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Objective: The aim of this study was to perform a meta‐analysis to evaluate the
diagnostic performance of machine learning(ML)-based radiomics of dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI) DCE-MRI in predicting axillary lymph
node metastasis (ALNM) and sentinel lymph node metastasis(SLNM) in breast cancer.

Methods: English and Chinese databases were searched for original studies. The Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score
(RQS) were used to assess the methodological quality of the included studies. The pooled
sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were
used to summarize the diagnostic accuracy. Spearman’s correlation coefficient and
subgroup analysis were performed to investigate the cause of the heterogeneity.

Results: Thirteen studies (1618 participants) were included in this meta-analysis. The
pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.82
(0.75, 0.87), 0.83 (0.74, 0.89), 21.56 (10.60, 43.85), and 0.89 (0.86, 0.91), respectively.
The meta-analysis showed significant heterogeneity among the included studies. There
was no threshold effect in the test. The result of subgroup analysis showed that ML, 3.0 T,
area of interest comprising the ALN, being manually drawn, and including ALNs and
combined sentinel lymph node (SLN)s and ALNs groups could slightly improve diagnostic
performance compared to deep learning, 1.5 T, area of interest comprising the breast
tumor, semiautomatic scanning, and the SLN, respectively.

Conclusions: ML-based radiomics of DCE-MRI has the potential to predict ALNM and
SLNM accurately. The heterogeneity of the ALNM and SLNM diagnoses included
between the studies is a major limitation.

Keywords: breast cancer, axillary lymph node metastasis, radiomics, machine learning, dynamic contrast-
enhanced magnetic resonance imaging, meta-analysis
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HIGHLIGHTS

Overall pooled AUC was 0.89 with (95%CI: 0.86, 0.91)
ML, 3.0 T, being manually drawn, using biopsy as gold standard

could improve diagnostic performance compared to deep learning,
1.5 T, semiautomatic scanning, pathology, respectively.
INTRODUCTION

*Axillary lymph node metastasis (ALNM) is common in breast
cancer patients and determines the clinical stage, treatment plans,
surgical procedure and patient outcome (1, 2). Currently, the
axillary lymph node (ALN) status of patients with breast cancer is
diagnosed by sentinel lymph node biopsy (SLNB) and axillary
lymph node dissection (ALND). However, these procedures are
not risk-free operations and can potentially lead to implantation
metastasis (3). Therefore, it is essential to explore a noninvasive
approach for assessing ALNM to reduce the incidence of surgical
complications and improve the patient’s quality of life.

Dynamic contrast-enhanced (DCE) magnetic resonance
imaging (MRI) has generally been well accepted and routinely
used for breast cancer staging (4, 5). For predicting ALNM,
previous studies of DCE-MRI have primarily focused on node
size, cortical thickness, disappearance of lymph parenchyma, and
enhancement patterns (6). Unfortunately, early diagnosis of
ALNM through DCE-MRI is not yet ideal since it is limited by
subjective factors, such as the radiologist’s experience and
knowledge level. Additionally, subtle changes, such as cell
density, morphology, and microtissue structure, in ALNM
might not be apparent to the naked eye (7, 8).

In recent years, radiomics and machine learning (ML) models
have become increasingly popular for analyzing diagnostic
images (9, 10). The ability of radiomics analysis to maximize
the number of features in quantitative images has excellent
potential for evaluating ALNM in breast cancer patients (11–15).

However, because of the small sample sizes of previous
studies, statistical research has been limited, and research
results have also varied from study to study. Thus, it is
necessary to perform a meta‐analysis to further evaluate the
diagnostic performance of ML-based radiomics of DCE-MRI in
predicting ALNM and SLNM in breast cancer.
MATERIALS AND METHODS

We conducted and reported this meta-analysis based on the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (16).
Abbreviations: ALNM, Axillary lymph node metastasis; SLNM, Sentinel lymph
node metastasis; ALND, Axillary lymph node dissection; AUC, Area under the
curve; CI, Confidence intervals; DCE, Dynamic contrast-enhanced; MRI,
Magnetic resonance imaging; ML, Machine learning; PLR, Positive likelihood
ratio; QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies 2; RQS,
Radiomics Quality Score; SROC, Summary receiver operating characteristic curve;
SLNB, Sentinel lymph node biopsy; NLR, Negative likelihood ratio.

Frontiers in Oncology | www.frontiersin.org 2
Literature Search
The PubMed, Embase, Web of Science, and Cochrane Library
databases and four Chinese databases [VIP, CNKI, Wanfang and
Chinese BioMedical Literature Databases (CBM)] were searched
by two observers independently to identify studies. The search
was performed on June 23, 2021, without a start date limit. The
study search was conducted using the following keywords:
“magnetic resonance imaging”, “MRI”, “MRI scans”, “breast
cancer”, “breast carcinoma”, “metastasis”, “machine learning”,
“radiomics” and “lymph node”. MeSH terms and variations of
each term were used. Moreover, we restricted the studies to those
published in English or Chinese and performed a manual search
of the related articles’ reference lists to identify other articles that
might meet the inclusion criteria. Endnote software, version X9,
was used to manage all records. Disagreements were discussed
and resolved to reach a consensus.

Study Selection
The titles and abstracts of potentially relevant studies were
screened for appropriateness by two reviewers(Z-J and Z-L).
Inconsistencies were discussed by the reviewers, and consensus
was reached.

All of the studies were selected according to the following
criteria: (a) original research studies; (b) patients with breast
cancer were enrolled who were confirmed to have ALNM or
SLNM by biopsy or histopathology; (c) ML-based DCE-MRI
applied to classify ALNM or SLNM using radiomics; and (d) data
are sufficient to reconstruct the 2×2 contingency table to estimate
the sensitivity and specificity of the diagnosis.

Studies were excluded if: (a) reviews, editorials, abstracts,
animal studies, and conference presentations; and (b) multiple
reports published for the same population (in this case, the
publication with the most details was chosen to be included in
this meta-analysis).

Data Extraction
Relevant data were extracted from each study, including the first
author, publication year, sample size, magnetic field strength,
information about radiomics and ML pipeline, data sources and
reference standards, detailed information on lesion
segmentation, contrast agents, and DCE phases. For each
study, the true positive (TP), false-positive (FP), false negative
(FN), and true negative (TN) values were extracted, and a
pairwise (2×2) contingency table was created.

Data Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) and Radiomics Quality Score (RQS) were used
to assess the methodological quality of the included studies and
the risk of bias at the study level, respectively (17, 18). RQS items
comprise: (a) image acquisition; (b) radiomics feature extraction;
(c) data modeling; (d) model validation; and (e) data sharing.
Each of the 16 items (Table 1) of the RQS is rated, resulting in a
total of points ranging from −8 to 36, with −8 defined as 0% and
36 defined as 100% (18).

The QUADAS-2 tool consists of: (a) patient selection; (b)
index test; (c) reference standard; and (d) flow and timing.
February 2022 | Volume 12 | Article 799209
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Two independent reviewers (L-LC and Z-L) conducted the
quality assessment, and disagreements were discussed with a
third reviewer (T-M) to reach a consensus.

Statistical Analysis
This meta-analysis was conducted via Stata software, version
16.0, Review Manager software, version 5.3, and the Open Meta-
analyst software tool. The predictive accuracy was quantified
using pooled sensitivity, specificity, diagnostic odds ratio (DOR),
positive likelihood ratio (PLR) and negative likelihood ratio
(NLR) with 95% confidence intervals (CIs). The summary
receiver operating characteristic curve (SROC) and area under the
curve (AUC) were used to summarize the diagnostic accuracy.

Q and I2 were calculated to estimate the heterogeneity among
the studies included in this meta-analysis. I2 values of 0 to 25%,
25 to 50%, 50 to 75% and >75% represent very low, low, medium
and high heterogeneity, respectively. Pooling studies and effect
size were evaluated using a random-effects model, indicating
that estimating the distribution of true effects between studies
considers heterogeneity (19). If there was obvious heterogeneity,
Spearman’s correlation coefficient was used to assess the
threshold effect between the sensitivity logit and the specificity
logit. Subgroup analysis was performed to further investigate
the cause of the heterogeneity. The following covariates were
used to explain factors that could contribute to heterogeneity:
(a) 1.5 T MR vs. 3.0 T MR; (b) Pathology of SLNB or ALND
vs. Pathology of ALND; (c) deep learning vs. ML; (d) ALN vs.
SLN vs. ALN and SLN; (e) area of interest (ROI) including
ALN vs. ROI including breast cancer; and (f) semiautomatic
vs. manual drawing; (g) support vector machines(SVM) vs.
logistic regression(LR); (h) Siemens MR equipment vs. GE
MR equipment.

In addition, the sensitivity analysis was assessed by
eliminating the included studies one by one. The effective
sample size funnel plot described by Deek’s test was used to
estimate publication bias (20).
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Clinical Utility
A Fagan plot was used to assess the clinical utility, which provided
the posttest probability (P post) of ALNM when pretest
probabilities (P pre, suspicion of ALNM) were calculated (21).
RESULTS

Literature Search
The complete literature search flowchart is presented in Figure 1.

According to the search strategy described above, 450
potentially eligible citations were identified. After removing 95
duplicate records, 355 titles were considered. After the title and
abstract evaluation, 268 citations were omitted because they did
not meet the inclusion criteria. After revision, 22 articles were
excluded, leaving 13 articles for inclusion in the meta-analysis
(11–15, 22–29).

Data Quality Assessment
The 13 studies achieved an average RQS range of 11.38, a median
of 13, and a range of 5 to 15. The mean RQS proportion was
13.9%, with a maximum of 41.7%. Table 1 summarizes the mean
scores for each dimension, and Table S1 (Supplement
Materials) shows the RQS for each study and the individual
scores for each study. None of the included articles employed
prospective validation, and only one study evaluated the cost-
effectiveness of radiomics (25). No studies publicly shared
segmentation, functionality, or code. Generally, the data
quality was considered acceptable, and the details of the risk of
bias and applicability concerns of the included studies are
presented in Figure 2.

Characteristics of the Included Studies
The characteristics of the included studies are summarized
in Tables 2 and 3. Detailed two-by-two contingency tables
of every study are shown in Table S2 (Supplement Materials).
TABLE 1 | Elements of the RQS and average rating achieved by the studies included in this meta-analysis.

RQS scoring item Interpretation Average

Image Protocol +1 for well documented protocols, +1 for publicly available protocols 0.92
Multiple Segmentations +1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 0.62
Phantom Study +1 if texture phantoms were used for feature robustness assessment 0.62
Multiple Time Points +1 multiple time points for feature robustness assessment 0.08
Feature Reduction −3 if nothing, +3 if either feature reduction or correction for multiple testing 3
Non Radiomics +1 if multivariable analysis with non-radiomics features 0.54
Biological Correlates +1 if present 0.08
Cut-off +1 if cutoff either pre-defined or at median or continuous risk variable reported 0.15
Discrimination and
Resampling

+1 for discrimination statistic and statistical significance, +1 if resampling applied 0.15

Calibration +1 for calibration statistic and statistical significance, +1 if resampling applied 0.08
Prospective +7 for prospective validation within a registered study 0
Validation −5 if no validation/+2 for internal validation/+3 for external validation/+4 two external validation 0.38

datasets or validation of previously published signature/+5 validation on ≥3 datasets from >1 institute
Gold Standard +2 for comparison to gold standard 2
Clinical Utility +2 for reporting potential clinical utility 1.69
Cost-effectiveness +1 for cost-effectiveness analysis 0.08
Open Science +1 for open-source scans, +1 for open-source segmentations, +1 for open-source code, +1 open-source representative

segmentations and features
1
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The 13 studies included in this meta-analysis had 2253 patients,
and 1618 participants in valid or test set. All of the studies used
retrospectively collected data. The models in these studies
included ML (n=11) and deep learning (n=2) for unsupervised
learning. Of these models, the ML algorithm comprised different
Frontiers in Oncology | www.frontiersin.org 4
types of logistic regression models (12, 15, 22, 23, 28),
convolutional neural network models (26, 27), multiple
classifier systems (11, 13, 14, 24, 25), and support vector
machine models (29).

In 13 studies, different phase analysis methods of DCE were
used, including the strongest enhanced phase, the second
postcontrast phase, the first postcontrast images, and two-
phase images in 4 (12, 22, 23, 29), 3 (11, 13, 28), 3 (14, 25, 27),
and 3 (15, 24, 26) studies, respectively. 3 T scanners were used in
8 studies (11–13, 22, 24, 25, 28, 29), and 1.5 T MR was used in 5
studies (14, 15, 23, 26, 27). Seven studies (13–15, 23, 24, 28, 29)
employed SLNB or ALND to serve as the reference standard,
while the remaining 3 studies (12, 25, 26) were based on ALND.
Additionly, PET/CT (27) and ultrasound-guided fine-needle
aspiration or ALND (11) of 1 study, respectively. Five studies
(11, 12, 25–27) focused specifically on ALN, whereas 3 studies
(22–24) focused on SLN, the remaining 5 studies (13–15, 28, 29)
focused on ALN and SLN. Only 4 studies (11, 13, 26, 27) used
semiautomatic segmentation, and 9 studies (12, 14, 15, 22–25, 28,
29) used manual ROIs. The ROIs of the breast tumor area and
ALN area were employed in 10 studies (11–15, 22–24, 26, 29)
and 3 studies (25, 27, 28), respectively.

Data Analysis
For all 13 studies, the mean values and 95% CIs of pooled
sensitivity, specificity, PLR, NLR, and DOR for the radiomics
signature based on DCE-MRI in assessing ALNM and SLNM in
breast cancer were 0.82 (0.75, 0.87), 0.83 (0.74, 0.89), 4.70 (3.01,
7.35), 0.22 (0.15, 0.31), and 21.56 (10.60, 43.85), respectively
(Table 4). The ML models for ALNM and SLNM in breast
cancer showed an overal l pooled AUC=0.89 (0.86,
0.91) (Figure 3).

Exploration of Heterogeneity
There was significant heterogeneity in sensitivity (I2 = 80.6%) and
specificity (I2 = 89.57%). As shown in Figure 4, the results of the
diagnostic threshold analysis showed that there is no threshold
effect because Spearman’s correlation coefficient was 0.181, and
the P value was 0.553.

Subgroup analysis was also performed by comparing studies
with the different variables. Table 4 shows the results of the
analysis for subgroups.

Studies (n =11) using ML had higher specificity (0.83 vs. 0.65)
and an equivalent sensitivity (0.80 vs. 0.84) compared to studies
(n=2) that used deep learning. The studies that used a 3.0 T MR
had higher sensitivity (0.82 vs. 0.78) and specificity(0.83 vs. 0.76)
than those that used 1.5 T MR. Five studies with SLNB or ALND
as the gold standard had an equivalent sensitivity (0.82 vs. 0.80)
and specificity(0.82 vs. 0.80) with studies(n=3) with ALND as
reference standard. Studies (n=3) that only included SLNs had
lowest sensitivity (0.71 vs. 0.81 vs.0.84) and an similar specificity
(0.80 vs. 0.78 vs. 0.82) in among studies that only included ALNs
and combined SLNs and ALNs groups. Eight manually drawn
studies had higher specificity (0.84 vs. 0.74) and equivalent
sensitivity (0.80 vs. 0.82) than studies (n=5) using
semiautomatic segmentation. Studies (n =3) with LN as the
ROI had higher sensitivity (0.85 vs. 0.79) and equivalent
FIGURE 1 | Flow diagram of study selection for meta-analysis.
FIGURE 2 | The risk of bias (left) and concerns for applicability (right) for
each included study using QUADAS-2.
February 2022 | Volume 12 | Article 799209
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TABLE 2 | Baseline characteristic of included studies (1).

Study NO.patient Magnetic
field

Contrast agent Phase Data source

Arefan, 2020 (11) 154 Siemens 3.0T Magnevist CE2 Single
institution

Chen, 2021 (12) 140 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Cui, 2019 (13) 115 Siemens 3.0T GD-DTPA CE2 Single
institution

Han, 2019 (14) 411 GE 1.5T Omniscan CE1 Single
institution

Liu CL, 2019 (23) 163 GE 1.5T Magnevist One precontrast and four post-contrast
phases

Single
institution

Liu, 2019 (24) 62 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Liu, 2020 (22) 164 GE 3.0T GD-DTPA the strongest enhanced phase Single
institution

Nguyen, 2020 (26) 357 GE 1.5T gadopentetate dimeglumine /Gadavist a single precontrast and four serial dynamic
image

Two institution

Zhan, 2021 (29) 166 Siemens 3.0T Omniscan the strongest enhanced phase Single
institution

Shan,2019 (28) 196 Siemens 3.0T Gd‐DTPA CE2 Single
institution

Luo,2021 (25) 67 Siemens 3.0T Gadolinium Diamine and Cardiamine
Sodium

CE1 Single
institution

Ren, 2020 (27) 61 GE 1.5T Gadavist, CE1 Single
institution

Li, 2021 (15) 197 Philips 1.5T Gadoteric acid meglumine salt the early-and delayed-phase Single
institution
CE1, the first postcontrast images; CE2, the second postcontrast phase.
TABLE 3 | Baseline characteristic of included studies (2).

Study Technique used for feature selection Classification Reference
standard

Segmentation
lesion

Tumor seg-
mentation

Validation

Arefan, 2020 (11) LASSO LDA, RF, NB,KNN, SVM SLNB or
ALND

2D, 3D semi-
automatically

Test set, 10-fold
cross-validation

Chen, 2021 (12) LASSO+10fold crossvalidation LR Pathology 3D manually 10-fold cross-
validation

Cui, 2019 (13) LASSO SVM, KNN, LDA SLNB or
ALND

2D, 3D, 4D semi-
automatically

cross-fold
validation

Han, 2019 (14) LASSO+LOOCV SVM Pathology 3D manually 6-fold validation
Liu CL, 2019 (23) LASSO+3fold crossvalidation LR Pathology 3D manually 10-fold cross-

validation
Liu, 2019 (24) The select K best+LASSO SVM, Xgboost, LR Pathology 3D manually cross-fold

validation
Liu, 2020 (22) LASS0 LR Pathology 3D manually NOT

REPORTED
Nguyen, 2020 (26) CNN Pathology 3D semi-

automatically
10-fold cross-
validation, Test
set

Zhan, 2021 (29) Spearman correlation analysis SVM-RF SLNB or
ALND

3D manually 5-fold validation

Shan,2019 (28) One-way analysis of variance+Wilcoxon
rank sum test+correlation test+LASSO

LR SLNB or
ALND

3D manually Confusion matrix

Luo,2021 (25) LASSO linear discriminant analysis and
leave-one-case-out-cross-
validation

Pathology 3D manually 10-fold cross-
validation

Ren, 2020 (27) CNN PET/CT 2D semi-
automatically

5-fold cross-
validation

Li, 2021 (15) Spearman+LASSO LR SLNB or
ALND or
Pathlogy

3D manually 5-fold cross-
validation
LR, logistic regression; CNN, convolutional neural network; SVM, support vector machine; LDA, linear dis-criminant analysis; RF, random forest; NB, naive Bayes; KNN, K-neares
neighbor; LASSO, least absolute shrinkage and selection operator.
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specificity (0.81 vs. 0.80) compared to studies (n =10) with breast
cancer as the ROI. ML including the different algorithms in
models, SVM algorithms had higher sensitivity (0.81 vs. 0.75)
and lower specificity (0.75 vs. 0.88) compared to studies with LR
Frontiers in Oncology | www.frontiersin.org 6
algorithms. The studies that used Siemens MR equipment had
higher sensitivity (0.88 vs. 0.77) and specificity (0.82 vs. 0.75)
than studies used GE equipment. The corresponding forest plots
are presented in Figures S1–8 (Supplement Materials).

Sensitivity Analyses
There were no significant changes when eliminating the included
studies one by one. The results of sensitivity analyses for each
study are shown in Table S3 (Supplement Materials).

Publication Bias
There was no publication bias based on the Deeks funnel plot
(P=0.22) (Figure 5) (20).

Clinical Utility
Using an ML-based radiomics DCE-MRI model would increase
the posttest probability to 54 from 20% with a PLR of 5 when the
pretest was positive and would reduce the posttest probability to 5%
with an NLR of 0.22 when the pretest was negative (Figure 6).
DISCUSSION

In our meta-analysis, radiomics DCE-MRI showed promising
results for ALNM characterization, with a pooled sensitivity,
specificity, and AUC of 0.82, 0.83, and 0.89, respectively. This
finding indicates that this approach could be considered an
effective and accurate tool for ALNM and SLNM prediction.

In the present study, we found that there was obvious
heterogeneity between the studies. Indeed, heterogeneity can be
caused by many factors, e.g., threshold effect, different magnetic
FIGURE 3 | Hierarchical summary receiver operating characteristic (SROC).
curve of the diagnostic performance of ML-based radiomics of DCE-MRI in
predicting ALNM in breast cancer.
TABLE 4 | The results of subgroup analysis.

Analysis No. of study Sensitivity Specificity PLR NLR DOR

Overall 13 0.82 (0.75,0.87) 0.83 (0.74,0.89) 4.70 (3.01,7.35) 0.22 (0.15,0.31) 21.56 (10.60,43.85)
DL vs ML
ML 11 0.80 (0.73,0.86) 0.83 (0.76,0.88) 4.45 (3.27,6.07) 0.21 (0.14,0.32) 22.82 (12.33,42.23)
DL 2 0.84 (0.53,0.96) 0.65 (0.31,0.89) 2.45 (0.76,7.85) 0.24 (0.04,1.45) 9.95 (0.51,192.87)
Biopsy/vs Pathology
Biopsy 6 0.85 (0.74,0.92) 0.82 (0.75,0.88) 4.50 (3.29,6.15) 0.17 (0.09,0.31) 29.17 (13.34,63.81)
Pathology 7 0.77 (0.68,0.84) 0.79 (0.62,0.89) 3.63 (1.93,6.83) 0.28 (0.16,0.52) 13.95 (4.17,46.66)
1.5T vs 3.0T
3.0T 8 0.82 (0.72,0.89) 0.83 (0.76,0.88) 4.62 (3.16,6.75) 0.18 (0.10,0.34) 30.09 (11.87,76.28)
1.5T 5 0.78 (0.69,0.85) 0.76 (0.58,0.88) 3.37 (1.74,6.55) 0.26 (0.11,0.61) 12.71 (3.56,45.41)
SLN vs ALN
ALN 10 0.82 (0.75,0.87) 0.81 (0.70,0.88) 4.27 (2.60,7.03) 0.20 (0.11,0.38) 23.62 (8.99,62.04)
SLN 3 0.71 (0.56,0.83) 0.80 (0.68,0.88) 3.74 (2.11,6.31) 0.27 (0.16,0.46) 12.17 (4.58,32,36)
Segmentation method
Semiautomatic 5 0.82 (0.70,0.90) 0.74 (0.56,0.87) 3.26 (1.60,6.61) 0.21 (0.07,0.60) 15.95 (3.63,70.04)
Manually drawing 8 0.80 (0.71,0.86) 0.84 (0.75,0.90) 4.82 (3.08,7.53) 0.23 (0,16,0.33) 23.59 (9.22,47.57)
different ROI
Lymph 3 0.85 (0.68,0.94) 0.81 (0.71,0.88) 4.30 (2.59,7.15) 0.17 (0.05,0.54) 38.12 (7.06)
Breast Cancer 10 0.79 (0.71,0.85) 0.80 (0.67,0.89) 4.02 (2.38,6.79) 0.23 (0.13,0.42) 17.62 (6.68,46.49)
Different algorithms of ML
SVM 5 0.81 (0.70,0.89) 0.76 (0.70,0.81) 3.32 (2.64,4.17) 0.20 (0.10,0.39) 15.27 (7.49,31.13)
LR 5 0.75 (0.65,0.82) 0.88 (0.77,0.94) 5.72 (3.13,10.44) 0.29 (0.20,0.43) 22.56 (9.15,55.62)
Different MR equipment
Siemens 5 0.88 (0.77,0.94) 0.82 (0.73,0.89) 4.74 (2.93,7.66) 0.14 (0.07,0.30) 42.37 (11.97,149.91)
GE 7 0.77 (0.68,0.84) 0.75 (0.61,0.86) 3.21 (1.79,5.75) 0.28 (0.13,0.62) 12.17 (4.03,36.75)
F
ebruary 2022 | Volum
PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; SVM,support vector machines; LR,logistic regression.
e 12 | Article 799209
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fields, segmentation, etc. In this meta-analysis, the threshold
effect was not the source of heterogeneity because Spearman’s
coefficient was not significant. Therefore, subgroup analysis was
used to determine the source of heterogeneity. Our results
demonstrated that studies using 3.0 T MR had better
diagnostic performance than studies using 1.5 T MR. We are
not surprised by this result. Since high magnetic fields can
improve image resolution, they can help to improve diagnostic
accuracy. Another subgroup analysis result showed that studies
employing ML have slightly better value than those employing
deep learning. Deep learning has greater potential for very large
datasets with thousands or even millions of instances. In this
Frontiers in Oncology | www.frontiersin.org 7
setting, datasets usually consist of hundreds of patients at most,
which is better than with deep learning in this case. Similar
findings have been previously reported for ML in other
applications (9, 10, 30). However, deep learning only included
two studies. Future studies employing deep learning are needed
to confirm this conclusion.

ROIs including the ALN area have good diagnostic
performance compared with ROIs including the breast tumor
area. While an ROI of the ALN is useful to evaluate ALN status, it
suffers from some limitations, such as the ALN breast surface coil
being mainly concentrated in the breast area; nevertheless, some
positive lymph nodes might be located at the edge of the coil, and
FIGURE 5 | Deeks funnel plot shows the likelihood of publication bias is low with a P value of 0.22. ESS, effective sample size.
FIGURE 4 | Forest plots of the sensitivity and specificity of ML-based radiomics of DCE-MRI in predicting ALNM in breast cancer. I2>50% indicated substantial
heterogeneity in the diagnostic parameters across studies.
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some might not even be in the imaging range (31). Studies have
focused on breast tumors themselves, which could help to avoid
the above limitations. Studies with SLNB or ALND as the gold
standard had an equivalent sensitivity and specificity with ALND
group. The reason may be that the patient with negative SLN,
SLNB maybe an effective and accuracy approach. The sensitivity
of predict SLNM is lower than that to predict ALNM and the two
kinds of LNs. Therefore, for SLNM, the diagnostic performance
of this imaging tool might not be satisfactory, as concluded in
this meta-analysis. Further studies should investigate how to
improve the sensitivity of SLNM. Although studies in which
ROIs are manually drawn by radiologists might be more prone to
error and user variability, the prediction is still good compared
with the semiautomatic segmentation method. However, manual
segmentation is time consuming, tedious, and prone to error. In
the future, it would be ideal to develop a reliable and validated
automatic method. Our results showed that LR algorithm had
higher DOR than SVM. Generally, LR and SVM algorithms are
all suitable for model construction with small sample sizes and
binary variables. However, for ML-based DCE-MRI radiomics in
predicting ALNM, the LR algorithm is more recommended for
use with our meta-analysis result. We also found that studies
using Siemens MR equipment had higher diagnostic
performance than using GE equipment. It means different MR
equipment maybe affect the diagnostic performance. Therefore,
prospective studies compared the two MR equipment are
necessary to explore the diagnostic performance of ML-based
DCE-MRI radiomics in predicting ALNM and SLNM. In
Frontiers in Oncology | www.frontiersin.org 8
addition, different DCE phases and cross-validation of different
multiples could lead to unknown biases. Moreover, other
unmentioned differences between studies might contribute to
the heterogeneity.

A previous meta-analysis (32) including 3 studies of DCE-
MRI (n=187) reported that the mean sensitivity and specificity
were 0.88 and 0.73, respectively. Another study (6) included 7
studies using DCE-MRI and reported that the median sensitivity
was 0.60 (range 0.33.3–0.97) (31). Our findings showed higher
sensitivity than studies that included DCE-MRI. Conventional
DCE only included morphology and a few quantitative
parameters. However, radiomics could provide many new
quantitative imaging markers and help to characterize
heterogeneous tumor lesions (33). This method could provide
more valuable information to help radiologists to improve
detection, diagnosis, staging, and prediction power.

Limitations
All of the methodological issues followed the Cochrane
handbook (34), but there are still some limitations that must
be discussed. First, a relatively small number of studies met the
selection criteria. The second limitation was the significant
heterogeneity, which is an issue similar to that in other meta-
analyses of diagnostic accuracy using ML based on radiomics (9,
10, 30).

Furthermore, study characteristics, such as different ROIs,
DCE phases, and reference standards, could lead to
heterogeneity. Therefore, we employed subgroup analysis to
reduce heterogeneity.

Third, while there were some uncertainties in the QUADAS-2
assessment, the overall quality of the study was sufficient for
analysis. Thus, this uncertain risk might not have had a
significant impact on the outcomes.

Fourth, 3 studies(3/13)showed an RQS score<20%. The mean
RQS score obtained by analyzing the articles reviewed in this
study was 11.1 (30.1%), indicating moderate overall quality. The
most important points were the type of study, biological
relevance tests and discussion, validation, comparison with the
gold standard, potential clinical utility, economic analysis and
open scientific data (Table 1 and Table S1). Fifth, in most
studies, the lymph nodes assessed by MR have not been
specifically associated with histological findings in a node-to-
node manner, which is a difficult problem to solve in clinical
practice. And it is inevitable that very small lesions may be
missed through DCE-MRI. Sixth, some studies used the SLNB as
reference standard, which may be caused some false negative
rate. Finally, in this meta-analysis, the PLR, NLR and posttest
probabi l i ty were moderate , which would l imit the
recommendation of their integration into clinical practice.

Future
To improve the clinical applicability of future studies utilizing
ML-based radiomics for ALNM, several factors must
be followed.

First, external validation is usually not performed, which
should be seen as a major limitation in the field of study.
Therefore, it is advisable to verify the accuracy of these
FIGURE 6 | Fagan plot of ML-based radiomics models of DCE-MRI in
predicting ALNM in breast cancer.
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models further. When reporting ML-based radiomics, it is crucial
to follow quality guidelines that include external validation.
Second, future studies should also consider expanding
datasets from multiple centers to overcome imbalances caused
by oversampling small samples and to improve classifier
performance. Third, the variation process might affect bias.
There are significant variations in the number of features
selected, the risk of overfitting and redundancy, and the
preprocessing steps (such as manual segmentation), reducing
reproducibility. In addition, the different DCE phases should be
considered. Therefore, it is necessary to build better radiomics
and ML paper standards to establish image acquisition,
segmentation, feature engineering, statistical analysis and report
format standardization to achieve reproducibility and facilitate
the search for radiomics (35). Finally, the ALNM and SLNM
prediction model was constructed with a combination of MR
radiomics and DCE quantitative parameter and clinical
characteristic data to further explore more precise predictions
and to improve the clinical utility for ALNM and SLNM.
CONCLUSION

Our results indicated that ML-based DCE-MRI radiomics
indicates good diagnostic performance in predicting ALNM
and SLNM in breast cancer with high sensitivity and
specificity. Nevertheless, due to the heterogeneity of the
included studies, caution should be taken when applying
the results.
Frontiers in Oncology | www.frontiersin.org 9
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