only

M2 macrophages exhibited a significant positive correlation

(r = 0.14, p = 1.80 × 10−02) (Figure 5C).

Compared to the model with only demographic and clinical

variables (AUC3 years = 0.62, AUC5 years = 0.62, and C-index = 0.61),

the interaction-empowered prognostic prediction model had a

slightly improved accuracy by adding the cg11676291MORN1–age

interaction (AUC3 years = 0.69, 11.2% increase; AUC5 years = 0.69,

12.1% increase; and C-index = 0.66, 9.0% increase). Furthermore,

by adding 24 gene–age interactions obtained using a looser

criterion, the AUC increased by 28.1% (95% CI: 27.7%–28.6%,

p < 2.20 × 10−16) and 28.1% (95% CI: 27.5%–28.6%, p < 2.20 ×

10−16) for 3-year and 5-year survival, respectively (AUC3 years =

0.80, AUC5 years = 0.79, and C-index = 0.75) ( Figure 6).
A B

C

FIGURE 2

Gene–age interaction on survival of OSCC patients. (A) HR of cg11676291MORN1 1% per increment of methylation level among differently aged
patients. The 95% CI bands of HRs for patients aged <57 and >64 years were significantly different. The top histogram shows the distribution of
age. (B) Forest plots of HR of cg11676291MORN1 1% per increment of methylation level in young and elderly OSCC patients, categorized based
on BoCI and UN standards. (C) Kaplan–Meier survival curves of low and high DNA methylation groups among young and elderly OSCC patients
were defined using the BoCI standard.
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Discussion

This is the first attempt to study the interaction effect

between DNA methylation and age on OSCC overall survival

on an epigenome-wide scale. In this two-phase study, we

systematically investigated gene–age interactions and identified

one CpG probe, cg11676291MORN1, whose effect on survival

varied with age. Also, there was an antagonistic interaction

between hypomethylation and advanced age. Meanwhile, these

genes trans-regulated by cg11676291MORN1 were significantly

associated with a series of immune pathways and immune cells.
Frontiers in Oncology 07
Finally, the gene–age interaction empowered the prognostic

prediction model of OSCC and possessed a better capability to

predict patients’ overall survival.

Accumulating evidence indicated that gene–gene and gene–

environment interactions play important roles in the occurrence,

progression, and prognosis of various complex diseases (21, 22),

especially cancers (23–26). Our study found that the effect of

DNA methylation on OSCC survival may change with age,

indicating gene–age interactions might be potentially involved

in OSCC prognosis. Furthermore, the gene–age interaction

might boost the prediction accuracy and lead to satisfactory
A B

D

E F

C

FIGURE 3

Circos plot of genome-wide methylation–transcription analysis, gene network of prognostic genes trans-regulated by cg11676291MORN1, and
significant pathways of gene enrichment pathway analysis. (A) Circos plot of genes trans-regulated by cg11676291MORN1 in the TCGA cohort.
Blue points ordered by genomic position represent P values derived from linear regression between gene expression and cg11676291MORN1.
Grey lines represent significant correlations with FDR-q ≤0.05. (B) The gene network plot of 50 genes trans-regulated by cg11676291MORN1 and
associated with OSCC overall survival. The size represents the connectivity degree of each node. (C) The top 20 significant KEGG pathways.
(D) The top 20 significant biological process pathways. (E) The top 10 significant cellular component pathways. (F) The top 15 significant
molecular function pathways.
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performance of 3- and 5-year survival predictions for OSCC,

which was in accordance with our previous studies of lung

cancer (27, 28). Therefore, complex association patterns among

multiple factors should also be factored in for the OSCC study.

Moreover, we observed that MORN1 expression was also

associated with OSCC survival.MORN1 is a protein-coding gene

associated with sacral defects with anterior meningocele (29).

Interestingly,MORN1 has been shown to be involved in budding

(30), cell division (31), and epidermal formation of Toxoplasma

gondii (32). Chronic infection of T. gondii, an opportunistic

parasitic disease, affects a quarter of the world’s population (33).

T. gondii achieves persistence in host cells by manipulating many

signaling pathways, which are closely related to immune and

inflammatory responses (34), and may cause severe damage to

immunodeficient or immunocompromised hosts. Epidemiology

in various region surveys has shown that the seroprevalence of T.

gondii is significantly increased in both elderly patients and

cancer patients (35, 36). Moreover, the other genes associated

with cg11676291MORN1 were also enriched in immune-related

pathways, including the T-cell receptor signaling pathway, B-cell

receptor signaling pathway, Th17 cell differentiation, and Th1

and Th2 cell differentiation. Therefore, we speculated that the
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altered effect of cg11676291MORN1 might be caused by T. gondii

infection because of decreased immunity in aging OSCC

patients. However, further biological experiments exclusively

designed for the MORN1–age interaction are warranted.

Furthermore, two hub genes (LCE3D and LCE2B) in the

gene network have also been confirmed as prognostic

biomarkers of laryngeal squamous cell carcinoma (LSCC) (37).

Since there may be no anatomical heterogeneity between LSCC

and OSCC, these two genes may share the same mechanisms in

the progression of head and neck squamous cell carcinoma.

Our study has several strengths. First, to our knowledge, this

may be the first study to investigate the interaction between DNA

methylation and age on OSCC survival on an epigenome-wide

scale, which provided new insights into the prognosis of OSCC

patients at different ages. Second, to improve the robustness of the

interaction signal, we adopted a two-phase study design (discovery

phase vs. validation phase), FDR correction of multiple tests, and

sensitivity analysis to control the false positives. Third, the

interaction pattern between cg11676291MORN1 and age was

visually illustrated using interaction and forest plots. Finally, our

prognostic model incorporating DNA methylation–age

interactions could help physicians make clinical decisions.
A B

C

FIGURE 4

Survival analysis of prognostic scores. (A) Kaplan–Meier survival curves for patients grouped by prognostic scores. Patients were categorized
into three subgroups by using the tertiles of prognostic scores. The number of patients in each group was 115. (B) Forest plots of results from
association analysis of the relationship between prognostic scores and overall survival. HR, 95% CI, and p-values were derived from the Cox
proportional hazards regression model. (C) The relationship between prognostic scores and survival status.
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We also acknowledge some limitations. First, we only

performed gene–age interaction in the current study, and

interactions between DNA methylation and other clinical

variables are expected in future studies. Second, statistical

power may be limited due to the small size (n = 53) and the

high censored rate (71.7%) of the GEO cohort. Nevertheless, the

interaction between cg11676291MORN1 and age was still

significant in such a scenario, indicating its robustness. Third,

the gene–age interaction-empowered prognostic prediction

model requires DNA methylation information, which

potentially increases the cost of clinical testing. Nevertheless,

we envision low-cost and high-efficiency tests in the future will

facilitate the application of our proposed model. Finally, since
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the majority of the population of the TCGA cohort is Caucasian

(89.3%), the generalization of our results to other ethnicities

should be cautioned.
Conclusion

We identified one CpG probe (cg11676291) located in

MORN1, together with age, which had a genome-wide

significant gene–age interaction effect on OSCC survival. The

effect of cg11676291MORN1 on survival was modified by age,

indicating that OSCC survival was driven by a complex

association pattern.
A

B C

FIGURE 5

The association analysis between immune cells and prognostic score. (A) Comparisons of the abundances of 22 immune cells in three risk
groups. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Heatmap of correlations among immune cells and prognostic score. Correlation coefficients
were derived from Pearson correlation analysis. (C) Scatter plot and association analysis between prognostic score and M2 macrophages.
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