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HSP70 and HSP90 are two powerful chaperone machineries involved in survival and
proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90
perform specific functions. Concurrently, HSP70 and HSP90 homologs may also
translocate from their primary site under various stress conditions. Herein, we address
the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The
goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and
endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high
expression of HSP70 and HSP90 enhances tumor development and associates with
tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks
may provide clues for the discoveries of novel anti-cancer therapies.
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INTRODUCTION

Heat shock protein 70 kDa (HSP70) and HSP90 are two powerful ATPase-dependent chaperone
machineries involved in protein folding, degradation, maturation of client proteins and protein
trafficking (1–4). Over the last decade, HSP90 and HSP70 have gained a lot of attention due to their
critical roles in cancer (5–7). Currently, a large number of preclinical and clinical studies assess various
waysof exploitingHSP70andHSP90machineries for thediscoveryof effective anti-cancer therapies (8).

HSP90 family is composed of four members: two in cytosol (HSP90AA1&HSP90AB1), one in
endoplasmic reticulum (ER) (GRP94/HSP90B1) and one in mitochondria (TRAP1) (9, 10). Even
though conformational states are conserved in all HSP90 members, each HSP90 homolog has its
own kinetics and equilibria, suggesting specific functions in the relevant subcellular compartment
(11). Сytosolic HSP90 members require co-chaperones for their functional cycles, though no co-
chaperones have been yet identified for mitochondrial and ER HSP90 chaperones (11, 12).

HSP70 family is composed of 13 members and the most well-studied are: cytosolic HSP70/
HSPA1A and HSC70/HSPA8, mitochondrial HSP70 homolog known as mortalin/glucose-
regulated protein 75 (GRP75), and an ER HSP70 member- HSPA5/GRP78 also known as
binding immunoglobulin protein (BiP) (10, 13). Similar to HSP90, HSP70s require co-
chaperones for the regulation of their functional cycles (5).
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HSP90 and HSP70 play essential role in proteome
homeostasis (14). HSP70 binds to virtually all unfolded or
misfolded proteins while HSP90 interacts with specific set of
clients [reviewed in (13, 15, 16)] (17). Both chaperones undergo
conformational changes to facilitate the binding and release of
client proteins (13, 17). HSP70 is composed of N-terminal
nucleotide-binding domain (NBD) and C –terminal substrate-
binding domain (SBD), comprising an a-helical lid (SBDa) and
a b-sandwich core (SBDb) (13). HSP90 is composed of three
domains, such as N-terminal (NTD) and middle domains (MD),
required for ATP binding and hydrolysis, and C-terminal
domain (CTD), which is essential for dimerization (18). HSP70
typically acts early in the folding process, while HSP90 functions
later (17). HSP70 functional cycle is tightly regulated by HSP40
co-chaperone and nucleotide-exchange factors (NEFs) (13).
Upon release from HSP70, newly synthesized polypeptides will
either fold spontaneously or will be transferred to HSP90 for
further folding or targeted for proteasomal degradation (5, 13).
The function of HSP90 and its co-chaperones is also regulated by
various post-translational modifications. Acetylation and
phosphorylation may affect ATPase activity, client and co-
chaperone binding (15). Furthermore, HSP90 can also be
ubiquitinated by the C- terminus of HSC70-interacting protein
(CHIP) [reviewed in (15)]. CHIP is an E3 ubiquitin - protein
ligase, which binds to the C terminal EEVD motif of HSP70 and
HSP90 chaperones via its tetratricopeptide repeat (TPR) domain
(13, 19). Additionally, HSP90 and HSP70 folding activity can
also be affected by reactive aldehydes generated from lipid
peroxidation (20).

HSP70 and HSP90 molecular chaperones collaborate with
each other in the process of protein remodeling. Several studies
have demonstrated that HSP70, HSP90 and co-chaperones
regulate the tumor suppressor protein p53 (21, 22). In a recent
study, Boysen and colleagues have reported that stress-inducible
HSP70 isoform (HSPA1A) and DNAJB1 co-chaperone unfold
the p53 DNA binding domain (DBD) while HSP90 protects the
p53 DBD from unfolding (23). Similar HSP90 and HSP70
functional antagonism has also been observed for other client
proteins. Wang and colleagues reported that HSP70 binds and
inactivates the glucocorticoid receptor (GR) ligand-binding
domain and loads it onto HSP90 via HSP70 and HSP90
organizing protein (HOP), leading to the formation of GR-
maturation complex (17).

Several research groups reported the presence of HSPs in
extracellular milieu. Specifically, HSP70 family members (HSP70/
HSPA1A and mortalin), HSP90 family members (GRP78, HSP90a
and HSP90b), HSP60 and HSP27 were identified on the cell surface
of tumor cells (24–26). Along this line, the majority of HSP70 and
HSP90 members and their co-chaperones were identified in
extracellular vesicles derived from various liquid biopsies of
cancer patients (27–31) [reviewed in (8)]. Furthermore, HSP70
andHSP90 family members and co-chaperones have been shown to
be released by immune cells in extracellular vesicles (8, 32–36). It is
also worth mentioning that extracellular HSP70 and HSP90
homologs modulate various components of the immune system
[reviewed in (37)]. Currently, various studies are aimed at exploiting
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extracellular HSPs as a diagnostic tool and as therapeutic targets (8,
38–43). This review will focus on functions of the cytosolic,
mitochondrial and ER members of HSP70 and HSP90 chaperone
machineries in cancer (Figure 1). Further understanding of HSP70
and HSP90 functions may provide clues on their roles in cancer
progression and open new perspectives for the development of
novel anti-cancer therapies.
CYTOSOLIC HSP90 AND HSP70
IN CANCER

HSP90a/HSP90AA1 and
HSP90b/HSP90AB1
HSP90a and HSP90b are the two main cytosolic HSP90 isoforms
encoded by two different genes, namely HSP90AA1 and
HSP90AB1, respectively (44, 45). HSP90a is induced upon
inflammation, proteotoxic and other stress conditions, whereas
HSP90b is constitutively expressed (44, 45). Even though the two
isoforms share a high degree of identity (85%), they have distinct
functions (44, 45). Taipale and colleagues predicted that HSP90
interacts with 7% of the transcription factors, 60% of the protein
kinases and 30% of mammalian E3-ubiquitin ligases in the
human genome (46). In this regard, Prince and collaborators
compared relative interaction strength for both isoforms and
demonstrated that HSP90a binds hypoxia-inducible factor 1a
(HIF-1a) with higher relative interaction strength than to the
heat shock factor 1 (HSF-1) (45). By contrast, HSP90b had
higher relative interaction strength towards HSF-1 than to HIF-
1a (45). This was further supported by the finding that HSP90a-
knockout cells are more prone to hypoxia-induced cell death,
while addition of purified recombinant extracellular HSP90a
prevented cell death under hypoxia (47). Along this line,
downregulation of HIF-1a resulted in decreased HSP90a
expression in metastatic breast cancer cells (48).

Recently, Ono and colleagues have shown that triple deletion
of HSP90a/b and CDC37 co-chaperone reduced epithelial-
mesenchymal transition (EMT), attenuated extracellular vesicle
(EV)-driven tumorsphere formation and EV-driven macrophage
M2 polarization in metastatic oral cancer (49). Results also
showed that a high HSP90a-positive cancer cell rate correlated
with high-grade tumors, whereas HSP90b-positive cancer cell
rate associated with low-grade tumors (49). Furthermore, in
contrast to low-grade tumors, HSP90b was highly expressed in
infiltrating tumor-associated macrophages in metastatic oral
cancer (49).

Interestingly, Li and colleagues have reported that cytosolic
HSP90 together with its co-chaperone CDC37 are important for
the regulation of necroptosis (50). Mechanistically, receptor-
interacting protein kinase 3 (RIP3) binds to HSP90-CDC37
while HSP90 inhibition disrupts RIP3 activation, thus blocking
necroptosis (50).

HSP90a also interacts with B-cell lymphoma 2 (Bcl-2) –
associated transcription factor 1 (Bclaf1) (51). Zhou and co-
workers reported that HSP90 CTD domain inhibitor novobiocin
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resulted in proteasomal degradation of Bclaf, reduced c-Myc
mRNA and inhibited hepatocellular carcinoma growth,
suggesting that targeting HSP90 CTD domain may be a
promising strategy for tumors with Bclaf upregulation (51).
Cooper and colleagues showed that HSP90a/b also interacts
with GSK3b/axin1/b-catenin (52). In another study, Wang and
colleagues demonstrated that overexpression of HSP90b leads to
growth, invasion and migration of gastric cancer cells (53).
Mechanistically, HSP90b interacts with LRP5, leading to EMT,
via activation of Akt and Wnt/b-catenin signaling pathways in
gastric cancer cells (53). Taken together, HSP90a and HSP90b
act through multiple signaling pathways, including c-Myc, Akt
and Wnt/b-catenin (54).

Intriguingly, inactivation of ubiquitin-specific protease 22
(USP22), member of gene expression signature known as
“death-from-cancer”, associates with lower HSP90b expression
in mammary and colorectal cell lines (55). USP22-depleted
tumor cells exhibited a high sensitivity to HSP90 inhibitor
Frontiers in Oncology | www.frontiersin.org 3
ganetespib, suggesting that targeting USP22 and HSP90b may
prove effective for the treatment of breast and colorectal cancer
(55). Recently, Pan and co-workers have shown that HSP90b
stabilizes microtubule-associated serine/threonine kinase 1
(MAST1), a molecule associated with cisplatin resistance (56).
Mechanistically, HSP90b binds to MAST1 and prevents its
ubiquitination by CHIP and the ensuing degradation via
proteasome (56). In this regard, HSP90 inhibitor 17-AAG has
been shown to sensitize cells to cisplatin (56).

HSP90a and HSP90b also interact with HSP70 family
members. Specifically, Moriya and co-workers demonstrated
that HSP90a together with HSP70 ER member GRP78/BiP
interact with PRDM14, a member of PR domain-containing
family overexpressed in many tumors (57). In another study,
Rozenberg and colleagues reported that HSP90b interacts with
mortalin during complement activation (58). Results also
showed that HSP90b competes with mortalin for binding to
complement C9 (58). It appears that the interaction of HSP90b
FIGURE 1 | Graphical summary of HSP90 and HSP70 functions in cancer. HSP90 and HSP70 homologs are distributed in cytosol, nucleus, ER and mitochondria,
where they perform specific functions, supporting tumor survival and growth. EMT, epithelial-mesenchymal transition; UPR, unfolded protein response; OXPHOS,
oxidative phosphorylation; CMA, chaperone-mediated autophagy; CDC, complement-dependent cytotoxicity; Bclaf1, B-cell lymphoma 2 -associated transcription
factor 1; HIF-1, hypoxia-inducible factor 1; MAST1, microtubule-associated serine/threonine kinase 1.
January 2022 | Volume 12 | Article 829520

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Albakova et al. HSP70 and HSP90 in Cancer
with mortalin protects tumor cells from complement-dependent
cytotoxicity (CDC) (58).

Taking into account the important roles of HSP90a and
HSP90b in tumor development, it is critical to identify HSP90
isoform-specific inhibitors. In this regard, Huck and colleagues
demonstrated that protein-scaffold inhibitors preferentially bind
HSP90a rather than HSP90b (59). In another study, Khandelwal
and co-workers have designed a selective HSP90b inhibitor,
which resulted in specific degradation of HSP90b clients (60).
Collectively, HSP90a and HSP90b play a critical role in
angiogenesis, invasion, metastasis, EMT and CDC, however,
further studies are needed to identify the distinct functions of
HSP90a and HSP90b in cancer development.

HSP70/HSPA1A/1B and HSC70/HSPA8
HSP70 and the heat shock cognate protein 70 (HSC70) are
stress-inducible and constitutive cytosolic isoforms encoded by
HSPA1A/1B and HSPA8, respectively (61). HSP70 chaperone
function involves co-chaperones, such as HOP, CHIP, HSP40,
HSP70-interacting protein (Hip) and NEFs (13, 62–66). Co-
chaperones assist HSP70 throughout its functional cycle in
folding and degradation of its client proteins (13).

HSP70 is a multi-functional chaperone which has been
implicated in various hallmarks of cancer [reviewed in (5)].
Mechanistically, HSP70 blocks apoptosis via inhibiting c-Jun
N-terminal kinase (JNK), p38, apoptosis-inducing factor (AIF)
and formation of death-inducing signaling complex (DISC) (67–
70). Apart from apoptosis, HSP70 also regulates both necrosis by
inhibiting JNK and autophagy by stabilizing lysosomal
membranes (71–74). Furthermore, HSP70 is essential for
survival of malignant cells as HSP70 protects tumor cells from
oncogene-induced senescence program by regulating p53 and
cyclin-dependent kinase Cdc2 (5, 72).

HSP70 also interacts with aminoacyl-transfer RNA synthetase-
interacting multifunctional protein 2 (AIMP2) lacking exon 2
(AIMP-DX2) and HIF-1a, leading to angiogenesis, metastasis and
tumor aggressiveness (75–78). Along this line, overexpression of
HSP70 correlates with metastatic tumors (79). HSP70-peptide
complexes isolated from hepatocellular carcinoma tissues
promote EMT via p38 mitogen-activated protein kinase
(MAPK) pathway (80). Additionally, HSP70 stabilizes E-
cadherin/catenin complexes and Wiskott-Aldridge syndrome
family member 3 (WASF3), thus regulating the metastatic
process (81–84).

HSP70 plays critical role in tumor immunity. Several studies
have shown that HSP70-peptide complexes induce cytotoxic T
lymphocyte (CTL) response (85–87). In addition, Multhoff and
colleagues reported that HSP70s on the tumor cells are
recognized by NK cells (88). Moreover, HSP70-derived peptide
TKD together with IL-2 or IL-15 can stimulate NK cells (89–91).
This was further translated into a phase II clinical trial, where
TKD peptide was used to pre-stimulate autologous NK cells for
their adoptive transfer into patients with non-small cell lung
carcinoma (92).

HSC70 is also involved in chaperone-assisted selective
autophagy and endosomal microautophagy (eMI) (93–95). Li
and colleagues reported that mitochondrial outer membrane
Frontiers in Oncology | www.frontiersin.org 4
protein FUNDC1 associates and delivers HSC70-peptide
complex to mitochondria for its further ubiquitination by
CHIP (96). HSC70 also interacts with Rab1A, a critical
molecule for cancer cell survival (97). HSC70 inhibition
downregulates Rab1A expression, while Rab1A inactivation
leads to cell death via inhibition of autophagosome formation,
suggesting that HSC70 promotes tumor survival by stabilizing
Rab1A (97). HSC70-intreacting partners also include ASIC2,
mutant forms of p53 and p73, proto-oncogenic form of Dbl and
cell surface nucleolin (98–101).

Several studies reported that upon heat shock or oxidative
stress HSC70 translocates from the cytoplasm into the nucleus
(102, 103). Wang and colleagues reported that inhibition of
nuclear HSC70 reduces cell growth upon heat shock (103). High
expression of HSC70 has been observed in various tumors (104,
105). HSC70 was also identified as one of the proteins secreted by
neuroblastoma cell lines in the conditioned media (106). Shan
and colleagues illustrated that HSPA8 silencing dampens the cell
proliferation and induces apoptosis in endometrial cancer cells
(107). In another study, HSC70 depletion increased the
expression of integrin b1, suggesting that HSC70 may promote
invasion (108).

Mizukami and colleagues reported that fusion of HSC70 with
CD4+T and CD8+ T cell epitopes elicited anti-tumor response
(109). In another study, Zhang and colleagues demonstrated that
fusion of HSC70-derived ATPase domain with tyrosinase-related
protein 2 (TRP2) mounted CTL response in B16 melanoma,
suggesting that HSC70-based immunotherapy approaches might
prove effective for anti-cancer treatment (105, 110).
MITOCHONDRIAL HSP90 AND HSP70
IN CANCER

TRAP1
Tumor necrosis factor receptor-associated protein 1 (TRAP1) was
initially discovered as a protein associated with the cytoplasmic
domain of type 1 Tumor necrosis Factor Receptor-1 (TNFR1)
(111, 112). The 75-kDa molecular chaperone, designated as
HSP75, showed the ability to form complexes with the
retinoblastoma protein (113). It then became clear that TRAP1
and HSP75 are identical molecules (112). TRAP1 functions as
homodimer and requires ATP for its chaperone activity (114).
TRAP1 has N-terminal mitochondrial targeting sequence that
directs TRAP1 to mitochondrial matrix and is cleaved upon the
import (115–117).

TRAP1 is highly expressed in mitochondria isolated from
tumor cells compared to normal cells (3). Long lines of
experimental evidence suggest that TRAP1 is involved in tumor
metabolism and cytoprotection of cancer cells. Masuda and
colleagues reported that induction of apoptosis by b-
hydroxyisovalerylshikonin (b-HIVS) and topoisomerase II
inhibitor VP16 in tumor cell lines is associated with the
reduction in TRAP-1 expression (118). Moreover, inactivation
of TRAP1 by small interfering RNA (siRNA) in tumor cells treated
with b-HIVS or VP16 induced the release of cytochrome c,
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pointing out an important role of TRAP1 in intrinsic apoptotic
pathway (112, 118). In a subsequent study, Hua and colleagues
demonstrated that granzyme M, a serine protease stored in
granules of NK cells, acts on mitochondria and causes swelling,
loss of transmembrane potential, production of reactive oxygen
species (ROS) and cytochrome c release (119). Mechanistically,
granzymeM cleaves TRAP1 leading to ROS accumulation and cell
death (119). Kang and colleagues reported that TRAP1 andHSP90
in mitochondria interact with cyclophilin D and antagonize the
mitochondrial permeability transition process (3, 112).

TRAP1 showed to be a critical regulator of mitochondrial
metabolism. Sciacovelli and co-workers demonstrated that high
expression of TRAP1 in tumor cells enhances neoplastic
transformation (120). Specifically, TRAP1 forms complexes
with succinate dehydrogenase (SDH) and inhibits its activity,
contributing to Warburg phenotype (120). Warburg phenotype
is characterized by preferential conversion of glucose to lactate,
so that tumor cells mainly rely on glycolysis, an anaerobic
metabolism for ATP production, even in the presence of
oxygen (121). TRAP1 inhibits oxygen consumption rate and
ATP synthesis by oxidative phosphorylation (OXPHOS) (120).
Results also showed that TRAP1-expressing tumor cells have a
high level of succinate, resulting in HIF-1a stabilization (120,
122). Along this line, Chae and co-workers reported that TRAP1
together with SDHB regulate HIF1a-dependent tumorigenesis
(123). In another study, Yoshida and colleagues found that
TRAP1 knockout (KO) enhances mitochondrial respiration
and suppresses glycolysis (124). Furthermore, TRAP1 KO cells
exhibited high levels of ATP, ROS production and cytochrome c
oxidase (complex IV), a terminal enzyme in electron transport
chain required for ATP production (124). Authors also showed
that TRAP1 associates with c-Src and downregulates its activity
(124). In addition, Park and colleagues demonstrated that
interaction of TRAP1 with sirtuin-3 enhances mitochondrial
respiration and reduces ROS production in glioma stem cells,
thus supporting stemness (125).

Taking into account that full-length of TRAP1 is required for
OXPHOS regulation, it has been suggested that TRAP1, similarly
to HSP90, requires other chaperones for its OXPHOS function
(117). In a recent study, Joshi and colleagues demonstrated that
TRAP1 interacts with other mitochondrial chaperones, including
HSPA9/GRP75, HSP60 and prohibitin as well as with OXPHOS-
associated molecules, such as complex IV, complex II and ATP
synthase (117). Interestingly, most of TRAP1 interactors, except
for GRP75 and HSP60, had a preference for ATP-bound
state (117).

Inactivation of TRAP1 showed to enhance invasion (124).
Agliarulo and co-workers demonstrated that TRAP1 silencing
promotes cell motility while simultaneously compromising the
ability of cells to cope with stress, and this effect showed to be
mediated via the AKT pathway (126). It is also interesting to
point out that TRAP1 expression varies in different types of
cancer. For example, low expression of TRAP1 correlated with
high-grade cervical and bladder cancer, while high TRAP1
expression was found in colorectal carcinomas (124, 127).
Therefore, further studies are required to understand the role
Frontiers in Oncology | www.frontiersin.org 5
of TRAP1 in mitochondrial bioenergetics, apoptotic mechanisms
and its expression in specific types of cancer.

GRP75/HSPA9/Mortalin/mtHSP70
Mortalin is found in mitochondria, ER, nucleus, cytosol,
extracellular vesicles and on the cell surface (24, 128, 129).
Mortalin shares 52% and 65% homology with stress-inducible
isoform HSP70/HSPA1A and yeast mitochondrial HSP70 – SSC1,
respectively (130). Similar to TRAP1, mortalin has a 46-amino
acid mitochondrial targeting sequence that allows GRP75 to be
localized in mitochondria (131). Mortalin is highly expressed in
tumor tissues, leading to tumor growth, metastasis, angiogenesis
and apoptosis resistance (132, 133). Ryu and co-workers used
mutant mortalin, lacking the mitochondrial targeting sequence, to
identify the presence of mortalin in the nucleus and, hence, they
called it nuclear mortalin (129). Nuclear mortalin inhibits p53 and
activates telomerase and heterogeneous nuclear ribonucleoprotein
K (hnRNP-K) (129, 132, 134–136). Importantly, Lu and colleagues
demonstrated that mortalin interacts with p53 in cancer cells
under stress (136). Targetingmortalin-p53 interaction has resulted
in p53-dependent apoptosis in tumor cells, suggesting that
disruption of mortalin-p53 complex may be a promising
strategy for anti-cancer therapy (136, 137).

Another strategy by which mortalin protects cancer cell from
apoptosis involves HIF-1a (138). Recently, Mylonis and
colleagues have reported that mortalin binds and mediates
targeting of HIF-1a to the outer mitochondrial membrane,
where HIF-1a blocks apoptosis when ERK is inactivated (138).
HIF-1a release from the mitochondria under ERK inactivation
resulted in induction of apoptosis (138).

Mortalin plays a critical role in epithelial-mesenchymal
transition (EMT) (139). High expression of proteins involved
in focal adhesion, PI3K-AKT and JAK-STAT signaling has been
observed in mortalin - positive tumor cells (139). Furthermore,
these cells exhibited high expression of mesenchymal markers,
including vimentin, fibronectin, b-catenin and CK14, while the
expression of epithelial markers (E-cadherin, CK8 and CK18)
was reduced (139).

In a recent study, Yun and colleagues have reported that cells
that overexpress mortalin had increased expression of cancer cell
stemness markers, such as ABCG2, OCT-4, CD9, MRP1, ALDH1
and CD133 (132). Results had also shown that inactivation of
mortalin by short hairpin RNA (shRNA) suppresses migration
and invasion (132). Moreover, high expression of mortalin has
correlated with resistance to therapies while mortalin silencing
sensitized tumor cells to chemotherapeutic agents (132). In a
recent study, Li and colleagues have demonstrated that NF-kB
binds to mortalin promoter, leading to ovarian cancer cell
proliferation (140). Conversely, NF-kB downregulation leads to
reduction in mortalin expression (140).

Similar to TRAP1, mortalin plays an important role in
mitochondrial bioenergetics (141). Mortalin is a major
mitochondrial protein involved in mitochondrial import of
proteins (142). Mortalin, bound to the translocase of the inner
membrane-44 (TIM-44), imports the preprotein into the
mitochondrial matrix, where mortalin refolds or transfers the
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preprotein to HSP60 chaperone (142–144). Inactivation of
mortalin leads to a loss of mitochondrial membrane potential,
reduction of oxygen consumption and induction of oxidative
stress in medullary thyroid carcinoma (145).
ER HSP90 AND HSP70 IN CANCER

GRP94/HSP90B1/gp96/ERp99/
Endoplasmin
The HSP90 member that resides in ER is GRP94 (146). GRP94 is
targeted to ER by its N-terminal signal sequence that is cleaved
upon GRP94 entry into the ER lumen where GRP94 resides due
to its C-terminal KDEL sequence (146, 147). Another location
where GRP94 has been identified is the cell surface (146). Several
studies reported the presence of GRP94 on the surface of tumor
cells and a small portion of immature thymocytes during early
development, though the role of membrane-bound GRP94 is not
yet clear (148, 149). Additionally, GRP94 functions as a dimer
and unlike cytosolic HSP90s, has no known co-chaperones (146).

Unlike cytosolic HSP90 homologs, GRP94 is not upregulated
in response to a high temperature, but rather is induced in
response to ER stress, including glucose deprivation, hypoxia, B
cell differentiation and perturbations of calcium or redox
homeostasis (146, 150–154). Stress in ER machinery leads to
cascades of signals known as unfolded protein response (UPR),
which subsequently restores homeostasis or induces growth
arrest and apoptosis (146, 155, 156).

Proper folding of proteins and quality control require
collaboration between GRP94 and mitochondrial HSP70 family
member GRP78 (146). Similar to HSP70-HSP90 collaboration,
GRP78 binds to immunoglobulin (Ig) chains followed by GRP94
Ig folding in ER (146, 157, 158). Furthermore, GRP78-GRP94
forms ternary complex with client proteins in ER presumably for
handling over the clients from GRP78 to GRP94 (146, 158).

GRP94 functions are not restricted to UPR, as GRP94 showed
to be a critical immune chaperone [reviewed in (37)] (159). It has
been shown that GRP94 is a chaperone for integrins and leucine-
rich repeats domain 32 (LRRC32), also known as GARP, a
docking protein for the membrane expression of transforming
growth factor - b (TGF-b) (159, 160). Zhang and colleagues
showed that GRP94 deletion in T regulatory cells leads to the
loss of FOXP3, increased expression of interferon - g (IFN-g) and
reduced bioavailability of TGF-b (160, 161). Since TGF-b plays
critical roles in oncogenic processes, including EMT, angiogenesis,
proliferation, metastasis and immune evasion, targeting GRP94
may prove effective for the development of anticancer therapies
through the control of the expression of TGF-b (159).

Melendez and colleagues demonstrated GRP94 is expressed
on the surface of breast cancer cells, whereas no expression of
GRP94 was observed on the surface of non-malignant cells (162).
Zheng and co-workers reported that GRP94 surface expression
on tumor cells induces DC maturation and primes T cells,
suggesting that GRP94 is a potent DC stimulator (163).

Besides immunologic functions, GRP94 regulates maturation
of insulin-like growth factors (IGFs), which are essential
Frontiers in Oncology | www.frontiersin.org 6
prosurvival factors for tumor cells (159, 164). Hua and
colleagues demonstrated that inactivation of GRP94 resulted in
apoptosis of multiple myeloma cells via disruption of the Wnt-
LRP6-survivin pathway (165). Results also showed that GRP94
inhibition blocked multiple myeloma growth in mouse xenograft
model, suggesting that GRP94 may be a promising target for the
treatment of multiple myeloma (165).

With the use of GRP94-selective inhibitor PU-WS13, Patel and
colleagues demonstrated that GRP94 plays an important role in
plasma membrane HER2 stability, and inactivation of GRP94
resulted in reduction of HER2-overexpressing tumor cell viability
(166). Mechanistically, inhibition of GRP94 leads to the
translocation of HER2 to early endosomes and plasma-
membrane adjacent lysosomes (166). Along this line, membrane
GRP94 interacts with HER2 and facilitates its dimerization,
contributing to cell proliferation (167). Targeting GRP94 with a
monoclonal antibody reduced growth and increased apoptosis in
breast cancer cells (167). In another study, targeting GRP94 with
the W9 monoclonal antibody sensitized BRAFV600E melanoma
cells to BRAF inhibitors (168). Taken together, GRP94 plays
crucial role in UPR, tumor immunity and promotes cancer via
its client network. GRP94-based immunotherapy approaches
represent promising strategies for anti-cancer therapy, however,
this requires further investigation.

GRP78/HSPA5/BiP
GRP78 performs various cellular functions, including folding,
degradation, transport of peptides across ER membrane and
regulation of calcium homeostasis (169, 170). Similar to cytosolic
HSP70 homologs, GRP78 is composed of N-terminal ATPase
domain and C-terminal substrate-binding domain (SBD) (168).
Due to its ER retention motif, GRP78 primarily resides in ER, but
it has also been observed in mitochondria, cytoplasm, cell
surface, nucleus and extracellular vesicles (8, 171, 172). Similar
to GRP94, GRP78 chaperone plays critical role in UPR, initiated
upon ER stress (171). GRP78 inactivation results in spontaneous
activation of UPR, expansion of ER lumen and induction of
GRP94 expression (173).

Another process that is activated upon ER stress and involves
GRP78 is autophagy. High expression of GRP78 increased
autophagosome formation in estrogen receptor-positive breast
cancer cells (174, 175). Mechanistically, elevated expression of
GRP78 activates AMP-activated protein kinase (AMPK) and
tuberous sclerosis 2 (TSC2), both of which inhibit mechanistic
target of rapamycin (mTOR), resulting in initiation of autophagy
(174, 175). Silencing of GRP78 leads to inhibition of
autophagosome formation (173). Furthermore, Li and colleagues
demonstrated that high expression of GRP78 activates the Class III
phosphatidylinositol 3-kinase (PI3K)-mediated autophagy
pathway and induces degradation of IKKb, leading to inhibition
of the NF-kB pathway, at the same time altering expression of
pyruvate kinase M2 and HIF-1a (176). Along this line, under
stress conditions, GRP78 binds to cytosolic misfolded proteins and
SQSTM1/p62 (171, 177, 178). Interaction with p62 leads to
SQSTM1/p62 conformational change, favoring cargo delivery
into autophagosome for its further degradation into amino acids
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(171, 177, 178). Malek and co-workers reported that treatment
with the proteasome inhibitor bortezomib induces GRP78 and
GRP78-mediated autophagy in myeloma cells (179). Inhibition of
GRP78 followed by bortezomib treatment disrupted autophagy
and enhanced anti-tumor effect (179). In a recent study, Wu and
colleagues have demonstrated that the GRP78 inhibitor HA15
promoted apoptosis which was accompanied with UPR and
autophagy in lung cancer cells (180).

ER stress and UPR induce GRP78, resulting in its
translocation to mitochondrial compartments, including
intermembrane space, inner membrane and matrix (181).
Hayashi and colleagues demonstrated that GRP78 forms
complex with sigma-1 receptor (Sig-1R), ER calcium-sensitive
co-chaperone in mitochondrion-associated membrane (182).
Under ER stress, Sig-1R dissociates from GRP78 and binds to
inositol 1,4,5- trisphosphate receptors, promoting a prolonged
calcium influx from ER into mitochondria (182).

Recently, Ni and co-workers have identified a novel cytosolic
GRP78 isoform (GRP78va) generated by alternative splicing
(183). Results showed that GRP78va is upregulated in human
leukemia cell lines, as well as in primary leukemia cells obtained
from patients (183). GRP78va lacks ER retention signaling
peptide and specifically activates ER kinase PERK (183).
Mechanistically, GRP78va interacts with P58IPK, an inhibitor
of PERK, and antagonizes its inhibitory activity (183).
Inactivation of GRP78va decreased survival, whereas
overexpression promoted survival of leukemia cells, suggesting
that high expression of the cytosolic GRP78 isoform protects
cancer cells from cell death (183). GRP78 may also translocate to
cytosol through the ER-associated degradation (ERAD) pathway
and via Bax/Bak-dependent changes, affecting ER permeability
upon ER stress-induced apoptosis (184, 185).

GRP78 has also been detected in the nucleus (186–188).
Matsumoto and colleagues used gilvocarcin V (GV), anti-
tumor antibiotic that promotes protein-DNA cross-linking
when photoactivated by near UV-light, to show that GRP78
lacking hydrophobic leader sequence was selectively cross-linked
to DNA in human fibroblasts (189). In another study, Zhai and
co-workers demonstrated that inactivation of GRP78 sensitizes
cells to UVC-induced cell death, suggesting a protective role of
GRP78 against DNA damage (186, 190).

High expression of GRP78 was observed in various types of
cancer such as colon, lung, prostate, myeloma, leukemia and
breast cancer and showed to correlate with unfavorable clinical
outcome (179, 191, 192). Biallelic inactivation of both PTEN and
GRP78 inhibited AKT activation and tumorigenesis in prostate
epithelium (193). This was further supported by the finding that
antibody directed against COOH-terminal domain of GRP78
inhibited growth and AKT activity in prostate cancer cell lines
(194). In another study, Cook and colleagues demonstrated that
GRP78 inactivation inhibits de novo fatty acid synthesis in breast
cancer cells (195). Combination of tamoxifen and GRP78-
targeting morpholino antisense oligonucleotides resulted in
increased ROS production and cell death (195). Intriguingly,
GRP78 inactivation downregulated the expression of innate
immune checkpoint CD47 in breast cancer cells, whereas
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reduction of GRP78 in normal mammary tissue increased the
expression of CD47 and macrophage infiltration (195). Recently,
the same research team has demonstrated that co-expression of
CD47 and GRP78 associated with a poor outcome in breast
cancer patients (196).

Induction of UPR affects sensitivity of cells to chemotherapeutic
agents (197). In this regard, Reddy and co-workers demonstrated
that elevated GRP78 expression inhibits apoptosis in cells treated
with topoisomerase inhibitors (187). Mechanistically, etoposide
treatment leads to the activation of caspase-7, while elevated
expression of GRP78 inhibits caspase-7 activation (187). Along
this line, several studies showed that GRP78 forms a complex with
caspase-7 and caspase -12 and prevents release of caspase-12 from
ER, suggesting that one of the mechanisms by which GRP78 blocks
cell death is by inhibiting caspase activation (187, 198). In another
study, Lee and colleagues observed elevated expression of GRP78 in
5-fluorouracil (5-FU)-resistant colorectal cancer cells (180). GRP78
inhibition in cells treated with 5-FU led to apoptosis through the
activation of caspase-3 (180). Furthermore, GRP78 promoted cell
survival via the activation of PI3K-AKT-mTOR signaling
pathway (180).

Recently, Dauer and colleagues have demonstrated that
GRP78 silencing leads to a slower proliferation rate, reduction
in colony formation and downregulation of genes involved in
self-renewal in pancreatic cancer cells (199). Furthermore,
GRP78 silencing affected the redox balance leading to lipid-
peroxidation and higher ROS production (199). Chang and co-
workers reported that overexpression of GRP78/p-PERK
signaling pathway activates nuclear factor-erythroid 2-related
factor (NRF2), leading to enhanced expression of glycolytic
enzymes and stemness markers in head and neck squamous
cell carcinoma, thus, supporting Warburg phenotype and cancer
cell stemness (200). Taken together, GRP78s may change its
location and mediate various processes, including UPR,Warburg
phenotype, stemness, apoptosis, autophagy and innate
immune responses.
DISCUSSION

Residing in various cellular compartments, HSP70 and HSP90
isoforms perform distinct functions within a cancer cell. HSP70
and HSP90 homologs are critical regulators of UPR,
mitochondrial bioenergetics, lipid metabolism, apoptosis,
innate and adaptive immune responses. Apart from their
primary locations, HSP70 and HSP90 isoforms may translocate
and accumulate in specific locations inside the cell under various
stress conditions, thus supporting tumorigenesis. Furthermore,
HSP homologs may be released into extracellular space and
acquire different functions. HSP90 and HSP70 cytosolic, ER and
mitochondrial isoforms support tumor growth and development
via different signaling pathways (Figure 2). Concurrently,
different HSP homologs may also act through the same
mechanism. For example, inhibiting the interaction between
HSP90a and Bclaf1 leads to the downregulation of mature c-
Myc mRNA, while Myc silencing decreases TRAP1 mRNA (51,
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201). Furthermore, Zavareh and colleagues demonstrated that
HSP90 inhibition downregulates the expression of immune
checkpoint PD-L1 on the surface of tumor cells via the
regulation of c-Myc (202). HSP105 inhibit ion also
downregulates c-Myc (203). Therefore, targeting specific
molecular pathways by inhibiting HSP homologs may be
effective against tumors with the dysregulation of specific
signaling pathways, however, it should be taken into account
that blocking a specific HSP isoform may have an effect on other
HSP homologs, and this requires further investigation.

Even though considerable progress has been made in
assessing intracellular and extracellular functions of HSP70
and HSP90 in cancer, a lot is still unclear. For example, the
effect of various HSP70 and HSP90-based therapies on the
distribution of HSP70 and HSP90 homologs across cellular
compartments and their release in extracellular space is
unknown and requires further investigation. It is also
important to differentiate between two HSP90 cytosolic
isoforms and assess their individual functions in cancer.
Furthermore, since HSP90 and HSP70 play critical roles in
innate and adaptive immune responses, it is important to
understand intracellular HSP70 and HSP90 immune functions
in cancer. Elucidating intracellular and extracellular roles of
individual HSP70 and HSP90 homologs may provide further
clues on the release of HSP70 and HSP90 in the tumor
microenvironment and help in the development of more
effective HSP70 and HSP90-based therapies.
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CONCLUSION

HSP90 and HSP70 are two powerful chaperone machineries
involved in almost all stages of tumor development. HSP90 and
HSP70 homologs are implicated in the regulation of apoptosis,
UPR, lipid metabolism, metastasis, angiogenesis, autophagy,
innate and adaptive immune responses, acting via different
signaling pathways. Further understanding of molecular
mechanisms of specific HSP90 and HSP70 homologs inside
and outside the cell may provide clues for the discovery of
novel anti-cancer therapies.

AUTHOR CONTRIBUTIONS

ZA wrote and revised the manuscript. AA contributed to editing
and revision of the manuscript. YM and LG provided an
administration support. All authors contributed to the article
and approved the submitted version.
FUNDING

This research was funded by RFBR, project number 20-315-90081.

ACKNOWLEDGMENTS

The figures were created with BioRender.com.
FIGURE 2 | Schematic representation of HSP90/HSP70 signaling pathways in cancer. HSP90a and HSP90b are cytosolic stress-inducible and constitutive
members of HSP90 family, respectively, which support tumor development via multiple signaling pathways. HSP70 and HSC70 are two main cytosolic stress-
inducible and constitutive members of HSP70 family, respectively, which play critical roles in the regulation of apoptosis, autophagy, oncogene-induced senescence
program, angiogenesis, invasion and metastasis. GRP94 and GRP78 are ER HSP90 and HSP70 members, which play an important role in the regulation of
apoptosis, invasion, metastasis, autophagy, drug resistance, cancer cell stemness and tumor immunity. TRAP1 is a mitochondrial HSP90, which plays critical role in
tumor metabolism and cytoprotection of cancer cells. Mortalin is a mitochondrial HSP70 family member playing an important role in tumor metabolism, regulation of
apoptosis, invasion and metastasis. MMP9, matrix metalloproteinase 9; OXPHOS, oxidative phosphorylation; Bclaf1, B-cell lymphoma 2 -associated transcription
factor 1; HIF-1, hypoxia-inducible factor 1; MAST1, microtubule-associated serine/threonine kinase 1; TGF-b, transforming growth factor b; PI3K, phosphatidylinositol
3-kinase; WASF3, Wiskott-Aldridge syndrome family member 3; TIM-44, translocase of inner membrane-44; NRF2, nuclear factor-erythroid 2-related factor; AIMP-
DX2, aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2) lacking exon 2; MAPK, mitogen-activated protein kinase; TSC2, tuberous
sclerosis 2; mTOR, mechanistic target of rapamycin.
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A, Ximénez-Embún P, Nogués L, et al. Use of Extracellular Vesicles From
Lymphatic Drainage as Surrogate Markers of Melanoma Progression and
BRAF (V600E) Mutation. J Exp Med (2019) 216(5):1061–70. doi: 10.1084/
jem.20181522

32. Federici C, Shahaj E, Cecchetti S, Camerini S, Casella M, Iessi E, et al.
Natural-Killer-Derived Extracellular Vesicles: Immune Sensors and
Interactors. Front Immunol (2020) 11:262–2. doi: 10.3389/fimmu.2020.
00262

33. Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martıń S, Ursa A,
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