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A nomogram based on
radiomics signature and deep-
learning signature for
preoperative prediction of
axillary lymph node metastasis
in breast cancer

Dawei Wang1, Yiqi Hu2, Chenao Zhan2, Qi Zhang1,
Yiping Wu1 and Tao Ai2*

1Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
Purpose: To develop a nomogram based on radiomics signature and deep-

learning signature for predicting the axillary lymph node (ALN) metastasis in

breast cancer.

Methods: A total of 151 patients were assigned to a training cohort (n = 106) and

a test cohort (n = 45) in this study. Radiomics features were extracted fromDCE-

MRI images, and deep-learning features were extracted by VGG-16 algorithm.

Seven machine learning models were built using the selected features to

evaluate the predictive value of radiomics or deep-learning features for the

ALN metastasis in breast cancer. A nomogram was then constructed based on

the multivariate logistic regression model incorporating radiomics signature,

deep-learning signature, and clinical risk factors.

Results: Five radiomics features and two deep-learning features were selected

for machine learning model construction. In the test cohort, the AUC was

above 0.80 for most of the radiomics models except DecisionTree and

ExtraTrees. In addition, the K-nearest neighbor (KNN), XGBoost, and

LightGBM models using deep-learning features had AUCs above 0.80 in the

test cohort. The nomogram, which incorporated the radiomics signature,

deep-learning signature, and MRI-reported LN status, showed good

calibration and performance with the AUC of 0.90 (0.85-0.96) in the training

cohort and 0.90 (0.80-0.99) in the test cohort. The DCA showed that the

nomogram could offer more net benefit than radiomics signature or deep-

learning signature.

Conclusions: Both radiomics and deep-learning features are diagnostic for

predicting ALN metastasis in breast cancer. The nomogram incorporating
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radiomics and deep-learning signatures can achieve better prediction

performance than every signature used alone.
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Introduction

Breast cancer is the most common cancer worldwide that

seriously threatens women’s health and survival (1). Axillary

lymph node (ALN) status is a valuable prognostic factor and

strongly correlated with breast cancer staging, therapy decision-

making, distant recurrence, and overall survival rate (2).

Clinically, sentinel lymph node biopsy (SLNB) and axillary

lymph node dissection (ALND) are routine methods for

assessing ALN status. However, these invasive procedures can

lead to potential complications such as arm pain, lymphedema,

numbness, and seroma (3). Therefore, it is beneficial to develop

an accurate and non-invasive approach for assessing ALN status

preoperatively to reduce the unnecessary lymph node dissection.

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) has been accepted as a routine imaging modality

in evaluating breast cancer because of its ability to reflect the

angiogenesis of tumors by injecting contrast agents (4). Previous

studies have investigated ALN status with morphological

features on MRI, such as node shape and size, cortical

thickness, the fatty hilum, disappearance of lymph

parenchyma, and enhancement patterns (5–7). However, a

high false-negative rate remains a significant problem for the

preoperative prediction of ALNmetastasis because of the limited

power of these traditional clinical and imaging characteristics.

Radiomics analysis has been widely applied in diagnosing,

identifying molecular subtypes, and predicting breast cancer

chemotherapy response (8–10). Several studies have utilized

radiomics and machine learning algorithms to predict ALN

metastasis with acceptable results (11–13). Recently, deep

learning has progressed in various classification and

recognition tasks (14, 15) and has also been proposed for

predicting ALN metastasis in breast cancer (16, 17). In

addition, deep learning features extracted from pre-processed
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MR images have been of diagnostic value for ALN metastasis

(18, 19). Radiomics features are artificially defined features,

while deep learning features are extracted by a convolutional

neural network (CNN). A model combining radiomics signature

and deep learning signature was reported to be promising to

predict LN metastasis in lung cancer (20). However, few studies

used both radiomics and deep learning to predict ALN

metastasis in breast cancer (16).

Therefore, this study aimed to assess the effectiveness of

radiomics features and deep learning features for predicting

ALN metastasis, and to develop and validate a nomogram based

on radiomics signature, deep learning signature, and

clinical factors.
Materials and methods

Patients

This retrospective study was approved by the institutional

review board of Tongji Hospital (TJ-IRB20220411). We

retrospectively reviewed the patients with breast cancer who

were treated in our hospital between January 2014 and January

2019. Inclusion criteria were as follows: (a) patients with

pathologically confirmed invasive breast cancer; (b) patients

with ALN status determined by axillary lymph node dissection

(ALND); (c) breast DCE-MRI performed within two weeks

before breast surgery. Exclusion criteria were as follows: (a) a

history of preoperative therapy including radiotherapy or

neoadjuvant chemotherapy; (b) poor image tumor

segmentation. Finally, a total of 151 patients were enrolled in

this study. The enrolled patients were divided into two cohorts:

106 patients treated between January 2014 and June 2018 were

assigned to a training cohort, and 45 patients treated between

July 2018 and January 2019 were assigned to a test cohort.
Clinical and pathological characteristics

Clinical and pathological characteristics were obtained from

the electronic medical records of the Hospital Information

System (HIS), including patient age, menstrual status, tumor

size, histological type, ALN metastasis status, and status of
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estrogen receptor (ER), progesterone receptor (PR), human

epidermal growth factor receptor 2 (HER-2), and Ki-67. ER or

PR positive was defined as 10% or more immunostained cells,

and HER-2 positive was defined as at least 3+ in Hematoxylin-

eosin staining. Ki-67 with a proliferation index higher than 14%

was considered positive. ALN with a short diameter greater than

10mm, circular shape, missing fatty hilum, or eccentric cortical

thickening were regarded as MRI-reported LN-positive (21).
MRI image acquisition

Breast MRI images were obtained by a 3.0T scanner (Skyra,

Siemens Healthcare, Erlangen, Germany) using a dedicated 16-

channel phased-array breast coil in the prone position. T1-

weighted DCE-MRI images were analyzed in this study, using

a TWIST-VIBE sequence: repetition time (TR) 5.24 ms, echo

time (TE) 2.46 ms, matrix size 182 x 320, slice thickness 1.5 mm,

FOV 260 x 320 mm2, flip angle 10°, temporal resolution 5.94

sec/phase, and the total scan time 5min57sec. The contrast

medium (Omniscan, GE Healthcare, Milwaukee, WI) was

injected at the end of the third acquisition phase with a dose

of 0.1 mmol/kg body weight, then followed by a 20 ml saline

flush at a rate of 2.5 mL/s.
Workflow

The workflow of this study is illustrated in Figure 1,

consisting of tumor segmentation, radiomics and deep-
Frontiers in Oncology 03
learning features extraction, feature selection, machine

learning model development, nomogram construction, and

performance assessment.
Image segmentation

Manual segmentation of the tumor’s three-dimensional

region of interest (ROI) was performed on the axial DCE-MRI

images using the ITK-SNAP software (http://www.itksnap.org).

The ROI was drawn along the tumor’s outline to include the

whole lesion without the information about the LN status. The

largest tumor lesion was segmented for the patients with

multiple lesions in the breast. The ROI was manually

segmented by a radiologist with 5 years of experience who was

blinded to the lymph node status. The ROI was then confirmed

and adjusted by a senior radiologist to ensure the accuracy of

the segmentation.
Radiomic feature extraction

Radiomic features were extracted using open-source

extraction software Pyradiomics (http://pyradiomics.

readthedocs.io) (22). A total of 120 radiomics features were

extracted from each lesion, including 19 first-order features, 16

shape features (3D), 10 shape features (2D), 24 gray level co-

occurrence matrix (GLCM) features, 16 gray level size zone

matrix (GLSZM) features, 16 gray level run length matrix

(GLRLM) features, 5 neighboring gray-tone difference matrix
FIGURE 1

Study workflow.
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(NGTDM) features, and 14 gray level dependence matrix

(GLDM) features.
Deep-learning feature extraction

VGG-16 was used to extract deep-learning features (23, 24).

The maximum cross-sectional area of the tumor ROI was

selected and cropped to the two-dimensional rectangular

image covering the entire tumor. The tumor patch was re-

sized to 224 × 224 and input to the VGG-16 model. For the

pre-trained VGG-16 on the ImageNet dataset, transfer learning

finetuned the model with the data of our training cohort to

adjust the weights of the model. The VGG-16 models were

trained up to 100 epochs with 16 mini-batch sizes. In order to

make the transfer learning model easier to converge and reduce

overfitting, online data augmentation was used to increase the

amount of data. The cropped images underwent random

horizontal and vertical flipping, rotation, and displacement to

achieve data augmentation. After data was input into the trained

VGG-16, the features of the last full connection layer of VGG-16

were extracted as deep-learning features.
Feature selection and machine learning
model development

A two-stage feature selection was performed to reduce the

irrelevant and acquire the most relevant features. First, t-tests

were performed to select the features with p < 0.05. Then, the

least absolute shrinkage and selection operator (LASSO) logistic

regression algorithm was used to select the most optimal

predictive features in the training cohort.

Seven machine learning models were built using the selected

features, including Support Vector Machine (SVM), K-nearest

neighbor (KNN), RandomForest, DecisionTree, ExtraTrees,

XGBoost, and LightGBM. The 5-fold cross-validation method

was used to verify the predictive performance of each model in

the training cohort. Then, an independent test cohort was

further tested to validate the performance of the seven models.

The performance of the models was evaluated by the receiver

operating characteristic (ROC) curve and the area under the

curve (AUC). Accuracy, precision, recall, specificity, and F1-

score were also calculated.
Nomogram construction and
performance assessment

Radiomics and deep learning signature were calculated by

the linear combination of selected features weighted by LASSO

coefficients. Then, a nomogram was constructed based on the

multivariate logistic regression model incorporating radiomics
Frontiers in Oncology 04
signature and deep-learning signature. The performance of the

nomogram was assessed with the ROC and AUC values. The

calibration of the nomogram was evaluated using a calibration

curve and Hosmer-Lemeshow test. Decision curve analysis

(DCA) was adopted to estimate the net benefits at different

threshold probabilities in the total cohort.
Statistical analysis

The statistical analyses of this study were performed using

Python 3.6 and R 3.5. In order to compare the difference between

ALN-Negative and ALN-Positive groups, student’s t-test or

Mann-Whitney U test was used for quantitative variables, and

the chi-square test or Fisher’s exact test was used for categorical

variables. P < 0.05 was considered statistically significant.
Results

Clinical and pathological characteristics

The characteristics in the training and test cohorts are listed in

Table 1. There were no significant differences between the ALN-

Negative and ALN-Positive groups regarding age, tumor size,

histological type, ER, PR, HER-2, and Ki-67 status (all P > 0.05).

Statistical difference was observed in MRI-reported LN status

between the ALN-Negative and ALN-Positive groups (P < 0.001).
Prediction performance of
radiomics features

One hundred twenty radiomics features were extracted from the

DCE-MRI images of the training cohort, which were further reduced

to five ALN status-related features using LASSO logistic regression

(Figures 2A–C). We used 7 classifiers to construct machine learning

models with radiomics features. The performance of different

classifiers is shown in Table 2 and Figures 3A, B. The SVM model

had the best performance in the training cohort with an AUC of 0.89

(0.84-0.94). In the test cohort, the AUC values of SVM, KNN,

DecisionTree, RandomForest, ExtraTrees, XGBoost and LightGBM

were 0.81, 0.86, 0.75, 0.83, 0.79, 0.80, and 0.82, respectively.
Prediction performance of
deep-learning features

The features of the last fully connected layer of VGG-16 were

weighted by transfer learning and further reduced to two ALN

status-related deep-learning features (Figure 2D). We also used 7

classifiers to construct machine learning models with deep-learning

features. The performance of different classifiers is shown in Table 3
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and Figures 3C, D. The SVM model had the best performance in

the training cohort with an AUC of 0.86 (0.77-0.95). In the test

cohort, the AUC values of SVM, KNN, DecisionTree,

RandomForest, ExtraTrees, XGBoost and LightGBM were 0.76,

0.84, 0.76, 0.79, 0.78, 0.84, and 0.87, respectively.
Nomogram construction and
performance assessment

Radiomic signature and deep learning signature were

constructed by the linear combination of selected features

respectively (Figures 2C, D). A nomogram based on radiomics

signature, deep-learning signature, and MRI-reported LN status

was developed (Figure 4A). The calibration curve of the

nomogram showed a good agreement between prediction and

observation in the training cohort (P = 0.345, Figure 4B) and test

cohort (P = 0.541, Figure 4C). The nomogram displayed an AUC

of 0.90 (0.85-0.96) in the training cohort (Figure 4D) and 0.90

(0.80-0.99) in the test cohort (Figure 4E). The DCA showed that

the nomogram predicting ALN metastasis would benefit more

than treat-all or treat-none strategy when the threshold

probability was greater than 0.10 (Figure 5). Besides, the

nomogram offered more net benefit than radiomics signature

or deep-learning signature at a threshold probability between

0.14 and 0.60.
Frontiers in Oncology 05
Discussion

In this study, we assessed the prediction performance of

radiomics features and deep-learning features from DCE-MRI

for predicting ALN status in breast cancer. Our results showed

that both radiomics and deep-learning features performed well

in predicting ALN metastasis. Moreover, we developed a

nomogram based on a radiomics signature, deep learning

signature, and MRI-reported LN status to predict the ALN

status. The results demonstrated that the combination of

radiomics and deep-learning signatures improved the

predictive performance with an AUC of 0.90 in the test cohort.

Radiomics can convert medical images into extensive

quantitative data, which can be used for disease diagnosis,

treatment, or prognosis (8, 9). Several studies have used DCE-

MRI to predict ALN metastasis with promising results (25–29).

Arefan et al. compared the effects of two-dimensional and

three-dimensional analysis of radiomics, achieving good

prediction performance (25). The prediction performance of

the ALN status can be improved by combining the peri-

tumoral and intra-tumoral features (26). Similarly, the

combination of radiomics with clinical parameters or

pharmacokinetic parameters can yield more accurate

predictions (27, 28). In addition, studies indicated that

different machine learning models could influence prediction

performance (25, 29). In this study, the AUC was above 0.80
TABLE 1 Clinical characteristics in training and test cohorts.

Characteristics Training Cohort (n=106) Test Cohort (n=45)

ALN-Negative (n=54) ALN-Positive (n=52) P ALN-Negative (n=24) ALN-Positive (n=21) P

Age (Mean±SD), years 44.50±9.25 43.64±9.65 0.638 45.38±9.00 44.24±9.15 0.677

Tumor size (Mean±SD), cm 3.08±1.81 3.04±1.32 0.905 2.69±1.68 3.60±1.81 0.091

Histological type 0.206 0.083

Invasive ductal carcinoma 49 (90.7%) 51 (98.1%) 23 (95.8%) 16 (76.2%)

Others 5 (9.3%) 1 (1.9%) 1 (4.2%) 5 (23.8%)

ER status 0.982 0.339

Negative 24 (44.4%) 23 (44.2%) 7 (29.2%) 9 (42.9%)

Positive 30 (55.6%) 29 (55.8%) 17 (70.8%) 12 (57.1%)

PR status 0.712 0.936

Negative 31 (57.4%) 28 (53.8%) 10 (41.7%) 9 (42.9%)

Positive 23 (42.6%) 24 (46.2%) 14 (58.3%) 12 (57.1%)

HER-2 status 0.618 0.330

Negative 36 (66.7%) 37 (71.2%) 16 (66.7%) 17 (81.0%)

Positive 18 (33.3%) 15 (28.8%) 8 (33.3%) 4 (19.0%)

Ki-67 status 0.545 0.503

Negative 13 (24.1%) 10 (19.2%) 7 (29.2%) 4 (19.0%)

Positive 41 (75.9%) 42 (80.8%) 17 (70.8%) 17 (81.0%)

MRI-reported LN status < 0.001 < 0.001

ALN-Negative 39 (72.2%) 21 (40.4%) 19 (79.2%) 5 (23.8%)

ALN-Positive 15 (27.8%) 31 (59.6%) 5 (20.8) 16 (76.2%)
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FIGURE 2

Radiomics and deep-learning feature selection. Radiomics feature selection using LASSO logistic regression: (A) selection of the tuning
parameter; (B) LASSO coefficient profiles of the radiomics features. The final selected features with weights: (C) radiomics features; (D) deep
learning features.
TABLE 2 The performance of radiomics features for the prediction of ALN metastasis.

Model AUC Accuracy Precision Recall F1-Score

Training Cohort

SVM 0.89 (0.84-0.94) 0.82 (0.75-0.89) 0.84 (0.73-0.95) 0.81 (0.74-0.88) 0.82 (0.76-0.88)

KNN 0.83 (0.77-0.89) 0.71 (0.64-0.78) 0.68 (0.62-0.74) 0.78 (0.65-0.91) 0.72 (0.64-0.80)

DecisionTree 0.71 (0.63-0.79) 0.71 (0.63-0.79) 0.69 (0.60-0.79) 0.75 (0.66-0.84) 0.72 (0.64-0.80)

RandomForest 0.86 (0.80-0.92) 0.78 (0.74-0.82) 0.81 (0.70-0.92) 0.77 (0.71-0.83) 0.78 (0.75-0.82)

ExtraTrees 0.87 (0.82-0.92) 0.77 (0.69-0.85) 0.82 (0.69-0.95) 0.74 (0.63-0.85) 0.76 (0.67-0.85)

XGBoost 0.84 (0.78-0.90) 0.78 (0.69-0.87) 0.77 (0.67-0.87) 0.81 (0.69-0.93) 0.79 (0.70-0.88)

LightGBM 0.84 (0.80-0.88) 0.74 (0.64-0.84) 0.73 (0.63-0.83) 0.76 (0.62-0.90) 0.73 (0.62-0.84)

Test Cohort

SVM 0.81 0.76 0.69 0.86 0.77

KNN 0.86 0.80 0.75 0.96 0.8

DecisionTree 0.75 0.76 0.78 0.67 0.72

RandomForest 0.83 0.76 0.71 0.81 0.76

ExtraTrees 0.79 0.73 0.71 0.71 0.71

XGBoost 0.8 0.76 0.73 0.76 0.74

LightGBM 0.82 0.82 0.78 0.86 0.82
Frontiers in Oncology
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TABLE 3 The performance of deep-learning features for the prediction of ALN metastasis.

Model AUC Accuracy Precision Recall F1-Score

Training Cohort

SVM 0.86 (0.77-0.95) 0.80 (0.75-0.85) 0.82 (0.72-0.92) 0.79 (0.73-0.85) 0.80 (0.75-0.85)

KNN 0.84 (0.76-0.92) 0.82 (0.76-0.88) 0.84 (0.75-0.93) 0.79 (0.73-0.85) 0.81 (0.74-0.88)

DecisionTree 0.74 (0.68-0.80) 0.75 (0.68-0.82) 0.77 (0.66-0.88) 0.71 (0.63-0.79) 0.73 (0.66-0.80)

RandomForest 0.79 (0.73-0.85) 0.73 (0.65-0.81) 0.74 (0.65-0.83) 0.69 (0.56-0.82) 0.71 (0.61-0.81)

ExtraTrees 0.76 (0.68-0.84) 0.73 (0.64-0.82) 0.74 (0.64-0.84) 0.67 (0.53-0.81) 0.70 (0.59-0.81)

XGBoost 0.83 (0.78-0.88) 0.74 (0.68-0.80) 0.74 (0.66-0.82) 0.71 (0.60-0.82) 0.72 (0.64-0.80)

LightGBM 0.85 (0.78-0.92) 0.82 (0.77-0.87) 0.86 (0.77-0.95) 0.77 (0.73-0.81) 0.81 (0.76-0.86)

Test Cohort

SVM 0.76 0.78 0.74 0.81 0.77

KNN 0.84 0.78 0.74 0.81 0.77

DecisionTree 0.76 0.76 0.71 0.81 0.76

RandomForest 0.79 0.73 0.7 0.76 0.73

ExtraTrees 0.78 0.69 0.65 0.71 0.68

XGBoost 0.84 0.78 0.72 0.86 0.79

LightGBM 0.87 0.78 0.74 0.81 0.77
Frontiers in Oncology
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FIGURE 3

ROC curve of radiomics features for the prediction of ALN metastasis: (A) optimal model (SVM) in training cohort; (B) seven machine learning
models in test cohort. ROC curve of deep-learning features for the prediction of ALN metastasis: (C) optimal model (SVM) in training cohort;
(D) seven machine learning models in test cohort.
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for most radiomics models except DecisionTree and

ExtraTrees, similar to the previously reported results (25, 29).

We found that SVM had the best predictive performance in the

training cohort, while the KNN had the largest AUC in the test

cohort. Despite the good performance of radiomics for

predicting ALN metastasis, the shortcoming of radiomics

involves the manual drawing of tumor regions, which is

relatively time-consuming and subjective.

Deep learning is another feasible technique for predicting

ALN metastasis in breast cancer (30–33). Luo et al. extracted
Frontiers in Oncology 08
deep-learning features fromMR images and classified them with

SVM, which achieved remarkable prediction performance with

an AUC of 0.852 (30). The combined features with

multiparametric MRI or multiple views can improve the

predict ion performance of deep learning (19, 31).

Furthermore, deep learning can directly classify ALN status

using pre-processed MRI images (32, 33). End-to-end deep

learning models generally require a large amount of training

data to achieve favorable prediction results. In this study, we

extracted deep-learning features from the DCE-MRI images of
A

B

D E

C

FIGURE 4

Nomogram construction and performance assessment. (A) Nomogram for prediction of ALN metastasis using the radiomics signature, deep-
learning signature, and MRI-reported LN status. Calibration curve of the nomogram for the training cohort (B) and test cohort (C). ROC curve of
the nomogram for the training cohort (D) and test cohort (E).
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151 patients included, and then developed machine learning

models to predict ALN metastasis. Our results also

demonstrated the value of deep-learning features in diagnosing

ALN metastasis. The KNN, XGBoost, and LightGBM models

had achieved AUCs above 0.80 in the test cohort. The SVM

exhibited an overfitting problem, reflected in an AUC of 0.86 in

the training cohort but only 0.76 in the test cohort. However, the

DecisionTree and ExtraTrees exhibited underfitting, which may

be due to the simplicity of the trained model.

The CNN automatically learns the deep learning features,

while the handcrafted radiomics features are artificially defined. In

contrast with the low-order image features of radiomics, deep

learning extracts high-level features from image patches in a data-

driven way. Meanwhile, unlike radiomics requiring complicated

manual outlining of tumor regions, deep learning needs to pre-

process images into small two-dimensional patches containing the

largest cross-section of tumors (18, 20). A fixed-size bounding box

covering the entire tumor region was used for deep-learning

feature extraction, which could provide both intra-tumoral and

peri-tumoral information. Therefore, deep-learning features could

complement predictive information to improve the prediction

performance of radiomics features.

Considering the influence of clinical factors on ALN

metastasis, we developed a nomogram incorporating a radiomics

signature, deep-learning signature, and MRI-reported LN status.

The nomogram displayed good calibration and excellent

performance to evaluate LN status with an AUC of 0.90 (0.85-

0.96) in the training cohort and 0.90 (0.80-0.99) in the test cohort.

The DCA also showed that the nomogram yielded more net

benefits than a single signature to predict ALN metastasis in
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clinical use preoperatively. The performance of the nomogram in

this study was not inferior to the reported models for predicting

ALN metastasis. Han et el. developed a radiomic nomogram based

on a radiomic signature and clinical features, resulting in the AUCs

of 0.84 and 0.87 in training and validation cohorts (27). Similarly,

Song et al. established a nomogram incorporating the histological

grade, multifocality, radiomics signature, and MR-reported ALN

status, showing good performance in the validation set with an

AUC of 0.874 (34). In our results, adding deep-learning signature

to the nomogram model had the potential to further improve

predictive performance.

There are some limitations to this study. First, this study

focused on the primary tumor features rather than those of the

lymph nodes. Positive ALNs are not always visualized on breast

MRI, and it isn’t easy to match the biopsied ALNs to those imaged

onMRI for multiple lymph nodes. Second, the tumor segmentation

was manually performed, which could be impacted by the

radiologist’s experience. Automated segmentation is required for

the objective assessment of ALNmetastasis. Third, this was a single-

center retrospective study with relatively small samples. Small

training samples tend to lead to overfitting of the model. Studies

with larger sample sizes from different centers are needed to validate

our findings in further investigation.

In conclusion, this study confirmed the diagnostic value of

radiomics and deep-learning features based on DCE-MRI for

predicting ALN metastasis. We also developed a nomogram

based on a radiomics signature, deep-learning signature, and

MRI-reported LN status, achieving a better prediction

performance in the test cohort. This study could provide a

highly effective, non-invasive method for the preoperative
FIGURE 5

Decision curve analysis of the nomogram.
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prediction of ALN metastasis, assisting the personalized

treatment strategies for patients with breast cancer.
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