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The potential impact of
melanosomal pH and
metabolism on melanoma

Jaewon You †, Maftuna Yusupova † and Jonathan H. Zippin*

Department of Dermatology, Weill Cornell Medical College of Cornell University, New York,
NY, United States
Melanin is synthesized in melanocytes and is transferred into keratinocytes to

block the effects of ultraviolet (UV) radiation and is important for preventing

skin cancers including melanoma. However, it is known that after

melanomagenesis and melanoma invasion or metastases, melanin synthesis

still occurs. Since melanoma cells are no longer involved in the sun tanning

process, it is unclear why melanocytes would maintain melanin synthesis after

melanomagenesis has occurred. Aside from blocking UV-induced DNA

mutation, melanin may provide other metabolic functions that could benefit

melanoma. In addition, studies have suggested that there may be a selective

advantage to melanin synthesis in melanoma; however, mechanisms

regulating melanin synthesis outside the epidermis or hair follicle is

unknown. We will discuss how melanosomal pH controls melanin synthesis

in melanocytes and how melanosomal pH control of melanin synthesis might

function in melanoma. We will also discuss potential reasons why melanin

synthesis might be beneficial for melanoma cellular metabolism and provide a

rationale for why melanin synthesis is not limited to benign melanocytes.
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Canonical regulation of melanogenesis

Ultraviolet (UV) radiation leads to numerous effects on distinct cells within the skin

including keratinocytes, melanocytes, and fibroblasts. Many of the effects of UV lead to

the release of paracrine factors which have both local and systemic effects (1). Melanin

synthesis is an evolutionarily conserved metabolic process that has evolved in higher

organisms to protect tissues from UV radiation (2). There are two types of melanin in the

skin: eumelanin and pheomelanin (3). Both types of melanin are synthesized from the

amino acid tyrosine via both enzymatic and non-enzymatic reactions (Figure 1) (4).

Pheomelanin is favored when the melanin synthetic enzymes TYRP1/TRP1 and TYRP2/

TRP2/DCT have low activity since pheomelanin is largely synthesized via non-enzymatic

reactions and mainly relies on the concentration of dopaquinone and cysteine (Figure 1)
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(5–8). Upon the upregulation of TYRP1 and TYRP2,

dopaquinone is diverted to eumelanin. High eumelanin is

thought to be protective and high pheomelanin is associated

with carcinogenesis (9). This is because eumelanin absorbs UV

light and reactive oxygen species (ROS) whereas pheomelanin

consumes cysteine and can generate ROS on its own (Figure 1)

(10–12). Therefore, the regulation of the eumelanin to

pheomelanin ratio is important for the control of UV-induced

DNA damage and metabolically produced ROS.

There are a variety of external stimuli and genetic factors

that influence melanin synthesis (13, 14). First and foremost,

melanin synthesis in the skin is associated with polymorphisms

in numerous genes (15), which can impact both baseline

melanin synthesis and the ability of the skin to respond to

external signals such as UV radiation. In the canonical response

of skin to UV radiation, keratinocytes in the skin respond to UV

radiation induced DNA damage by secreting a-melanocyte-

stimulating hormone (a-MSH) which activates the

melanocortin 1 receptor (MC1R), a G protein-coupled

receptor on the surface of melanocytes, leading to activation of

a cAMP signaling cascade and an increase in eumelanin

production (2) (Figure 1). The increase in eumelanin leads to

photoprotection against UV-induced DNA damage, thereby

lowering the risk of sun-induced carcinogenesis. The MC1R

gene is known to be highly polymorphic in Caucasian

populations, and those deficient in MC1R activity are

characterized by red hair, fair skin, poor tanning, and an

increased risk of melanoma and skin cancer. There are also

other paracrine factors and hormones that can impact melanin

synthesis by altering intracellular cAMP (14). However, there are

other genes critical for skin pigmentation which encode for
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proteins that do not control pigmentation via signal

transduction cascades but instead have a defined function at

the melanosome, the organelle responsible for making melanin

(16). For example, polymorphisms in genes such as OCA2,

SLC45A2, and TPC2 affect baseline pigmentation and when

the proteins they encode are non-functional, diseases of

pigmentation such as albinism occur (17, 18). The proteins

encoded by these genes are membrane channels and are

present on the melanosome. These proteins mainly function to

control melanosome pH (4). Melanosomal pH regulates melanin

synthesis because tyrosinase, the rate limiting enzyme in

melanin synthesis, is pH sensitive (Figure 1) (4, 19–21).

Tyrosinase requires an acidic pH for the hydroxylation of

tyrosine into L-DOPA (20). Once L-DOPA is formed it can

act as a co-factor for additional tyrosine hydroxylation. Thus,

tyrosinase can be active at low pH; however, L-DOPA oxidation

is favored in more alkaline pH. Therefore, overall melanin

synthesis is accelerated as melanosome pH approaches neutral

(19, 22, 23). It should further be noted that under circumstances

where complete tyrosine hydroxylation and/or L-DOPA

oxidation is not possible these metabolites have the potential

to be released and possibly induce inter- and intracellular

biology (24–26). Polymorphisms and loss of function

mutations in these genes are associated with skin cancer and

melanoma risk most likely due to a reduction in eumelanin

synthesis (27, 28). In addition to melanosome proteins

important for the control of melanosome pH, there are other

melanosome proteins critical for cysteine (e.g., MFSD12) and

metal ion import/export that have the potential to impact both

melanin synthesis and global cellular metabolism. It is also

important to note that melanosomal pH may be reflective of
FIGURE 1

Impact of melanin metabolism on oxidative stress in melanoma. Overview of mechanisms of controlling melanin synthesis via gene expression
or control of melanosome pH. Schematic of tyrosine metabolism in the cell highlighting the impact of melanin metabolism on oxidative stress.
a-MSH, alpha melanocortin stimulating hormone; MC1R, melanocortin 1 receptor; tmAC, transmembrane adenylyl cyclase; PKA, protein kinase
A; TYR, tyrosinase; TRP1, TYRP1/tyrosinase related protein 1; TRP2, TYRP2/DCT/tyrosinase related protein 2; EPAC, exchange protein activated
by cAMP; sAC, soluble adenylyl cyclase; CA, carbonic anhydrase.
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intracellular pH which is impacted by changes in extracellular

pH. Extracellular pH varies greatly in the epidermis with the

cornified layer having a recorded pH of 5.0 at the surface of the

skin and a range of pHs from 6.3 to 6.9 at the stratum

granulosum depending on the method used for pH

measurement (29, 30). Regardless of measured pHs at the

stratum granulosum, the proton concentration surrounding

melanocytes is much higher than intracellular levels. Thus, the

pH microenvironment around the melanocyte may also impact

melanosomal pH and melanin synthesis.
Non-canonical regulation of
melanin synthesis via alteration of
melanosomal pH

There are two cAMP pathways that can regulate

melanogenesis: a canonical and a non-canonical pathway. In

the canonical pathway, the activation of the melanocortin 1

receptor (MC1R) leads to the stimulation of the transmembrane

adenylyl cyclase (tmAC) and production of cAMP which

induces a gene expression program that increases the

expression of MITF, TYR, TYRP1, and TYRP2; genes critical

for melanogenesis (31, 32). In contrast, there is a non-canonical

cAMP signaling pathway in melanocytes that is defined by the

soluble adenylyl cyclase (sAC). sAC activation acidifies

melanosomal pH and inhibits tyrosinase activity; whereas

inhibition of sAC leads to the elevation of melanosome pH

and the activation of tyrosinase (Figure 1) (21, 23). Melanosomal

pH directly affects melanin metabolism because the rate-limiting

enzyme tyrosinase is pH-sensitive (Figure 1). Melanosomes,

depending on the stage of development and other factors, have

variable pHs (19). When melanosomes mature their intra-

organellar pH increases from 5 to 6.8 and pigment production

increases (33). In addition, melanosomes from white/fair skin

tend to be relatively more acidic as compared to melanosomes

from black/dark skin, which tend to have a more neutral pH (19,

34). In addition to affecting the activity of tyrosinase,

melanosomal pH, in cooperation with cysteine levels, can

control the EM to PM ratio (Figure 1) (5, 21, 22, 35–37).

Alkaline melanosomal pH favors EM over PM formation and

thus promotes an anti-oxidant environment. Changes in the

extracellular concentration of cystine are known to increase

eumelanin levels presumably due to a decrease in intracellular

cysteine levels (38). However, the mechanisms that control

cystine/cysteine levels to affect melanin synthesis are poorly

understood. Mouse models suggest that the subtle gray

phenotype occurs because of a mutation in Slc7a11, which

encodes for the plasma membrane cystine/glutamate

exchanger xCT (Figure 1) (39). In the absence of SLC7A11

activity, cystine is not transported into the cell leading to a

decrease in PM synthesis with little to no effect on EM. Recently,
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it was determined that the MFSD12 (major facilitator

superfamily domain-containing protein 12) is important for

the import of cysteine/cystine into the melanosome (Figure 1)

(40), which may explain why polymorphisms in MFSD12 are

associated with darker pigmentation in mice and humans (41,

42). Thus, differences in melanosomal pH can have significant

effects on melanin metabolism.
Association between genetic defects
affecting melanosomal pH and
melanomagenesis

The association between MC1R polymorphisms and

melanoma risk is well established and is explained by defects

in UV-induced tanning and protective eumelanin pigmentation

(2). However, there are several polymorphisms that affect

melanosomal channels and transporters which alter

melanosomal pH and increase the risk of melanoma (18).

Oculocutaneous albinism type 2 (OCA2) is caused by

mutations in the OCA2 gene. Individuals with OCA2 mutation

are at a higher risk of developing UV-induced skin cancers

including melanoma. The OCA2 channel is normally

incorporated into melanosomes early during melanosome

maturation, and functions to neutralize melanosomal pH for

optimal tyrosinase function and eumelanin production

(Figure 1) (43, 44). Therefore, genetic mutations of the OCA2

channel lead to acidic melanosomal pH, hypopigmentation due

to decreased eumelanin synthesis, and increased risk for

melanoma. The SLC45A2 (solute carrier family 45 member 2)

gene encodes a H+/sugar co-transporter protein on the

melanosomal membrane (Figure 1). SLC45A2 is required for

melanosomes to progress from stage III to IV. Mutations in the

SLC45A2 gene have been associated with oculocutaneous

albinism type 4, a condition characterized by strong melanin

deficiency. It has also been found that the SLC45A2 transporter

expressed ectopically in HeLa cells localizes to lysosomes and

plays a role in raising lysosomal pH. This suggests that SLC45A2

expression in melanocytes can potentially plays a role in

modulating melanosomal pH to support melanin production.

According to genome-wide association studies on European

populations, DNA variants at the OCA2 and SLC45A2 genes

have been associated with increased susceptibility to cutaneous

malignant melanoma (45). Two pore channel 2 (TPC2/TPCN2)

is an ion channel not exclusively expressed on melanosomes or

in melanocytes and is a voltage-independent cation channel that

responds to ligands instead of membrane potential (17, 46–48).

Unlike OCA2 and SLC45A2, loss of TPC2 activity leads to an

increase in melanin synthesis (17, 43, 49, 50). TPC2 is not

associated with pigment diseases but polymorphisms are

associated with hair color and UV sensitivity mostly in Dutch

and Icelandic individuals (51–53). Whereas proteins that control
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melanosomal pH can impact the risk of developing melanoma,

these same proteins are also differentially expressed during

invasion and metastasis (54, 55). Thus, it is possible that

changes in melanosomal pH may impact melanin synthesis in

metastatic melanoma.
Potential roles of melanin during
melanomagenesis

Whereas melanin in the skin has a clear role in skin cancer

protection, it is unclear why melanoma cells would maintain the

production of this molecule. Since melanin synthesis generates

toxic intermediates and can be an energetic process, it stands to

reason that melanoma maintains this metabolic process because

melanin supports the growth of melanoma cells after

transformation. Eumelanin (EM) possesses antioxidant

properties and pheomelanin (PM) is pro-oxidant. Both

pigment types are derived from the common precursor

dopaquinone, which is formed from the oxidation of L-

tyrosine by the enzyme tyrosinase (4) (Figure 1). EM

scavenges free radicals produced from UV induced damage

due to its paramagnetic, redox, and ion exchange antioxidant

properties. These properties neutralize reactive oxygen species

(ROS) (56–58). PM is a yellow to reddish-brown pigment

produced when cellular L-cysteine binds with dopaquinone to

produce cysteinyldopa isomers (Figure 1) (4). The oxidation of

this thiol-dopa produces PM. During the production of PM ROS

is generated which can lead to cellular damage (59).

Cellular ROS is normally controlled by the enzyme

glutathione-S-transferase (GST), which catalyzes the binding of

GSH with dopaquinone and glutathione reductase (GR), which

reduces the oxidized GSH in cells to a usable form (Figure 1) (60).

GSH is a multifunctional molecule and is the main antioxidant

used by cells to neutralize ROS. GSH is a ubiquitous compound

that consists of the amino acids cysteine, glycine, and glutamate. It

has a biologically active sulfhydryl (SH) group, which allows it to

neutralize ROSs such as H2O2 (61). GSH is a non-enzymatic

antioxidant and an endogenous redox buffer that donates

electrons to peroxidases (62). GSH is also involved in other

biochemical pathways such as maintaining the SH groups of

proteins and other molecules, serving as a coenzyme for certain

enzymes, and during detoxification processes within cells (61).

GSH can be regenerated by NADPH which reduces its oxidized

form (62). Thus, any cellular stress that leads to movement of

cysteine into GSH could decrease cellular concentrations of L-

cysteine and induce a eumelanotic shift in melanogenesis (38, 63).

Since EM protects against ROS and PM produces ROS (e.g.,

H2O2) the balance between these two melanin synthetic pathways

would affect ROS levels during melanomagenesis (Figure 1) (64).

ROS can affect tumor biology viamany distinct mechanisms.

Examples include modifying DNA or upregulating nitric oxide
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synthase (NOS) synthesis (65). ROS produced as byproducts of

enzymatic and non-enzymatic metabolic processes include

superoxide radicals (O2.-), hydroxyl radicals (OH.), and

hydrogen peroxide (H2O2). At high levels, these exemplary

species lead to the oxidation of cellular lipids, proteins, and

DNA inducing cellular damage and mutation important for

melanoma initiation and progression (62, 66). In contrast, lower

levels of ROS promote activation of vital signaling pathways

such as cellular proliferation and survival (67).

Melanoma cells promoting EM production at the expense of

PM production preserve GSH for cellular ROS reduction because

PM production requires L-cysteine. However, the mechanisms by

which melanoma might alter melanin synthesis are not well

established. Of note, the production of PM in the presence of L-

cysteine is increased around pH 5.8-6.3, while the generation of

EM is suppressed at pH 5.8 (68). This suggests that there may be a

role for melanosomal pH in the control of EM/PM ratio and GSH

synthesis. By increasing melanosomal pH, melanocytes could

increase antioxidant EM and preserve antioxidant GSH levels to

combat the effects of ROS. Aside from regulating ROS,

melanogenesis can impact melanoma by altering the expression

of stress related genes such as HIF-1a and metabolic regulatory

proteins such as GLUT-1 (69).
Potential roles of melanin during
melanoma metastasis

The presence of melanin in cutaneous melanomas is associated

with a higher risk of metastasis, aggressiveness of cancer, and death

(70–73). In individuals with uveal melanomas, differential melanin

synthesis is associated with a higher risk of metastasis and death

(74). Independent of its effects on growth, melanomas with high

levels of melanin appear to attenuate the efficacy of radiotherapy;

patients with amelanotic melanomas had longer survival times

when compared to pigmentedmelanomas (70). Thus, these reports

suggest that melanin synthesis may play an important role in

melanoma well beyond tumor initiation.

Metastasizing melanoma can appear as gray-black or blue-

black suggesting a robust eumelanin synthetic pathway. In

addition, increased ROS in metastatic melanoma cells can

prevent metastasis. Oxidative stress can impair cancer

progression by suppressing protein translation (75). Epithelial

melanoma cells upon invasion and metastasis require

antioxidant protection to successfully travel in the bloodstream

to form secondary tumors; therefore, balancing ROS is critical

for metastasizing tumors (76).

To manage ROS, metastatic cells have developed alternative

mechanisms to overcome the toxic effects of ROS, such as

producing NADPH to regenerate GSH reserves. Melanotic

melanoma cells contain high amounts of reduced GSH and

glutathione-S-transferase (GST) in the cytosol as suggested by the
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increased activity of glutathione reductase in these cells as compared

to amelanotic melanoma cells (77). It is reported that detached

cancer cells will increase their glucose uptake and upregulate the

pentose phosphate pathway as well as other metabolic pathways to

generate more NADPH (78–80) for the regeneration of reduced

GSH. Alternatively, melanoma can also increase reduced GSH

reserves by increasing serine and glycine synthesis (81).

Melanogenesis would be an excellent mechanism for

balancing the cell’s overall redox levels. To restore the cell’s

redox balance, the melanotic melanoma cells could produce

more GSH (77) which could be achieved by diverting melanin

synthesis away from pheomelanin. In addition, it has been

suggested that melanin possesses some immunosuppressive

properties and the ability to have other paracrine signaling

effects via the production of certain melanin intermediates

such as DOPA (82–84). Furthermore, since melanin

metabolism affects tyrosine levels, there is a potential impact

of altered melanin metabolism on the production of tyrosine-

derived signal molecules. In addition, there is a potential impact

of melanosomal metabolism on the cellular microenvironment

which might enhance melanoma mestastasis (85). Thus,

balancing melanosomal metabolism may be a critical

mechanism during melanoma progression.
Conclusions

Melanin has an established role in the protection of the

epidermis from UV radiation. However, melanin synthesis

continues in melanoma following invasion and metastasis. Given

the potentially toxic effects of melanin synthesis, it is unclear why

melanoma would maintain this metabolic process. Melanoma is

very sensitive to ROS during invasion and metastasis. Since

melanin metabolism can affect ROS both positively and

negatively, it is possible that melanoma cells harness melanin

metabolism to balance ROS. In addition, it appears that melanin

levels can affect the melanoma therapeutic response. Whereas

traditional methods of regulating melanin metabolism (e.g.,

MC1R) are not significantly altered in melanoma, genes

important for the regulation of melanosomal pH are altered in
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melanoma. We propose that altering melanosomal pH may be an

effective mechanism for the regulation of melanin synthesis.

Specifically, modulating melanosomal pH could alter the

eumelanin to pheomelanin ratio which has a dramatic effect on

cellular ROS. Currently there is a paucity of studies focused on

understanding melanosome metabolism (23, 40). We predict that

additional investigation of melanosomal pH and melanosome

metabolism in melanoma may reveal new mechanisms that

affect melanoma metastasis or therapeutic response.
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