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Objective: To develop and validate a radiomics nomogram based on pre-treatment, early
treatment ultrasound (US) radiomics features combined with clinical characteristics for
early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer.

Method: A total of 217 patients with histological results of breast cancer receiving four to
eight cycles of NAC before surgery from January 2018 to December 2020 were enrolled.
Patients from the study population were randomly separated into a training set (n = 152)
and a validation set (n = 65) at a ratio of 7:3. A total of 788 radiomics features were
extracted from each region of interest in the US image at pre-treatment baseline (radiomic
signature, RS1), early treatment (after completion of two cycles of NAC, RS2) and delta
radiomics (calculated between the pre-treatment and post-treatment features, Delta RS).
The Max-Relevance and Min-Redundancy (mRMR) and the least absolute shrinkage and
selection operator (LASSO) regression were applied for feature selection. The predictive
nomogram was built based on the radiomics signature combined with clinicopathological
risk factors. Discrimination, calibration, and prediction performance were further evaluated
in the validation set.

Results:Of the 217 breast masses, 127 (58.5%) were responsive to NAC and 90 (41.5%)
were non-responsive. Following feature selection, nine features in RS1, 11 features in
RS2, and eight features in Delta RS remained. With multivariate analysis, the RS1, RS2,
Delta RS, and Ki-67 expression were independently associated with breast NAC
response. However, the performance of the Delta RS (AUCDelta RS = 0.743) was not
higher than RS1 (AUCRS1 = 0.722, PDelta vs RS1 = 0.086) and RS2 (AUCRS2 = 0.811, PDelta

vs RS2 = 0.173) with the Delong test. The nomogram incorporating RS1, RS2, and Ki-67
expression showed better predictive ability for NAC response with an area under the curve
(AUC) of 0.866 in validation cohorts than either the single RS1 (AUC 0.725) or RS2 (AUC
0.793) or Ki-67 (AUC 0.643).
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Conclusion: The nomogram incorporating pre-treatment and early-treatment US
radiomics features and Ki-67 expression showed good performance in terms of NAC
response in breast cancer, thereby providing valuable information for individual treatment
and timely adjustment of chemotherapy regimens.
Keywords: nomogram radiomics, ultrasound, neoadjuvant chemotherapy, breast cancer, Ki-67
INTRODUCTION

Breast cancer is one of the most common cancers in women and
is the leading overall cause of cancer-related death in females
worldwide (1). Neoadjuvant chemotherapy (NAC), which was
proposed by Frei in 1982, refers to the systemic cytotoxic drug
treatment for non-metastatic tumors before radical surgery or
radiotherapy (2). For breast cancer, preoperative NAC is likely to
reduce the clinical stage and tumor size and alleviate lymph node
metastasis. The treatment can improve the rate of breast-
conserving surgery for patients with resectable surgery and
create an opportunity for surgery for patients whose tumors
cannot be removed surgically, hence becoming the standard
treatment for selected high-risk breast cancers such as tumors
≥2 cm in size and for locally advanced disease (namely, tumors
initially ineligible for resection) (3). However, not all patients
benefit from NAC, and those who fail to respond to treatment
face the risk of delayed surgery and aggravated disease. Early
prediction of patient treatment response can timely adjust the
chemotherapy regimen and avoid patients suffering from severe
toxic and side effects from NAC.

In current clinical practice, the effect of NAC is commonly
e v a l u a t e d b y med i c a l im a g i n g t e c hn i q u e s a n d
immunohistochemistry (IHC). The evaluation of pathologic
complete response (pCR) of breast tumors could accurately
reflect real changes in lesions, but pCR evaluation can only be
performed after radical surgery, and preoperative NAC cannot
be timely adjusted (4). In addition, it has been suggested that the
response evaluation criteria in solid tumor (RECIST) be used to
record changes in the maximum diameter of breast cancer
lesions before and after NAC to evaluate its efficacy, but this
strategy can only be evaluated after the chemotherapy cycle is
completed and visual interpretations are generally subjective and
may lead to mistakes at the cut-off values (5).

With the rapid development of fractionated biological
techniques, the expression of a few biomarkers may be
associated with the prediction of response to NAC at the time
of initial diagnosis. A recent meta-analysis of the relationship
between the expression level of Ki-67 before NAC showed that
the pCR rate of patients in the Ki-67 high-expression group was
3.1-fold that of the low expression group. Ki-67 is an indicator of
cell proliferation and thus may be utilized as a predictor and
prognostic index of NAC efficacy in breast cancer (6, 7).
However, a series of factors, namely, heterogeneous patient
populations, small sample size, poor representativeness of the
tumor tissues derived from core biopsies, and different NAC
regimens may lead to the inability of Ki-67 to accurately predict
the response to NAC (8).
2

In the digital era, recent studies have illustrated that tumor
characteristics at the genetic and cellular levels can be captured
from medical images by high-throughput feature extraction and
computation. Radiomics involves the extraction and analysis of
large amount of quantitative imaging features to provide a
comprehensive characterization of entire tumors rather than
from a relatively limited tissue sample and can reveal
predictive or prognostic associations between images and
medical outcomes (9, 10). Ultrasonography, based on its broad
adaptability, low cost, non-radiation, and rapid and non-invasive
features, is essential for the management of breast cancer from
diagnosis, staging, and treatment planning to postoperative
surveillance and prognosis of malignant tumor evaluation. The
China Anti-Cancer Association breast cancer guidelines strongly
recommend that patients be re-evaluated for therapy response
regularly using ultrasound (US) after each two cycles of NAC
(11). However, visual assessment and qualitative descriptions for
US features mainly depend on the personal clinical experience
and subjective judgment of doctors, which inevitably leads to
inter-observer variability and subjective diagnostic decision-
making assessment of tumor heterogeneity (12, 13). The
integration of radiomics features, namely, first-order statistics,
texture, and wavelet features extracted from the US images can
significantly increase the objectiveness of image diagnosis. A
radiomics methodology has been more recently applied to
distinguish benign malignant breast lesions or predict lymph
node status, prognosis, and even treatment response (14, 15).
However, most of the current studies focus on the analysis of
MRI or CT images, and a few studies have reported radiomic
features of breast masses analyzed using breast US. More
importantly, due to the high heterogeneity and complexity of
the internal structure of malignant tumors, the imaging
characteristics before and after chemotherapy have obvious
differences in microstructure. Studies have shown that pre-
treatment initial images are often related to primary tumor
characteristics, while images after chemotherapy can reflect the
active state of the tumor. Extracting the high-order imaging
radiomic features and analyzing the differences in features before
and after treatment, namely, delta radiomics, can more
accurately evaluate sensitivity to chemotherapy (16).

The purpose of this study was to develop a radiomics
signature based on first-order statistics, textural, and wavelet
features from breast cancer US images at pre-treatment and early
treatment and also the corresponding delta radiomics of NAC,
and further develop a multi-parameter radiomics prediction
model to evaluate the efficacy predictive value of the model for
NAC of breast cancer. This strategy is expected to achieve early
assessment of NAC therapy-responsive vs. -unresponsive in
February 2022 | Volume 12 | Article 748008
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breast cancer from the routine US images, which can provide
more accurate prediction performance and obviate the need for
chemotherapy in select settings.
MATERIALS AND METHODS

Patients
Ethical approval for this retrospective study was obtained from
our institutional review board, and informed consent was
waived. A total of 217 patients with breast cancer confirmed by
pathology in the Affiliated Cancer Hospital of Guizhou Medical
University from December 2018 to December 2020 were
selected. Figure 1 shows the identification, eligibility, and
inclusion of patients in the study. The inclusion criteria were:
1) Patients with invasive breast carcinoma confirmed by
histopathology from biopsy in the hospital for the first time
who had not been treated before; 2) Patients received the NAC
regimen based on paclitaxel and anthracycline drugs for four to
eight chemotherapy cycles; 3) US examination was performed at
pre-treatment baseline (radiomics signature, RS1) and early
treatment (after completion of the two cycles of chemotherapy,
RS2). The exclusion criteria included the following: 1) Bilateral
lesions or multiple lesions on one side; 2) The lesion was too
large to be fully visible in one section or the image quality was
poor with artifacts; and 3) No complete clinicopathological data
or US images. The clinical and histopathological data were
collected from patient medical records and included age,
histological type, clinical staging, molecular subtype, and
proliferation marker Ki-67 expression, which were recorded by
noting the percentage of positively stained malignant cells. The
Ki-67 level was classified as positive when the threshold value
was ≥14%, whereas it was classified as negative when the
threshold value was <14% (17, 18). Then, patients from the
study population were grouped using randomly stratified
Frontiers in Oncology | www.frontiersin.org 3
sampling in a ratio of 7:3 to obtain a training set (n = 152; 89
responders, 63 non-responders) and a validation set (n = 65; 38
responders, 27 non-responders).

Participants were then classified as responders (R) or non-
responders (NR) based on the radiological evaluation by the
RECIST-based criteria in tumor size reduction. The size of breast
lesions was evaluated by two radiologists with more than five
years of working experience, where each of them was performed
twice for interobserver and intraobserver reproducibility and the
error range of measurement of the two radiologists is within
5 mm. The response standard of RECIST is a percent reduction
in tumor size (in its longest dimension) between pre-treatment
and post-treatment times of at least 30% (19), and in order to
avoid single examination measurement error, the tumor size was
determined by ultrasound and MRI image. In this study, a
patient was described as R when the tumor size of both
ultrasound and MRI measurements all reduced by at least 30%
compared to the pre-treatment dimensions, and other patients
being considered as NR.

US Examination and Image
Feature Analysis
All patients were examined using a Logiq E9® scanner (GE
Healthcare, Wauwatosa, WI, USA) equipped with a linear array
transducer having a central frequency of 7 MHz. Ultrasonography
was performed at pre-treatment baseline and at early treatment
(after completion of the two cycles of chemotherapy). According
to the characteristics of breast lesions, appropriate frequency,
depth, focus, gain, and time gain compensation curves were
selected to achieve the best grayscale US imaging quality.
According to alder grade, the blood flow signal with the highest
resistance index (RI) in the lesion was collected, and the average
value of three times was taken (20). The grayscale images with the
largest long-axis cross-section image were saved in
DICOM format.
FIGURE 1 | Flowchart shows study population and exclusion criteria.
February 2022 | Volume 12 | Article 748008
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Then, the lesion was evaluated according to the second
edition of the 2013 US Breast Imaging Report and Data
Analysis System (BI-RADS) by the two radiologists with more
than five years of working experience without knowing any
clinical data and pathological results (21). The grayscale
ultrasonographic features of tumors, namely, lesion maximum
diameter, internal echo, micro-calcification, morphology, blood
flow grade (grades 1 and 2 were classified as hypovascular, while
grades 3 and 4 were classified as hypervascular), and RI were
recorded in detail.

Image Segmentation and
Feature Extraction
A flowchart of the processing step using the radiomics method
for predicting NAC responses is shown in Figure 2. The image of
pre-NAC and early post-NAC US imaging per lesion were used
for analysis. A region of interest (ROI) was manually drawn
around the boundary of the index mass on the grayscale image by
a >5 year-experienced radiologist using the ITK-SNAP software
(http://www.itksnap.org/). A two-dimensional ROI of the tumor
before NAC (ROI-1) and after NAC (ROI-2) was delineated on
the US images. Fifty patients were randomly selected for the
radiologist to perform the second segmentation after 1 week.
Then, the ROI segmented images were imported into the USKit
software (ultrasound kit, version 1.3.0, GE Healthcare) for
automatic feature extraction, namely, first-order features, shape
features, texture features, and transform features. First-order
features mainly described the distribution of voxel intensities
within the lesions in the CT image; shape features mainly
described the geometric and shape characteristics of the lesions
in the CT image; and texture features based on gray-level co-
occurrence matrix (GLCM) and gray level run length matrix
(GLRLM) mainly described the texture with the spatial
relationship between the distance and angle of different pixel
pairs. To enhance intricate patterns in the data invisible to the
human eye, advanced filters, including wavelet decompositions
with all possible combinations of high (H) or low (L) pass filters
Frontiers in Oncology | www.frontiersin.org 4
in each of the three dimensions (HHH, HHL, HLH, LHH, LLL,
LLH, LHL, and HLL), were applied.

The radiomic features of pre-NAC and early post-NAC US
imaging were directly obtained from the pre-mapped ROI, and
the delta radiomic features were defined as follows: Delta feature=
(Early treatmentfeatures − Baselinefeature)/Baselinefeature. A total of
1,576 radiomics features of each patient (788 features at each
time point) were finally extracted, and the corresponding of 788
delta radiomic features were obtained at the same time.

Intraclass correlation coefficient (ICC) was used to evaluate
the consistency of evaluation results among physicians. The level
of clinical significance evidence of the ICC was judged by the
previous similar ultrasound radiomics study: an ICC of <0.40
was rated as ‘Poor’, ICC of 0.40–0.59 as ‘Fair’, ICC of 0.60–0.74
as ‘Good’ and ICC of 0.74–1.00 as ‘Excellent’ (22).

Feature Selection
Before the feature selected process, the abnormal and missing
values were replaced by the median, the ICC was calculated to
ensure repeatability and stability of features with the threshold of
0.7. Max-Relevance and Min-Redundancy (mRMR) and the least
absolute shrinkage and selection operator (LASSO) regression
were used to select significant features (23). Then, a radiomics
score was calculated using a formula incorporating the selected
features that were weighted by their respective coefficients.

Development of the Prediction Model
The prediction model for predicting tumor responses to NAC
were developed using data from the training group. First, the
univariate analyses were performed to select the significant
factors, including clinical features and grayscale US features.
Then, single-factor statistically significant indicators with P-
values <0.05 were included in multivariate logistic regression
analysis, and factors with P-values <0.05 were considered
independent predictors after the multivariate analysis. Finally,
the selected predictive features were incorporated with a
radiomics signature to establish logistic regression models and
FIGURE 2 | A flowchart of the processing step using the radiomic method for predicting NAC response.
February 2022 | Volume 12 | Article 748008
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verify the stability of the constructed model by 10-fold cross-
validation in the training group. For comparison, a clinical
model only comprising significant clinical information was
constructed. In addition, Receiver operating characteristic
(ROC) curves were plotted with the optimal cut-off value that
was defined as maximizing the Youden index (Sensitivity +
Specificity − 1). Bar diagrams were plotted to clearly display
the discrimination performance of the nomogram. The area
under the curve (AUC), sensitivity, specificity, and accuracy
were then calculated using the training set.

Prediction Performance Evaluation of
the Nomogram
The prediction performance of the generated radiomics
nomogram and the radiomics and clinicopathological
combined nomogram were further tested in the independent
validation set using the same cut-off value determined in the
training set. The accuracy, sensitivity, specificity, and AUC of the
ROC curve were plotted to assess the prediction performance of
the nomogram. The Delong test was used to compare the
combined model with the other constructed model. The
agreement between the observed outcome frequencies and
predicted probabilities was assessed using a calibration curve to
explore the predictive accuracy of the nomogram (24).

Statistical Analysis
Statistical analysis was performed using SPSS 22.0 (Chicago, IL,
USA) and R software (version 3.6.0; https://www.Rproject.org).
An independent t-test was used to compare continuous variables
with a normal distribution, while the Mann–Whitney U test was
used to compare continuous variables with an abnormal or
unknown distribution. The c² test was used to compare
categorical variables. A P-value of <0.05 was considered
statistically significant. The “mRMRe” and “glmnet” packages
were applied to perform mRMR and LASSO, respectively. The
ROC curve of each model was plotted using the “pROC”
package. The “rms” package was used to build the nomogram.
RESULTS

Patient Information and
Clinicopathologic Characteristics
The basic information and clinicopathologic characteristics of
the research population are summarized in Table 1. According
to the clinical and pathological criteria assessment, 127 (62.5%)
and 90 (37.5%) patients were classified as responders and non-
responders, respectively. Univariate analysis revealed several
clinical factors that were obviously different (P <0.1), namely,
molecular typing and PR status, and Ki-67 status were
significantly different (P <0.001) (Table 1). A clinical model
based on the significant clinical factors for NAC response
prediction was constructed using logistic regression analysis. In
addition, no statistical difference patient clinical characteristics
were observed between the training set and the validation set as
shown in Table 1.
Frontiers in Oncology | www.frontiersin.org 5
Comparison of Grayscale
Ultrasonographic Features
The results of comparison of grayscale ultrasonographic features
of the clinical response group to the non-response group at pre-
treatment baseline and at early treatment are shown in Table 1.
The responder group demonstrated a statistically significant
reduction in maximum tumor size from 28 mm prior to
treatment compared to 15 mm after early treatment (P <0.05).
Except for the maximum tumor size, tumor internal echo,
microcalcification, morphology, blood flow grade, and RI of
the grayscale US image, none of the parameters demonstrated
significant differences in terms of distribution between the two
groups (Table 1). In addition, no significant difference was found
between the training set and the validation set. The results of the
consistency test showed that the ICC of the two observers was
within the range of 0.74–0.91.

Feature Selection and Radiomic
Signature Construction
A total of 788 candidate radiomic featureswere extracted fromeach
ROI.Before selection, the126 features remainedwith the ICC(>0.7)
to ensure repeatability of features. Next, 30 features were selected
with the mRMR. Figure 3 shows the process of feature selection at
baseline, early treatment, andDelta radiomics (baselineminus early
treatment) by LASSO regression. Then, 9 features in RS1(pre-
treatment baseline), 11 features in RS2 (early treatment), and 8
features in Delta RS (baseline minus early treatment) were selected
and the ICC values of each feature are greater than 0.7, specific
values are shown in Figure S1 in the Supplementary Material. In
addition, the Akaike information criterion was used to evaluate
goodness offit. The selectedNACresponder-related features shown
in Table 2 were used to calculate the radiomics score of RS1, RS2,
and Delta RS according to their coefficients by the corresponding
formula. No statistical differences in the distribution of the
radiomics score were found between the training and validation
set. The selected significant features were used to establish the
radiomics signature and 10-fold cross-validation has verified the
stability of the constructedmodel in the training cohort (the results
are shown in Figure S2 in the Supplementary Material).

The optimal cut-off values of RS1, RS2, and Delta RS for the
radiomics score for discriminating NAC responders and non-
responders were −0.298, −0.4343, and −0.6979, respectively, in
the training group. Radiomics score bar diagrams were plotted
based on this optimal cut-of value in the training and validation
set (Figure 4). The bar diagrams demonstrated good
discrimination performance of the radiomics score.

Development and Validation of the
Radiomics Nomogram
The performance of the RS1, RS2, Delta RS, and nomogram for
predicting NAC responders in the training and validation groups
is shown in Table 3, and the ROC curves of different model in
both groups are presented in Figure 5. The prediction
performance of the RS1, RS2, and Delta radiomics models was
moderate, with AUC values of 0.722 (95%CI [0.643, 0.802]),
0.811 [95%CI (0.742, 0.880)], and 0.743 [95%CI (0.666, 0.820)],
February 2022 | Volume 12 | Article 748008
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respectively, in the training cohort and 0.725 [95%CI (0.543,
0.814)], 0.793 [95%CI (0.679, 0.908)], and 0.714 [95%CI (0.582,
0.847)] in the validation cohort, respectively, and Ki-67 with an
AUC of 0.643 [95%CI (0.575, 0.706)]. However, the performance
of the Delta RS (AUCDelta RS = 0.743) was not higher than the RS1
(AUCRS1 = 0.722, PDelta vs RS1 = 0.086) and RS2 (AUCRS2 = 0.811,
PDelta vs RS2 = 0.173) with the Delong test. The nomogram that
incorporated RS1, RS2, and Ki-67 displayed AUC values of 0.849
(95%CI [0.789, 0.908]) for predicting NAC responders in the
training cohort, and the accuracy, sensitivity, and specificity were
0.750, 0.825, and 0.764, respectively. In the validation cohort, it
also displayed excellent prediction efficacy, with an AUC of 0.866
Frontiers in Oncology | www.frontiersin.org 6
(95%CI [0.779, 0.954]), and the accuracy, sensitivity, and
specificity were 0.785, 0.852, and 0.798, respectively.

Table 4 displays the results of multivariable logistic regression
analysis of risk factors for NAC responders in the training group.
RS1, RS2, and Ki-67 expression states were demonstrated to be
significant for NAC responders (P <0.001), and the nomogram is
shown in Figure 6A. The calibration curves (Figures 6B, C) in
the training and validation groups were tested using the
Hosmer–Lemeshow test and yielded a non-significant
difference in training cohorts (P = 0.11) and validation cohorts
(P = 0.75), respectively. The nomogram showed good agreement
in predicting NAC responders in advance compared to the
TABLE 1 | Basic information, clinicopathologic characteristics, and two-dimensional general ultrasonic characteristics of the study cohorts.

Variable Responder (n = 127) Non-Responder (n = 90) P-value Training Cohort (n = 152) Test Cohort (n = 65) P-value

Histologic type 0.67 0.288
Invasive ductal carcinoma 120 (94.49%) 87 (96.67%) 147 (96.71%) 60 (92.31%)
Others 7 (5.51%) 3 (3.33%) 5 (3.29%) 5 (7.69%)

Molecular subtyping 0.076’ 0.243
Luminal A 6 (4.72%) 12 (13.33%) 16 (10.53%) 2 (3.08%)
Luminal B 56 (44.09%) 43 (47.78%) 65 (42.76%) 34 (52.31%)
Her2+ 48 (37.80%) 24 (26.67%) 52 (34.21%) 20 (30.77%)
Triple-negative 17 (13.39%) 11 (12.22%) 19 (12.50%) 9 (13.85%)

Tumor stage 0.141 0.471
I 5 (3.94%) 4 (4.44%) 6 (3.95%) 3 (4.62%)
II 60 (47.24%) 40 (44.44%) 65 (42.76%) 35 (53.85%)
III 49 (38.58%) 27 (30.00%) 57 (37.50%) 19 (29.23%)
IV 13 (10.24%) 19 (21.11%) 24 (15.79%) 8 (12.31%)

Histologic grade 0.623 0.385
I 42 (33.07%) 24 (26.67%) 42 (27.63%) 24 (36.92%)
II 82 (64.57%) 63 (70.00%) 105 (69.08%) 40 (61.54%)
III 3 (2.36%) 3 (3.33%) 5 (3.29%) 1 (1.54%)

ER 0.173 0.959
Positive 79 (62.20%) 64 (71.11%) 100 (65.79%) 43 (66.15%)
Negative 48 (37.80%) 26 (28.89%) 52 (34.21%) 22 (33.85%)

PR 0.068’ 0.62
Positive 69 (54.33%) 60 (66.67%) 92 (60.53%) 37 (56.92%)
Negative 58 (45.67%) 30 (33.33%) 60 (39.47%) 28 (43.08%)

Her2 0.431 0.569
Positive 36 (28.35%) 30 (33.33%) 48 (31.58%) 18 (27.69%)
Negative 91 (71.65%) 60 (66.67%) 104 (68.42%) 47 (72.31%)

Ki-67 <0.001* 0.578
>14% 77 (60.63%) 47 (52.22%) 67 (44.08%) 26 (40.00%)
<14% 50 (39.37%) 43 (47.78%) 24 (15.79%) 10 (15.38%)

Tumor_internal_echo 0.094
Uniform 20 (15.75%) 14 (15.56%) 0.969 24 (15.79%) 10 (15.38%)
Non-uniform 107 (84.25%) 76 (84.44%) 128 (84.21%

%)
55 (84.62%)

Micro_calcification 0.442
Yes 46 (36.22%) 29 (32.22%) 0.542 55 (36.18%) 20 (30.77%)
No 81 (63.78%) 61 (67.78%) 97 (63.82%) 45 (69.23%)

Morphology 0.387
Regular 17 (13.39%) 13 (14.44%) 0.824 19 (12.50%) 11 (16.92%)
Irregular 110 (86.61%) 77 (85.56%) 133 (87.50%) 54 (83.08%)

Blood_flow_grade 0.365
Grades 1–2 25 (19.69%) 20 (22.22%) 0.65 34 (22.37%) 11 (16.92%)
Grades 3–4 102 (80.31%) 70 (77.78%) 118 (77.63%) 54 (83.08%)

Age 50.00 (44.00, 57.00) 49.00 (42.00, 55.05) 0.384 49.50 (44.00, 56.00) 49.00 (43.70, 57.00) 0.954
max_D_Baseline 28.00 (23.00, 37.80) 25.00 (15.00, 33.15) 0.008* 26.00 (16.45, 38.00) 26.00 (21.70, 33.30) 0.809
max_D_NAC 15.00 (10.00, 22.00) 22.00 (15.95, 32.00) <0.001* 17.50 (12.00, 27.55) 19.00 (13.00, 24.30) 0.811
RI 0.78 (0.72,0.84) 0.78 (0.73, 0.83) 0.843 0.78 (0.72,0.83) 0.80 (0.73, 0.85) 0.174
February 2
022 | Volume 12 | Article
Chi-square test or Fisher’s exact test was used for the nominal variable, and Mann–Whitney test was used for the continuous variable with abnormal distribution. A two-tailed p-value <0.05
indicated statistical significance.
*Indicates a statistical difference between the Responder group and Non-Responder group.
748008

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Treatment Response Prediction
A B

D E F

C

FIGURE 3 | Baseline, early treatment, and delta radiomics feature selection by LASSO regression. (A–C) Selection of tuning parameters (lambda value) in the
LASSO model using 10-fold cross-validation by the minimum criteria. (D–F) LASSO coefficient profiles of the radiomics features.
TABLE 2 | Selected features and their coefficients in the model.

Model Feature Coefficient P-value

Baseline wavelet.HLH_firstorder_Median 4.32e17 0.171
wavelet.LHH_glcm_Imc2 26.2175 0.008
wavelet.HHH_firstorder_Kurtosis −0.0064 0.038
wavelet.HHL_gldm_SmallDependenceHighGrayLevelEmphasis −0.00086 0.019
wavelet.HHH_firstorder_Skewness 0.378728 0.028
wavelet.HHL_glszm_GrayLevelNonUniformityNormalized −7.5178 0.0035
wavelet.HLL_glrlm_RunPercentage −6.9633 0.022
wavelet.HLL_firstorder_Median −22.3364 0.181
wavelet.LHH_glcm_ClusterProminence −43.8422 0.015
intercept 26.10966

Two cycles after NAC wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis −0.00017 0.172
wavelet.HHH_firstorder_Kurtosis −0.00494 0.085
wavelet.LHH_glcm_Imc2 −17.0163 0.057
wavelet.HHL_firstorder_Skewness 0.2961 0.042
wavelet.HHL_glszm_LargeAreaLowGrayLevelEmphasis 2.80e−05 0.024
wavelet.HHL_firstorder_Kurtosis 0.0085 0.040
wavelet.HHL_gldm_LargeDependenceHighGrayLevelEmphasis −1.48e−5 0.0007
wavelet.HLL_firstorder_InterquartileRange 0.4055 0.024
wavelet.HLL_firstorder_Median −10.2665 0.004
wavelet.LHH_glcm_ClusterProminence 21.7567 0.119
wavelet.HHL_glrlm_ShortRunLowGrayLevelEmphasis −51.5129 0.006
intercept −8.50213

Delta Δwavelet.LHL_glszm_SmallAreaLowGrayLevelEmphasis −226.797 0.042
Δwavelet.LHH_glcm_Imc2 −12.536 0.037
Δwavelet.HHL_glszm_LargeAreaLowGrayLevelEmphasis 4.47e−6 0.063
Δwavelet.HHL_firstorder_Kurtosis 0.000994 0.111
Δwavelet.HLL_firstorder_InterquartileRange 0.4609 0.003
Δwavelet.HLL_firstorder_Median −7.304 0.003
Δwavelet.LHL_gldm_SmallDependenceHighGrayLevelEmphasis −5.39e−5 0.080
Δwavelet.LHH_glcm_ClusterProminence 20.9419 0.0425
intercept −0.06275
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comprehensive evaluation of radiological and pathological
conformation after completing NAC treatment. In addition,
the Delong test was applied to test the significance among the
models (nomogram vs. RS1 <0.001, nomogram vs. RS2 = 0.376).
DISCUSSION

In the present study, a US image-based radiomics score was built
and validated as a pre-treatment independent predictor of NAC
Frontiers in Oncology | www.frontiersin.org 8
response in patients with breast cancer. Then, we developed a
nomogram based on pre-treatment and early-treatment US data
and significant clinical characteristics (Ki-67 expression) to
predict NAC response. The nomogram displayed an excellent
ability to predict NAC response, with AUC values of 0.849 and
0.866, and accuracy values of 0.750 and 0.785 in the training and
validation cohorts, respectively. The calibration curve showed
that the predicted and actual result of NAC were in good
agreement. The outperformance of the nomogram indicated
that combining high-throughput digital US features with Ki-67
FIGURE 4 | Radiomics score bar diagrams of RS1, RS2, and Delta RS in the training (A, C, E) and validation sets (B, D, F) were plotted. Up and down bars
refer to the predicted NAC responding and NAC non-responding lesions, respectively. Blue and red bars refer to actual NAC responding and NAC non-
responding lesions, respectively.
TABLE 3 | Comparison of different models.

Model Training Cohort (n = 152) Test Cohort (n = 65) Delong

AUC (95%CI) Sen. Spec. ACC AUC (95%CI) Sen. Spec. ACC

RS1 (Baseline) 0.722 (0.643–0.802) 0.730 0.640 0.678 0.725 (0.543–0.814) 0.778 0.658 0.677 0.971
RS2 (NAC_after two cycles) 0.811 (0.742–0.880) 0.719 0.841 0.750 0.793 (0.679–0.908) 0.605 0.926 0.723 0.795
Delta RS 0.743 (0.666–0.820) 0.494 0.889 0.678 0.714 (0.582–0.847) 0.658 0.741 0.692 0.717
Nomogram 0.849 (0.789–0.908) 0.825 0.764 0.750 0.866 (0.779–0.954) 0.852 0.789 0.785 0.742
February 2022 | Volume
 12 | Article
Sen., sensitivity; Spec.,specificity; ACC, accuracy.
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expression could be helpful for the early individualized
prediction of efficiency to NAC in breast cancer, which might
provide useful information for clinical decision-making.

Pathological evaluation, as the gold standard for breast
cancer NAC curative effect evaluation, has a lag, and the
treatment plan cannot be adjusted in a timely manner
according to the progress of the condition of the patient.
Current methods for assessing responses to NAC mostly use
conventional breast imaging, namely, X-ray, US, and MRI.
However, most of these imaging examinations mainly depend
on changes in mass size to make therapeutic judgments and
predictions, and it is very difficult to accurately predict the
efficacy of NAC before or during chemotherapy (25, 26). The
results of this study also showed that the characteristics of 2-D
US, including tumor internal echo, microcalcification,
morphology, blood flow grade, and RI did not significantly
differ between the responder or non-responder groups at pre-
treatment and early-treatment phases. Although the tumor size
may decrease when chemotherapy is effective, the regression
pattern of tumor cells after NAC is non-concentric, but rather
sporadic and multifocal. The size of the lesion may not
significantly change, but the tumor cell density is significantly
reduced, which results in errors in evaluating images (27, 28).

Radiomics is a relatively new technique that can excavate
high-throughput digital features from digital medical images to
Frontiers in Oncology | www.frontiersin.org 9
quantify the heterogeneous characteristics of breast tumors, and
analysis of this data may improve diagnosis, molecular typing,
chemotherapy effect evaluation, prognosis analysis, and
prediction (29, 30). Several previous studies have investigated
the usefulness and reliability of MRI-radiomics models in
predicting pathologic responses to NAC in breast cancer (31,
32). To the best of our knowledge, few reports have investigated
the feasibility of using an US radiomics approach in breast cancer
to predict the pCR of NAC, and most of these focus on pre-
treatment (9). Pre-treatment baseline imaging is associated with
primary tumor characteristics, while after-treatment images can
directly reflect the response status, such as tumor cells becoming
hypoxic and fragmenting after NAC, leaving fibrotic and
collagenous tissues (33, 34). Therefore, we constructed a
radiomics model by incorporating pre- and early treatment US
information based on the combination of the original
characteristics of the tumor and changes in the internal
characteristics of the tumor after early treatment to accurately
predict the response to chemotherapy, which differed from
previous radiomic studies that involved only pre-treatment
MRI or US data for pCR prediction. As shown in the results,
RS1 (pre-treatment baseline) and RS2 (at early treatment of two
cycles of chemotherapy) were independent predictors of NAC
response and showed good performance, with AUCs of 0.811
and 0.722, respectively, and accuracies of 0.750 and 0.678 in the
training groups, respectively. RS2 had significantly higher
predictive performance than RS1, further demonstrating the
important predictive value of early post-treatment US imaging.
However, as US imaging is relatively dependent on the
examining physician, it is difficult for the imaging parameters
such as mass level, gray gain scale, and US energy before and
after chemotherapy to be highly consistent. The effects of
chemotherapy vary due to different molecular types and stages
of tumors, resulting in different structural heterogeneity, and the
residual tumor tissue and necrotic tissue after chemotherapy may
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of the RS1 (green lines), RS2 (blue lines), Delta RS (purple lines), and nomogram (red lines) in the training
(A) and validation (B) groups.
TABLE 4 | Multivariable logistic regression analysis of risk factors of NAC responders.

Characteristic b Odds Ratios (95%CI) P-value

Ki-67 −3.455 0.0316 (0.004–0.244) <0.001*
RS1 0.9715 2.642 (1.497–4.661) <0.001*
RS2 0.6891 1.992 (1.429–2.775) <0.001*
Constant 1.715
*Indicates a statistical difference between the Responder group and Non-Responder
group.
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affect the comparison of radiomic features. The above two factors
may lead to the instability and randomness of differences in
radiomic features before and after chemotherapy, which may
result in the model with Delta RS with decreased prediction
performance and lead to a decrease in the accuracy and
repeatability of NAC prediction. In addition, the results of this
study showed that the predictive performance AUC and
accuracy of the delta radiomics were 0.714 and 0.692,
respectively, in the validation sets, which did not achieve an
ideal predictive value and had limited clinical predictive value.
The above reasons are related to our decision to exclude Delta RS
from multivariable modeling in this study.

Radiomic models are commonly established by a black-box
approach, which is usually uninterpretable or difficult to
interpret in the inner mechanisms of the model in the
prediction process. We selected the parameters to be included
in the radiomics model and the corresponding tumor
characteristics. Radiomics features are usually difficult to
intuitively interpret by the naked eye, but these can capture the
heterogeneity and complexity of the tumor microenvironment.
In this study, nine features in RS1 (pre-treatment baseline), 11
features in RS2 (early treatment), and eight features in Delta RS
(baseline-early treatment) were finally selected as the most
predictive factors by LASSO regression with 10-fold cross
validation (Table 2). Most of the selected features are first-
Frontiers in Oncology | www.frontiersin.org 10
order features and texture features after wavelet transform. The
median represents the median gray level intensity within the
ROI. Kurtosis is a measure of the ‘peakedness’ of the distribution
of values in the image ROI. A higher kurtosis implies that the
mass of the distribution is concentrated towards the tail(s) rather
than towards the mean. A lower kurtosis implies the reverse: that
the mass of the distribution is concentrated towards a spike near
the mean value. Skewness measures the asymmetry of the
distribution of values about the mean value (35, 36). Texture
parameters reflect specific positions relative to each other and
capture subtle changes occurring within images to quantify intra-
tumor heterogeneity by the gray-level co-occurrence matrix
(GLCM) and gray-level run-length matrix (GLRLM) methods.
Cluster prominence is a measure of the skewness and asymmetry
of the GLCM. A higher value implies more asymmetry about the
mean, while a lower value indicates a peak near the mean value
and less variation about the mean. IMC2 assesses the correlation
between the probability distributions of i and j (quantifying the
complexity of the texture) (37, 38). Wavelet transform, which
calculates the resolution of image signals in different time, space,
and frequency scale planes, is useful for replaying even subtle but
important texture information that is neglected by observers in
low-contrast US images, so the texture features after wavelet
transform are used to construct prediction models in many
radiomic studies (39, 40). Besides, radiomics features
A

B C

FIGURE 6 | Nomogram with the RS1, RS2, and Ki-67 incorporated (A) and calibration curves for the nomogram in the training (B) and validation groups (C).
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‘wavelet .LH_firs torder_Mean ’ , ‘wavelet .LHH_glcm_
ClusterProminence ’ , ’wavele t .LHH_glcm_Imc2 ’ , and
‘wavelet.HHH_firstorder_Kurtosis’ were significantly associated
with response status in both pre- and early-treatment US images,
implying that these features robustly reflect NAC response.

Next, we found that several clinical characteristics are
correlated to NAC response, namely, molecular typing, PR,
and Ki-67 expression. However, only Ki-67 expression similar
to the RS1 and RS2 was a significant predictive indicator, with a
moderate AUC of 0.643 after multivariate logistic regression
analysis, and as expected, Ki-67 expression as a dependent
predictor of NAC response in breast cancer has been proven in
other studies (41, 42). Taking into account that clinical factors
and radiomic features influence NAC responses, a nomogram
that incorporated RS1, RS2, and Ki-67 state was developed, and
the nomogram showed excellent ability to predict NAC response,
with an AUC of 0.866 and accuracy of 0.785 in the validation
cohort, achieving greater predictive efficacy than the other
constructed model (Figure 6). Nomograms are simple tools for
decision-making that have been widely used to predict medical
prognosis and outcomes by combining multiple risk factors.
Recently, a study (16) using radiomic nomograms to predict pCR
of NAC in breast cancer based on the pre- and post-treatment
US information of patients reported prediction performance that
was slightly higher than ours. This may be related to the fact that
the mass after complete chemotherapy is more reflective of the
internal state of the tumor than the mass after early
chemotherapy. This study focused on making a comprehensive
prediction of the efficacy of the tumor after complete NAC and
before surgery. Compared to that study, our greatest advantage is
that NAC responses can be evaluated pre-treatment and early-
trial-treatment, and there is no need to complete a full
chemotherapy regimen for several months. Patients who are
predicted to be non-responders could have a modified
chemotherapy regimen, proceed directly to surgery, or
investigate other treatment options. Early knowledge of patient
response to chemotherapy allows early intervention and
potential adaptation of a more personalized therapy.

This study has some limitations that should be acknowledged.
First, due to patients’ own conditions, namely, breast density,
mass size and location, and fat layer thickness, to obtain clearer
imaging, each instrument parameters of the patient such as
imaging depth, imaging focus, 2-D and color gain size were
not consistent. Thus, it is hard to evaluate whether different
parameters would affect the performance of the model. Second,
the present study was a single-center research study. Although
the nomogram has been evaluated to have a good predictive
performance in an independent validation cohort, further
additional investigations at other centers is necessary to assess
the reliability of this prediction model.

In conclusion, breast US imaging at pre-treatment and early
treatment (after completion of two cycles of chemotherapy)
provides prognostic information on tumor response for NAC.
We developed a NAC response prediction model based on pre-
treatment and early treatment US imaging and significant
clinical characteristics (Ki-67 expression) using a radiomics
Frontiers in Oncology | www.frontiersin.org 11
approach and obtained good predictive performance. Both
nomogram and radiomics signature can be used as tools to
assist clinicians in assessing NAC response in breast cancer
patients, which can serve as an effective diagnostic reference
for determination of NAC efficacy and timely guide treatment.
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