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Ferroptosis is a newly discovered form of iron-dependent cell death, which is different from
other death forms. The main characteristics of ferroptosis are: (1) Amino acid metabolism.
(2) Iron metabolism; (3) Lipid metabolism and Reactive oxygen species (ROS). Ferroptosis
is related to the occurrence and development of a variety of cancers, especially in the drug
resistance. This article reviews the research progress of iron death in tumors, and provides
a theoretical reference for its further research and clinical application.
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INTRODUCTION

Cell death is essential for maintaining the body’s normal development, homeostasis, and preventing
hyperproliferative diseases (such as cancer). The process of regulatory cell death is regulated by
specialized molecular mechanisms, so it can be regulated by specific pharmacological methods or
genetic intervention (1). Ferroptosis is a newly discovered programmed cell death event. Ferroptosis
is different from death forms such as apoptosis, necrosis, and autophagy in terms of morphology,
biochemistry, and gene regulation. It does not require energy consumption, is not inhibited by
apoptosis inhibitors, and has no intracellular calcium overload (2). Ferroptosis is mainly marked by
a significant increase in cytoplasmic iron and lipid ROS, a decrease in mitochondrial volume, and an
increase in the thickness of the bilayer membrane (3). In clinical treatment, the multi-drug
resistance of cancer cells is one of the important reasons for treatment failure (4). The discovery
of ferroptosis provides new ideas for the treatment of cancer and the solution of drug resistance.
THE DISCOVERY OF FERROPTOSIS

DOLMA et al. (4) discovered an anti-tumor drug in 2003, which can induce cell death without
causing changes in nuclear morphology, DNA fragmentation and caspase3 activation, and caspase
inhibitors cannot reverse this process. Yang et al. (5) discovered the compounds RSL3 and RSL5 that
cause this new type of cell death and found that iron chelating agents can inhibit this type of death.
In 2012, Dixon et al. (6) were studying tumor cells with RAS mutations. At the time, for the first
time, a non-apoptotic iron-dependent cell death method caused by Erastin was defined as
ferroptosis (Figure 1). In the following years, several studies confirmed that the reduction of
intracellular cysteine content and the massive consumption of GSH played a key role in inducing
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cell death and proved that lipophilic antioxidants and iron
chelators can inhibit such death way, these are the main
features of ferroptosis (Figure 2).
THE PROCESS OF FERROPTOSIS

The main characteristics of ferroptosis are: (1) Amino acid
metabolism. (2) Iron metabolism; (3) Lipid metabolism and ROS

Amino Acid Metabolism
Amino acid metabolism is an important part of the organism’s
metabolic circuit. Abnormal amino acid metabolism is closely
Frontiers in Oncology | www.frontiersin.org 2
related to ferroptosis (7). Glutathione is a tripeptide compound
composed of 3 amino acids glutamic acid, cysteine and glycine. It
is important in the body Antioxidant and free radical scavenger
(8). Glutathione can combine with free radicals, heavy metals,
etc., to convert harmful poisons in the body into harmless
substances to be excreted from the body (9). The structure of
glutathione contains a lively sulfhydryl group-SH, which is easily
oxidatively dehydrogenated. This specific structure makes it the
first line of defense for the elimination of free radicals in the body
(10). System Xc- plays an important role in maintaining the
balance and distribution of glutathione. Xc- depends on sodium
ion and is composed of light chain subunits and heavy chain
subunits (11). Xc-can transfer glutamic acid in the cell to the
FIGURE 1 | Mechanism and treatment of ferroptosis. TFR-1, transferrin receptor 1; PUFA, polyunsaturated fatty acids; SCARA5, scavenger receptor class A
member 5; SLC1A5, solute carrier family member 1 member A5; System Xc-,contribution of the cystine-glutamate antiporter; NCOA4; Nuclear receptor coactivator
4; GSH, glutathione; Fer-1, ferrostatin-1;Lip-1, lipoxstatin-1; FSP1, ferroptosis suppressor protein 1; GPX4, glutathione peroxidase 4; p53, tumor suppressor protein
53; TXNRD1, thioredoxin reductase 1; CDO, cysteine dioxygenase 1; RSL3, RAS-selective lethal 3.
FIGURE 2 | The milestone of ferroptosis.
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outside of the cell, and at the same time transfer the extracellular
cystine into the cell and regulate the synthesis of glutathione by
affecting the level of extracellular glutamate. Studies have found
that Xc- knockout mice have significantly lower levels of
glutamate outside the brain cells and have a milder neurotoxic
response to drugs (12).

Erastin is one of the small molecules found in chemical
screening that can induce ferroptosis in oncogenic RAS mutant
cell lines. In the process of Erastin-induced ferroptosis, System
Xc- is the most important mechanism (13). The transporter is
composed of SLC7A11 and SLC3A2. It can take up extracellular
cystine into the cell at a ratio of 1:1 and is quickly reduced to
cysteine to participate in the synthesis of GSH (14). GPX4 is an
antioxidant enzyme containing selenoprotein in cells, which is
mainly synthesized in the proximal tubules of the kidney and
then secreted into the blood to play a role. GPX4 is one of the
strongest antioxidant enzymes in the human body It can convert
reduced GSH in the cell into oxidized glutathione (GSSG) and at
the same time convert the toxic lipid hydrogen peroxide in the
cell into non-toxic ester alcohol and regulate intracellular redox
balance and protect cell membrane structure and function (15).
Erastin inhibits GSH production by inhibiting System Xc- and
preventing cystine uptake. When GSH is depleted, it will cause
GPX4 inactivation and cause ferroptosis (16). Hao et al. (17)
discovered that silencing cysteine dioxygenase 1 (CDO1) can
inhibit Erastin-induced ferroptosis of gastric cancer cells.
Inhibition of CDO1 can restore cell GSH levels, prevent the
production of ROS, and reduce malondialdehyde, which is one of
the final products of lipid peroxides. Hayano et al. (18) found in
the study of the mechanism of ferroptosis that knocking out the
gene producing cysteamide-transport RNA synthetase
significantly inhibited the ferroptosis caused by Erastin.

Iron Metabolism
Iron is an indispensable and most abundant trace element in the
body, and it participates in many important physiological and
biochemical functions in the body. Iron is the main raw material
for the synthesis of hemoglobin and myoglobin. It not only
participates in the biosynthesis of DNA and ATP but is also an
important electron transport chain in mitochondria and a cofactor
of metalloproteinases (19). Under normal conditions, the body
maintains the homeostasis of iron through food sources of iron and
the “iron cycle” (a process in which aging red blood cells release
iron ions under the action of heme oxygenase, and macrophages
re-engulf and recycle iron). The hepcidin synthesized and secreted
by the liver directly regulates the level of serum iron, while the
regulation of iron homeostasis in the body’s cells is mainly played
by the iron responsive element, the hepcidin system (20). The
trivalent iron ion (Fe3+) in the peripheral circulation combines with
transferrin to form a complex and then binds to the transferrin
receptor on the cell membrane and enters the endosomes in the
cell. At this time, Fe3+ is reduced to divalent iron ions (Fe2+)
through the Steap3 (six- transmembrane epithelial antigen of the
prostate), and then under the mediation of Transferrin Receptor-1
(TFR-1), Fe2+ is released from the endosome to the cytoplasm, and
part of it is stored in unstable iron tanks. The excess iron is stored
in the iron storage protein complex composed of ferritin light chain
Frontiers in Oncology | www.frontiersin.org 3
polypeptide and ferritin heavy chain polypeptide 1, and the
remaining part of Fe2+ will be oxidized to Fe3+ and transferred
out of cells to participate in iron renewal in the body cycle (21).
Increased iron intake or decreased iron output can enhance the
sensitivity of cancer cells to oxidative damage and ferroptosis. Fe2+

level in cells is a key factor for lipid peroxidation and induction of
ferroptosis, and TF-mediated iron uptake or iron autophagy can
increase its level (3). Iron autophagy is the selective autophagy of
ferritin, which increases the sensitivity to ferroptosis by controlling
the available iron (22). Nuclear receptor coactivator 4 (NCOA4) is
a specific transport receptor for iron autophagy, which can
transport ferritin to autophagosomes for lysosomal degradation
and release of free iron (23).

Lipid Metabolism and ROS
Lipids are important regulators of cell death. In mammals, both
apoptosis and non-apoptotic pathways can be induced, regulated
or inhibited by different lipid signals (24). Unlike other types of
cell death, ferroptosis does not require protein effectors like pore-
forming proteins. Lipid oxidative stress and the membrane
damage caused by it are the key to ferroptosis, especially
polyunsaturated fatty acids (PUFA), which forms lipid
peroxides and induces ferroptosis (25). PUFA participates in
the lipid bilayer structure that composes the cell membrane, and
it is an important target of lipid peroxidation in the ferroptosis
process of the cell membrane (2).

ROS are produced by normal physiological processes and play
an important role in cell signal transduction and tissue
homeostasis. However, excessive reactive oxygen free radicals
produce unfavorable modifications to cell components, such as
lipid, protein and DNA damage (26). Biological cell membranes
or organelle membranes have lots of PUFAs and they are
particularly vulnerable to ROS damage, which is called “lipid
peroxidation” (27). Lipid peroxidation induced by ROS plays
an important role in cell death. Lipid peroxidation directly
damages phospholipids and can also be used as a cell death
signal to induce programmed cell death. Accompanied by the
accumulation of ROS, ferroptosis is induced by erastin and RSL3
(a selective ferroptosis inducer). It was found that ferrostatin-1
(Fer-1) and lipoxstatin-1 (Lip-1) can prevent erastin-induced
accumulation of ROS, which also verifies the important role of
ROS accumulation in promoting ferroptosis (28).
FERROPTOSIS AND TUMORS

Glioma
Gliomas, especially glioblastoma, are the most common
malignant tumors in the brain. The incidence rate of glioma is
about 6/100 000 and is steadily increasing (29). Through research
on ferroptosis, it is found that some transcription factors play an
important role in the proliferation, migration and malignant
transformation of glioma, and their mechanism of action is
closely related to ferroptosis (30).

Chen et al. (31) found that when the expression of ATF4
increases, activated ATF4 will increase the expression of Xc-. The
inhibition of Xc- can promote the occurrence of glioma cell
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ferroptosis. and studies have shown that down-regulating the
expression of ATF4 can Inhibit the activity of Xc-, thereby
enhancing the sensitivity of nerve tumor cells to ferroptosis, so
that the proliferation and production of tumors and their
vasculature can be controlled. Therefore, ATF4 may be an
effective target for inhibiting tumor cell proliferation and
tumor blood vessel growth. Fan et al. (32) found that the
overexpression of Nrf2 and the knockout of Keap1 can
promote the proliferation and migration of glioma tumor cells;
the mechanism may be through Up-regulating the activity of Xc-

changes the tumor microenvironment and inhibits the
ferroptosis of tumor cells. Down-regulating the expression of
Nrf2 in glioma cells can promote ferroptosis of tumor cells. The
mechanism may be through inhibiting the activity of Xc-,
reducing the secretion of glutamate, increasing the production
of intracellular lipid ROS, and promoting ferroptosis. It was also
found that Nrf2 controlled glutathione synthesis and plays a
central role in IDH1 mutated glioma cell physiology (33). At the
same time, down-regulating the expression of Nrf2 can increase
the sensitivity of glioma cells to inducers of ferroptosis (such as
erastin, RSL3).

Pseudolaricacid B (PAB) has been shown to inhibit the
growth of glioma cells in animal and cell experiments (34).
Because it can increase the content of ferrous iron in cells, and
intracellular iron can regulate the expression of NOX4, thereby
increasing intracellular hydrogen peroxide and the formation of
lipid ROS; PAB can also inhibit the function of SLC7A11 by
activating P53, reducing the content of GPX4 in the cell, lead to
accumulation of lipid ROS in the cell, and ultimately lead to
ferroptosis of glioma cells (35).

Temozolomide (TMZ) is an effective drug for the treatment of
high-grade gliomas, which can delay the survival of patients (36).
Sehm et al. (37) found that TMZ combined with ferroptosis
inducers can enhance the therapeutic effect. Experiments have
found that when TMZ is combined with erastin, it can increase
its anti-cancer effect. Up-regulation of Xc- expression will make
tumor cells more effective. The therapeutic effect of TMZ
combined with erastin is more sensitive. Gao et al. (38) found
that ibuprofen can down-regulate the expression of GPX4 and
Xc- in glioblastoma, and the decrease in the expression of GPX4
and Xc- is related to the down-regulation of Nrf2 expression.
Nrf2 can regulate the expression of GPX4 and Xc- in
glioblastoma. The expression of ibuprofen may inhibit the
activity of GPX4 and Xc- by down-regulating the expression of
Nrf2, which increases the production of lipid ROS in tumor cells,
which in turn promotes the occurrence of ferroptosis
in glioblastoma.

Lung Cancer
Lung cancer is one of the most common malignant tumors in the
world. In 2018, there are an estimated 2.1 million new cases and
nearly 1.7 million deaths, while the incidence of lung cancer and
mortality ranks first among all tumors in China (39).
Epidemiological and laboratory studies have confirmed that
iron overload is related to the occurrence and development of
lung cancer, and there is a significant positive correlation
between high iron intake and lung cancer risk. Data from a
Frontiers in Oncology | www.frontiersin.org 4
clinical trial showed that the serum iron, ferritin, and total iron
binding capacity of lung cancer patients were significantly higher
than those of healthy controls. The higher the serum iron
concentration, the greater the risk of lung cancer (40). A study
in Taiwan enrolled 309,443 people from 2018 to 2009. The
median follow-up time of non-tumor population was 7.07
years, of which 8,060 cases were diagnosed with tumors and
3,066 cases of Death due to tumor, high serum iron (>120 mg/dL)
increases the risk of morbidity and death of malignant tumors
and is positively correlated with tumor morbidity and
mortality (41).

In recent years, some researchers have discovered that
ferroptosis is suppressed in lung cancer cells. Ji et al. (42)
found that lung cancer cells can directly target GSH by up-
regulating System Xc- to increase cellular antioxidant capacity.
Lai et al. (43) found that lung cancer cells inhibit ferroptosis by
directly upregulating the expression of GPX4. Serine threonine
tyrosine kinase 1 (STYK1) is highly expressed in NSCLC cells,
which in turn promotes the expression of GPX4 and promotes
the Proliferation of lung cancer cells, which attenuates a variety
of mitochondrial abnormalities caused by ferroptosis, leading to
suppression of ferroptosis in NSCLC. FSP1 is an ferroptosis
inhibitor independent of the classical GPX4 signaling pathway
(44). When the GPX4 gene of lung cancer cells is deleted, FSP1
would be modified by myristoylation, and CoQ10 is reduced by
NAD (P) h to produce radial trapping antioxidants (RTA) to
prevent lipid peroxidation and inhibit ferroptosis (45). The
higher the expression level of FSP1, the greater the ferroptosis
resistance of lung cancer cells. FSP1 inhibitor (ifsp1) can reverse
the ferroptosis resistance caused by FSP1, increasing the
sensitivity of lung cancer cells to ferroptosis and promoting
ferroptosis of lung cancer cells (46).

Among the drugs for the treatment of lung cancer, some have
been proved to induce ferroptosis. Cisplatin (DDP) promotes
lipid peroxidation, increases MDA, ROS, promotes the
expression of HO-1 and NQO-1, and induces ferroptosis of
lung cancer cells, and this process can be inhibited by Fer-1 (47).
The activation of the Nrf2/Xc- pathway is one of the main
mechanisms of NSCLC cell resistance to cisplatin. Erastin and
sorafenib inhibit the expression of Nrf2 downstream target gene
Xc- deplete GSH, induce ferroptosis, reduce cell viability, and
enhance the sensitivity of NSCLC cells to cisplatin (48). On the
contrary, overexpression of SLC7A11 enhances the resistance of
lung cancer cells to cisplatin (49).

Ferroptosis may play a role in lung cancer radiotherapy. After
radiotherapy, tumor cells showed typical ferroptosis morphological
changes—mitochondria were concentrated, membrane density
increased, and mitochondrial ridges decreased (50). Radiotherapy
can generate a large amount of ROS and up-regulate the expression
of key enzymes to promote lipid peroxidation and eventually lead
to ferroptosis (51).

Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the malignant
tumors that cause a serious global burden of disease, ranking
sixth among the most common cancers and second among
cancer-related deaths (52). In recent years, many studies have
February 2022 | Volume 12 | Article 830561
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confirmed that HCC is related to ferroptosis (53). Ferroptosis
is mainly regulated by system Xc- and GPX4 and affecting the
activity of systemXc- orGPX4 can induce ferroptosis of liver cancer
cells (54). p53 is a tumor suppressor gene that affects the occurrence
and development of HCC by regulating ferroptosis (55). Xie
et al. found that p53 down-regulates the transcription of
SLC7A11 and affects the activity of system Xc-, thereby inducing
ferroptosis of liver cancer cells (56). Glutaminase-2 is a key enzyme
for the conversion of glutamine to glutamate and regulates
GSH synthesis. p53 up-regulates glutaminase 2 transcription, and
its overexpression inhibits HCC tumor cell growth and colony
formation (57).

Sorafenib, as a first-line drug for advanced HCC, has been
proven to induce ferroptosis in HCC cells. Sorafenib can inhibit
the expression of SLC7A11 and activate the downstream
ferroptosis pathway with its own RAF kinase inhibitor effect
(58). Sun et al. (8) found that liver cancer cells under oxidative
stress activate their own P62-Keap1-NRF2 signaling pathway to
up-regulate target genes involved in iron and ROS metabolism
downstream of NRF2, such as quinone oxido-reductase 1
(NQO1), heme oxygenase 1 (HO-1) and ferritin heavy chain-1
(FTH1), thereby enhancing Sorafenib’s ferroptosis resistance
(59). In addition, a psychotropic drug, haloperidol, was
reported to have a sensitizing effect on sorafenib through the
ferroptosis route (60).

Osteosarcoma
Osteosarcoma is the most common primary bone malignant
tumor, which is common in young people. The 5-year survival
rate is 60% ~ 70%, and the mortality caused by lung metastasis is
30% ~ 40% (61).

WU et al. (34) reported the high expression of TFR1 in
osteosarcoma and further confirmed that the high expression of
TFR1 is significantly related to the histological grade, stage and
distant metastasis of the tumor (62). TFR1 is the main protein for
iron absorption, which is very important in ferroptosis. Liu et al.
(63)found that promoting ferroptosis of osteosarcoma cells can
enhance the sensitivity of target cells to cisplatin. Further
research found that the resistance of osteosarcoma cells to
cisplatin was also enhanced after treatment of non-resistant
strains with ferroptosis inhibitors (64).

Ovarian Cancer
Ovarian cancer was the seventh most common women cancer in
the world, with around 240,000 new cases each year. Ovarian
cancer is the second most common malignancy in women over
the age of 40, particularly in developed countries (65). It also has
many connections with ferroptosis. Basuli et al. (66) found that
increased intracellular iron levels are related to the occurrence of
ovarian cancer. Compared with normal ovarian tissue, high-
grade serous ovarian cancer tissues have decreased FPN,
increased TFR1 and TF, and increased iron levels. The genetic
model of the initiating cells of ovarian cancer also shows that the
iron outflow pump is reduced, and the expression of iron
transport-related proteins is up-regulated (67).

Many studies have confirmed that increased intracellular
glutathione levels and high expression of related metabolic
Frontiers in Oncology | www.frontiersin.org 5
enzymes are closely related to the drug resistance of ovarian
cancer (68). Liu et al. (69) established an Erastin-resistant cell line
and found that the cell line can still maintain the content of
glutathione, suggesting that there are other ways to synthesize
cystine in the cell. Verschoor et al. (70) used Xc- system inhibitors
and transsulfide pathway inhibitors to treat two ovarian cancer cell
models, and found that intracellular glutathione levels were
significantly reduced after the transsulfuration pathway was
inhibited, indicating that the transsulfuration pathway has an
effect on ovarian cancer cells. The synthesis of glutathione is very
important. Chakraborty et al. (71) found that in a small number of
ovarian cancer cell lines, the expression of CBS in the transsulfide
pathway was increased, and CBS gene silencing could inhibit cell
migration and invasion of ovarian cancer cells.

Artemisinin is a classic antimalarial drug. The cellular
response of tumor cells to artemisinin and its derivatives
involves ferroptosis, apoptosis, necrosis and other cell death
methods (72). After the treatment of ovarian cancer cells with
artemisinate, a large amount of ROS is produced in the cells, and
the proliferation is reduced, which shows that artemisinin may
play a role in ovarian cancer therapy (73).
CONCLUSION

Ferroptosis is an important form of regulatory necrosis, which is
different from other cell necrosis and apoptosis in morphology,
biochemistry and genetics. The mechanism of ferroptosis is
closely related to cell metabolism, involving a variety of key
molecules and signal pathways, and regulating the synthesis or
decomposition of these key molecules and the signal pathways
involved will change the sensitivity of cells to ferroptosis.
Reasonable induction or inhibition of ferroptosis will improve
the treatment of a variety of diseases, especially cancer-associated
malignancies. However, many problems remain to be solved in
anti-tumor treatments that target ferroptosis. Firstly, several
studies have shown that inhibiting the expression of GPX4
gene can effectively kill tumor cells through ferroptosis.
Furthermore, GPX4 is a candidate prognostic biomarker for
many cancers (74), so it is necessary to further clarify whether
GPX4 is an oncogene. Secondly, immunotherapy is a relatively
new anti-tumor treatment, and its relationship with ferroptosis is
in the preliminary exploration stage. The relevant mechanism
has not yet been fully clarified, and further research is needed.
Thirdly, Although some scholars have proposed initial ideas to
target SLC7A11 for cancer treatment, such as directly inhibiting
the activity of SLC7A11 transport protein, or starting from the
metabolic vulnerability of cancer and SLC7A11. However,
further research and marketing of drugs targeting SLC7A11 is
still necessary, and more studies are needed to determine the
safety and efficacy of p53-related drugs (75). In addition, whether
the nanomedicine designed with ferroptosis as the target has
obvious anti-tumor effects in the human body (76) should be
further confirmed by clinical experiments. In short,
opportunities and challenges coexist. Ferroptosis is a promising
target for anti-tumor therapy and its clinical application will
surely bring good news to cancer patients.
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