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molecular subtypes in clear cell
renal cell carcinoma to
characterize immunological
characteristics and guide therapy
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Jie-Xin Zhang1,2*, Peng-Fei Shao3* and Hua-Guo Xu1,2*
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Background: Recently studies have identified a critical role for interferon

regulatory factor (IRF) in modulating tumour immune microenvironment (TME)

infiltration and tumorigenesis.

Methods: Based on IRF1-9 expression profiles, we classified all ccRCC samples

into three molecular subtypes (clusters A-C) and characterized the prognosis and

immune infiltration of these clusters. IRFscore constructed by principal

component analysis was performed to quantify IRF-related subtypes in individual

patients.

Results: We proved that IRFscore predicted multiple patient characteristics, with

high IRFscore group having poorer prognosis, suppressed TME, increased T-cell

exhaustion, increased TMB and greater sensitivity to anti- PD-1/CTLA-4 therapies.

Furthermore, analysis of metastatic ccRCC (mccRCC) molecular subtypes and

drug sensitivity proved that low IRFscore was more sensitive to targeted therapies.

Moreover, IRFscore grouping can be well matched to the immunological and

molecular typing of ccRCC. qRT-PCR showed differential expression of IRFs in

different cell lines.

Conclusions: Evaluating IRF-related molecular subtypes in individual ccRCC

patients not only facilitates our understanding of tumour immune infiltration, but

also provides more effective clinical ideas for personalised treatment.

KEYWORDS

ccRCC, IRF family, tumour microenvironment, t cell exhaustion, immunotherapy,
targeted therapy
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Introduction

As the most common pathological subtype of kidney cancer, clear

cell renal cell carcinoma (ccRCC) is the least malignant but has a high

metastatic rate of up to 60% (1). Patients with advanced metastatic

kidney cancer are mostly treated with drug therapy, including

targeted therapy and immunotherapy (2, 3). Targeted therapies

specifically target certain mutated genes or abnormal proteins,

which cause less damage to normal cells (4, 5). Some

immunotherapeutic drugs are widely used and achieve significant

efficacy (2). Actually, researchers found that immunotherapeutic

drugs combined with targeted drugs were more effective than

monotherapy, which represents a gradual shift in treatment options

for kidney cancer towards targeted combination immunotherapy (6).

Interferon regulatory factors (IRFs), can regulate interferons

transcriptional modification to fight pathogenic infections (7). Multiple

studies confirmed that IRFs regulate tumour immune activity and

tumorigenesis. For example, IRF7 high expression potently induces

CD8+ T cell responses and strengthens host immune surveillance to

fight viral infection and restrict tumour metastasis (8); IRF9 effectively

prevents CD8+ T cell exhaustion caused by over-exposure to antigens

(9). These results provide a theoretical basis for future studies on tumour

immune mechanism and therapeutic applications of IRFs.

In this work, three IRF-related clusters were constructed in ccRCC,

and clinical and immune characteristics were assessed between three

clusters. Furthermore, we proposed to calculate IRFscore to quantify IRF

subtypes in individual patients and proved that IRFscore is highly

correlated with patient prognosis, immune infiltration, T-cell

exhaustion and treatment. This work will assist clinicians to better

understand and differentiate ccRCC immunological and molecular

subtypes, and formulate individualised treatment.
Materials and methods

Data sources and pre-processing

Figure S1 illustrated the workflow for this study. We searched and

downloaded ccRCC expression datasets with complete clinical

annotation and mutations from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. Two datasets

(TCGA-KIRC and GSE36895 datasets) were analysed in this work.

For TCGA-KIRC dataset, we obtained gene expression data from

UCSC website (https://xenabrowser.net/datapages/) and converted

them to kilobase per million values. GSE36895 dataset were

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/). “Sva”

package was performed for correcting batch effects in two datasets

(10). Samples lacking complete clinical information and mutation

data were excluded. Clinical information was summarised in Table S1.
Cell culture

Human renal tubular epithelial cells (HK-2) and ccRCC cell lines

(786-O and Caki-1) were obtained from the Cell Bank of the Chinese
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Academy of Sciences (Shanghai, China). These cells were cultured in

DMEM or RPMI-1640 medium containing 10% fetal bovine serum

and 1% streptomycin-penicillin. All cells were incubated in a sterile

incubator at 5% CO2 and 37°C.
RNA isolation and quantitative
real-time PCR

TRIzol reagent (Invitrogen, USA) was applied to isolate and

ex t r a c t t o t a l RNA f rom the c e l l s . NanoDrop 2000

spectrophotometer (Thermo Scientific, USA) was applied for

evaluating of RNA quantity control and concentration. Reverse

Transcription Kit (Takara, China) was applied to reverse transcribe

total cellular RNA into cDNA. ABI 7500 real-time fluorescence

quantitative PCR instrument was designed for carrying out qRT-

PCR process. The cycling threshold (Ct) for each gene was recorded

and 2-DDCt method was applied to calculate gene mRNA expression.

All experiments were repeated 3 times and procedures were carried

out according to reagent instructions. Primer sequences were listed in

Table S2.
Unsupervised clustering of IRF1-9

Unsupervised clustering analysis were applied to identify IRF-related

molecular subtypes. Consensus clustering algorithm was performed for

determining the number of clusters. “ConsensuClusterPlus” package was

employed to perform consistency clustering analysis (11). The process

was repeated a thousand times to ensure consistency of classification.
Gene set variance analysis

GSVA is a non-parametric unsupervised analysis method that

transforms gene expression matrices into gene set expression

matrices to evaluate gene set enrichment results of transcriptome

(12). Based on the “c2.cp.kegg.v6.2.symbols” gene set obtained from

MSigDB database, GSVA analysis was conducted using

“GSVA” package.
Estimation of immune infiltration

Single sample gene set enrichment analysis (ssGSEA) was

performed to assess immune infiltration levels based on immune

cell-specific gene expression. The immune gene set file is derived from

Charoentong et al (13, 14). ESTIMATE algorithm calculates immune

and stroma score to estimate the amount of stroma and immune cells

and compute tumour purity (15). CIBERSORT is designed to

calculate the composition ratio of the 22 immune cells. 22 immune

cell expression data are taken from CIBERSORT website (https://

cibersort.stanford.edu/) (16). Considering that CD4 naive T cells was

0 in all ccRCC samples, CIBERSORT algorithm only analysed

remaining 21 immune cells.
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Identification of DEGs and
functional annotation

“limma” package is applied to filter differentially expressed genes

(DEGs) between clusters (17). Genes with adjusted P-value<0.001

were recognized as DEGs. “ClusterProfiler” package is intended for

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and

Genomes) enrichment analysis of DEGs (18).
Construction of IRFscore

Univariate COX regression screened for prognosis-related DEGs.

Principal component analysis (PCA) was performed for constructing

IRF gene signature. PC1 and PC2 were used as feature scores to

calculate IRFscore for individual samples (19). IRFscore = ∑ (PC1i +

PC2i), where i represented DEGs’ expression.
Validation of the clinical value of IRFscore

The TCGA-KIRP and TCGA-KICH cohorts were used to validate

the clinical performance of the IRFscore. Information on both queues

can be downloaded from the online website (https://portal.gdc.cancer.

gov/).
IPS analysis

The four different immunophenotypic scores (antigen-presenting,

effector, suppressor, checkpoint) are calculated separately by

immunophenoscore (IPS), IPS z-score is the integration of the four,

and the higher the IPS z-score, the more immunogenic the sample

(20). IPS was obtained from The Cancer Immunome Atlas (https://

tcia.at/home).
Drug sensitivity analysis

GDSC (https://www.cancerrxgene.org/) database contains

massive genomic data on tumour therapeutics and drug sensitivity

data (21). We predicted the response of ccRCC patients to five

chemotherapeutic agents, including sunitinib, sorafenib, nilotinib,

temsirolimus and pazopanib. “pRRophetic” package was performed

for quantifying the half maximal inhibitory concentration (IC50).
Statistics analysis

Protein-protein interaction (PPI) network maps between IRFs

was obtained from STRING database (22). Wilcoxon rank sum test

was designed to comparative analysis of two groups, Kruskal-Wallis

and one-way ANOVA was designed to calculate differences between

three and more groups. Spearman correlation analysis was designed
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to determine correlation coefficient. Kaplan-Meier and log-rank test

were performed for plotting survival curves and calculating statistical

differences. Multivariate COX regression analysis was conducted to

detect independent prognostic factors. “maftools” package was

conducted to describe mutations. Statistical analyses were all two-

sided and P<0.05 was considered statistically different. All data were

analysed by R software (version 4.1.1).
Results

Expression pattern and clinical relevance of
IRFs in ccRCC

IRF1-9 were included in this work. First, we analysed mRNA

expression levels of IRFs in TCGA and GSE36895 cohort,

respectively. IRFs were severely imbalanced in expression and the

results of both databases remained largely consistent (Figures 1A, B).

All genes were up-regulated in ccRCC except IRF6. ROC and PCA

analysis indicated that IRFs can distinguish well between ccRCC and

normal samples (Figures 1C-E). We then used two databases, CTPAC

and HPA, to compare differential protein expression. CTPAC

database results were consistent with the above database (Figure

S2A). Figure S2B illustrated that in HPA database, IRF1, IRF3,

IRF7-9 were upregulated in tumour, while the opposite is true for

IRF6. IRF2 was highly expressed in both tissues. IRF4 and IRF5 were

low or undetectable in both tissues. Furthermore, we observed that

IRFs were highly correlated in expression (Figure 1F) and interacted

with each other in PPI network (Figure 1G).

To validate IRFs mRNA expression, we performed qRT-PCR

analysis in three cell lines. Most IRFs were more highly expressed in

tumour cells (Figure 2), which is generally consistent with the results

above. Furthermore, we noted that IRFs were expressed with cell

specificity in different cells (Figure S2C).

We then discussed clinical relevance of IRFs. We found that most

IRFs were correlated with prognosis (Figure 1F and S2D). IRF6

exhibited a tumour suppressive profile and its expression was

positively correlated with prognosis. In contrast, the higher the

expression of other IRFs, the worse the prognosis of patients.
Identification of IRF-related subtypes
in ccRCC

Using an unsupervised clustering approach, we classified ccRCC

patients into different subtypes. We ultimately identified three IRF-

associated molecular subtypes, termed IRF Cluster A-C (Figure 3A

and S3A-C). Heat maps illustrated the relationship between three

subtypes and clinicopathological features (Figure S3D). Prognostic

analysis pointed to a much higher survival advantage for cluster B

(Figure 3B). By analysing IRF expression profiles, we observed higher

expression of protective factors (IRF6) in cluster B, while the opposite

was true for risk factors (e.g. IRF3 and IRF7) (Figure 3C). This

laterally explained why cluster B had a better prognosis.
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Immune characteristics of different IRF-
related subtypes

GSVA analysis was performed to characterise different biological

properties. Multiple immune activation-related pathways, including T

and B cell receptor signalling pathways accumulated in cluster C

(Figures 3D, E and S3E). Cluster B enriched for some matrix

activation pathways, whereas cluster A was mainly associated with

immunosuppression and base excision repair. We then proceeded to

analyse TME immune infiltration. First, we evaluated 23 immune cell

infiltrations using ssGSEA, and almost all immune cells were heavily

infiltrated in cluster C (Figure 3F). We then ran ESTIMATE

algorithm to calculate stromal and immune cell content.

Apparently, cluster C had much higher immune and stromal

scores, signifying that cluster C had lowest tumour purity

(Figure 3G). However, no matching survival advantage was found

for cluster C with this immune profile. Therefore, we counted the

relative proportions of cell subpopulations via CIBERSORT. CD8+ T

cells and M2 macrophages were more predominant (Figures S3F-G).

Typically, the higher the expression of CD8+ T cells, the more positive

the prognosis (23). Interestingly, we observed the greatest proportion

of CD8+ T cells in cluster C and the lowest in cluster B, which is

opposite to the prognosis. Researches have revealed that CD8+ T cells

are exhausted in ccRCC and secrete numerous immune checkpoints,

including PD-1 and CTLA-4. At this point, the higher the intensity of

CD8+ T cell infiltration, the worse the prognosis of ccRCC (24). Here,

we analysed T cell exhaustion-related immune checkpoint expression.

Most checkpoints were highest in cluster C (Figure 3H). Combining

with previous studies, we speculated IRFs may regulate T-

cell exhaustion.
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Comprehensive analysis of IRFs-
related DEGs

To further characterise biological functions of IRF-related

subtypes, we filtered 547 DEGs from three subtypes and performed

functional enrichment analysis (Figure 4A). These DEGs participated

in many immune cell activation and proliferation-related pathways

(Figures 4B, C). This implied that IRF-associated DEGs are actively

engaged in immune processes and modulating immune infiltration.

Subsequently, univariate COX regression analysis was performed to

identify 426 prognosis-related DEGs (Table S3). Similarly, we ran

unsupervised cluster analysis on 426 DEGs and identified three gene

clusters, termed IRF gene Cluster A-C (Figures S4A-D). Similarly, we

compared clinicopathological characteristics and immune infiltration

between different gene clusters and found that gene cluster A had

superior prognostic prospects (p<0.001, Figures 4D and S4E). Except

for IRF6 and IRF8, the remaining risk genes were expressed in gene

clusters in the order C, B and A (Figure 4E). CD8+ T cells and MDSC

had lowest infiltration intensity in Cluster A (Figure 4F). This

accounted for the greatest survival advantage of gene cluster A.

Overall, the concordance of prognostic and immune infiltration

characteristics among gene clusters justified this classification.
Establishment of IRF gene signature and its
clinical characteristics

PCA analysis was conducted on 426 DEGs and IRFscore were

calculated to accurately quantify individual IRF-related molecular

subtypes. The samples were divided into high and low IRFscore
B C

D E F

G

A

FIGURE 1

Landscape of IRFs expression in ccRCC. (A-B) Boxplot of IRFs expression in ccRCC and normal tissues from TCGA database (A) and GSE36895 (B).
(C) ROC curves demonstrate IRF family ability to differentiate between tumour and normal tissue. (D-E) Principal component analysis for the expression
profiles of IRFs to distinguish tumours from normal samples in TCGA database (D) and GSE36895 (E). (F) The interaction between IRFs in ccRCC. (G) The
PPI network of IRFs. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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groups following the threshold values determined by “survminer”

package. Figures 5A-C exhibited the variation in attributes of

individual patients in different clusters. Figure 5D demonstrated

IRFs expression profiles in two groups. Prognostic analysis revealed

that the higher the IRFscore, the worse the prognosis

(p<0.001, Figure 5E).

Next, we proceeded with a stratified prognostic analysis by

different clinical characteristics. First, we observed a higher

proportion of patients with advanced tumours were in high-
Frontiers in Oncology 05
IRFscore group (p<0.05, Figure S5A). Patients with VHL, PBRM1

and BAP1 mutations also had higher IRFscore, although not

statistically different (Figure S5B). Stratified prognostic analysis

revealed that low IRFscore consistently showed marked survival

advantages (p<0.05, Figure S5C). Multivariate Cox regression

analysis proved that IRFscore could be independent prognostic

factor (Table S4). ROC curves and nomograms demonstrated the

performance of IRF scores in predicting patients’ rates at 1, 3, 5 and 7

years (AUC≥0.666, Figures 5F, G).
FIGURE 2

RT-PCR analysis of IRF1-9 expression levels in 786-O, Caki-1 and HK-2 cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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B C

D E

F G H

A

FIGURE 3

The IRF-related molecular subtypes in ccRCC and biological and immune characteristic of each pattern. (A) PCA for the transcriptome profiles of three
IRF clusters. (B) Survival analyses of three IRF clusters. (C) The expression of IRF1-9 in three IRF clusters. (D-E) GSVA enrichment analysis showing the
activation states of biological pathways in distinct clusters. (F) The abundance of each TME infiltrating cell in three clusters. (G) Box plot indicated the
correlation between IRF clusters and immune scores, stromal scores and estimate scores. (H) The expression of most immune checkpoints among
distinct IRF clusters. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
B C

D E F

A

FIGURE 4

IRF gene clusters in ccRCC and biological characteristics of each gene cluster. (A) 547 IRF-associated DEGs shown in venn diagram. (B-C) GO (B) and
KEGG (C) enrichment analysis on these DEGs. (D) Survival analyses of three IRF gene clusters. (E) The expression of IRFs in three gene clusters. (F) The
abundance of each TME infiltrating cell in three gene clusters. **p < 0.01; ***p < 0.001
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Further validation of IRFscore’s
prognostic performance using
two independent cohorts

To gain insight into IRFscore’s prognostic value, we further

validated the effectiveness of IRFscore in predicting papillary renal

cell carcinoma (KIRP) and kidney chromophobe (KICH) prognosis.

Based on previous PCA results obtained from 426 DEGs, IRFscore

was re-established and survival analyses were performed. In KICH,

the prognosis was significantly better in low IRFscore group, while the

opposite was true in KIRP (P<0.05, Figures S5D, E). This suggested

that IRFs are responsible for renal cancer progression, but for specific

efficacy, it depended on cancer type.
Association between IRFscore and CD8+ T
cell exhaustion

To uncover how IRFscore works in regulating TME, we examined

immune infiltration in two groups. High IRFscore group had a more

significant immune infiltration (Figures 6A, B). Furthermore, we found

that CD8+ T cells andM2macrophages accounted for largest proportion

in both groups (Figure 6C). Therefore, we speculated that these cells

probably function primarily in ccRCC progression. Previous studies

demonstrated that immune dysregulation occurs in advanced ccRCC

(25), when massive exhausted T cells and M2 macrophages are
Frontiers in Oncology 07
simultaneously enriched in TME and substantial receptor-ligand

interactions exist between two cells leading to worse prognosis (26).

Table S5 listed receptors or ligands expressed by two cells. Expression

analysis revealed that most co-stimulatory receptors, except for HAVCR2

and BTLA, were significantly overexpressed in high IRFscore group

(Figure 6D). This suggested that CD8+ T cells in high IRFscore were

mostly in exhausted state. However, a matching profile of M2

macrophages was not observed in high IRFscore group (Figure S6A).

These results indicated that IRFs may not participate in interaction of

exhausted T cells with M2 macrophages.

Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues that

surround the tumour. The higher the density of its presence, the better

the patient’s prognosis (27). In ccRCC, TLS not only occurs significantly

less frequently than other cancers, but also becomes dysfunctional (28).

Interestingly, when TLS density and mature DCs are increased in ccRCC,

a group of patients with high CD8+ T-cell infiltration and good prognosis

emerges (29). This contradicted previous findings that CD8+ T cells

cause worse prognosis in ccRCC (23). Therefore, scientists assumed that

the emergence of TLS and mature DCs could be one reason for reduced

T-cell exhaustion (30).We extracted TLS-relatedmarkers from published

literatures, including three chemokines (CCL19, CCL21 and CXCL13)

and two TLS-DC-related markers (HLA-DR and CD83). HLA-DR,

CD83 and CCL13 were significantly upregulated in low IRFscore,

while only CCL19 was downregulated (Figure 6E). Thus, we

hypothesized that increased presence of TLS and mature DCs in low

IRFscore may enhance ccRCC prognosis by reducing T-cell exhaustion.
B C

D E F

G

A

FIGURE 5

Construction of IRF signatures. (A) Alluvial diagram showing the changes of IRF cluster, gene cluster, IRFscore and patient survival status. (B-C)
Differences in IRFscore among three gene clusters (B) and IRF clusters (C). (D) The expression of IRF1-9 in two IRFscore groups. (E) Kaplan-Meier survival
analysis for two IRFscore groups. (F) ROCs for 1-, 3-, 5-, and 7-year survival time based on IRFscore. (G) Nomograms incorporating IRFscore and clinical
characteristics for predicting patient 1-, 3-, 5-year survival. ns, not significant; ***p < 0.001.
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The role of IRFs in TMB and therapy

Many studies proved that the more genetic mutations a tumour has,

the more abnormal proteins it produces and the more likely the immune

system is to be activated. This implied that tumour mutational burden

(TMB) is somewhat predictive of immunotherapy effects (31).

Furthermore, TMB can accurately predict multiple targeted and

chemotherapeutic drug effects (32). Generally, the higher the TMB, the

better the treatment effect. In this work, quantitative analysis and

correlation analysis confirmed a positive correlation between IRFscore
Frontiers in Oncology 08
and TMB (Figures S6B-C). Survival analysis proved that lower TMB

predicts a good prognosis (p<0.001, Figure 6F). We further assessed the

synergistic effect of these two scores in prognosis. Stratified survival

analysis indicated that TMB and IRFscore did not interfere with each

other, with IRFscore showing significant survival differences in two TMB

subgroups (p<0.001, Figure 6G). This meant that IRFscore could serve as

a prognostic indicator independent of TMB.

Next, we discussed the performance of IRFscore in predicting

targeted therapy efficacy. We compared estimated IC50 of five drugs

(Figures 7A-E). Except for pazopanib, IC50 levels for remaining drugs
B C

D E F

G

A

FIGURE 6

immune characteristics and somatic variants in IRFscore groups. (A) The abundance of each TME infiltrating cell in two IRFscore groups. (B) The immune
scores, stromal scores and estimate score difference in high and low IRFscore groups. (C) The relative fraction of each TME-infiltrated cell in two
IRFscore groups. (D) The differences in the receptors or ligands expressed by exhausted T cells between two IRFscore groups. (E) The differences in TLS-
related markers between two IRFscore groups. (F) Kaplan-Meier survival analysis for two TMB score groups. (G) Kaplan-Meier survival analysis for patients
stratified by IRFscore and TMB score. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
B C D E

F G H I

A

FIGURE 7

IRFscore in the role of ccRCC clinical therapies. (A-E) Box plot showing the sensitivity of patients with high and low IRFscore subgroups to
chemotherapy drugs, including sunitinib (A), sorafenib (B), nilotinib (C), temsirolimus (D) and pazopanib (E). (F-I) The association between IPS and
immune checkpoints in ccRCC patients with different IRFscore.
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were significantly higher in low IRFscore, meaning that low IRFscore was

more sensitive to these drugs (p < 0.001). We then investigated the

association between IRFscore and immune checkpoint inhibitor (ICI)

therapy by IPS. Figures 7F-I depicted that four IPS scores were

significantly higher in high IRFscore (p<0.001), signifying that higher

IRFscore may have higher immunogenic phenotypes and be more

sensitive to ICIs. Additionally, the higher the frequency of PBRM1

mutations, the better the outcome of anti-PD-1 treatment was found

(26). Figure S5B demonstrated that PBRM1 mutations were more

frequent in high IRFscore. Above results indicated that low IRFscore

group may be more sensitive to targeted therapies, while high IRFscore

subgroup were more sensitive to immunotherapy.
Degree of matching of IRFscore
groups to ccRCC immunological
and molecular subtypes

Numerous studies indicated that patient response to treatment

options can be predicted by different tumour subtypes (33). We

therefore sought to understand whether ccRCC-related phenotypes

could explain why IRFs influence treatment outcome and analysed the

extent to which IRFscore-related subgroups matched these tumour

phenotypes. First, combining immune infiltration characteristics

(Figures 6A-C), we hypothesized that high IRFscore group matched

immune-inflamed phenotype, whereas low IRFscore group matched

immune-desert phenotype. Generally, immune-inflamed phenotype

was more responsive to anti-PD-L1/PD-1 therapies. In contrast,

immune-desert phenotypes had no or the weakest response (34). This

was consistent with our previous prediction that high IRFscore group was

more sensitive to ICI therapies (Figures 7F-I).

Generally, targeted therapies are more effective in metastatic ccRCC

(mccRCC) than other treatments (2, 3). To accurately predict the

effectiveness of tyrosine kinase inhibitor (TKI) therapy in mccRCC,

Benoit et al. identified four mccRCC molecular subtypes with different

therapeutic effects on sunitinib based on tumour gene mutations, copy

number variants (CNV) and methylation status (35). To determine

whether this typing was applicable to our work, we collated the

distribution of these features across two groups and summarised in

Table S6 and Figures S6D-L. We considered that high IRFscore group

may correspond to mccRCC 1/4 group, characterised by poor prognosis,

low sunitinib sensitivity, increased methylation levels, slightly higher

VHL and PBRM1 mutations, higher CNV, highly inflammatory

immunosuppressive environment and low stem cell differentiation

(Figures S6D-L). In contrast, low IRFscore group corresponded to

mccRCC 2/3 group, which has the opposite characteristics. Although

not all features match exactly, in general we assume that mccRCC

subtypes can be applied to describe IRFscore grouping. These results

pointed that IRFscore groupings can be well matched to ccRCC

immunological and molecular typing, indicating that optimal treatment

can be selected according to each patient’s tumour subtype.
Discussion

Numerous studies highlight the important role of IRFs in

regulating host immune responses and tumorigenesis. To date,
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most studies focused on single IRF and still lack a comprehensive

understanding of how entire IRF family integrally regulates cancer

development and TME. In our research, we focus on the value of

IRF1-9 in modifying ccRCC TME and treatment.

Different ccRCC molecular subtypes and their characteristics

have been identified through transcriptome analysis. In our study,

we identified three distinct IRF-related subtypes, each with different

prognostic and immune characteristics. Combining with previous

studies, we hypothesized that cluster C corresponded to immune-

inflamed phenotype characterised by massive immune cell infiltration

(33). Unlike three immune phenotypes (immune-inflamed, immune-

excluded and immune-desert phenotype) that are widely recognised

in other tumours (33), David et al. argued that immune-excluded

phenotype is rare in ccRCC (25). Thus, combining immune

infiltration, we hypothesized that clusters A and B correspond to

immune-desert phenotype with low immune infiltration (33).

Previous studies demonstrated that CD8+ T cells are exhausted in

ccRCC, when the greater the cellular infiltration, the worse the

prognosis (28). By analysing the proportion and degree of immune

cell infiltration, we observed that Cluster C exhibited significant CD8

+ T cell exhaustion characteristics, while Cluster B had relatively few.

Comprehensive analysis of prognostic and immunological features

plausibly explained why Cluster C had the worst prognosis despite

being immunologically activated, while the opposite was true for

Cluster B. This meant that immunophenotypic classification of

different IRF-related subtypes was reasonable and valid.

According to these DEGs, we classified ccRCC into three distinct

gene subtypes, which also have different clinical and immunological

profiles. This reaffirmed IRFs’ potential value in predicting survival

and shaping different TMEs. Given individual heterogeneity in IRFs

expression, we quantified IRF-related molecular subtypes in

individual ccRCC patients accurately by IRFscore. Comprehensive

analysis suggested that IRFscore not only correlated significantly with

clinical features, but also served as an independent prognostic factor.

Besides, several mutation-prone genes in ccRCC, including PBRM1,

VHL and BAP1, were mutated more frequently in high IRFscore

group. It has been well established that these mutations indicate a

poor prognosis for patients (36) and PBRM1 mutations substantially

increase patient susceptibility to targeted therapies and

immunotherapy (37). These results indirectly indicated potential

value of IRFscore in predicting patient prognosis, suggesting that

IRFs may be critical factors in affecting ccRCC treatment efficacy.

During chronic infection or cancer with continuous antigen

stimulation, T cells fail to differentiate effectively into effector and

memory T cells, at which point they gradually lose their original effect

and become exhausted. This process is accompanied by massive

inhibitory receptors (IRS) expression (24). In ccRCC TME,

interactions between exhausted CD8+ T cells and M2-like

macrophages cause immune dysfunctional circuits (25, 26).

However, by analysing two cell infiltrations and corresponding

receptor (ligand) expression in IRFscore groups, we did not find

significant interactions between two cells. This indicated that IRFs

may not regulate this interaction. TLS, existing around the tumour,

consists of a B-cell follicular zone with a germinal centre and a T-cell

zone with DC-Lamp+ mature DCs (27). During TLS formation,

CCL19 and CCL21 recruit immune cells in vicinity of high

endothelial vein to form T, B cell areas. CXCL13 recruits lymphoid
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tissue-inducing factors and initial B cells to inflammatory site and

TLS-B cell area, respectively. A reduced risk of death and recurrence

of ccRCC has been found when increased frequency of TLS is

accompanied by increased CD8+ T-cell infiltration, contradicting

the previous belief that CD8+ T cells cause poorer prognosis (29).

Therefore, researchers pointed that increased mature TLS in ccRCC

may be relevant to reduced T-cell exhaustion (30). In our study, TLS

and mature DCs were more frequent in low IRFscore group (high

prognosis) and accompanied by reduced CD8+ T-cell exhaustion. We

speculated that IRF may improve patient prognosis by influencing

TLS frequency.

Targeted therapy is preferred for mccRCC as it is not effective

against conventional chemotherapy and radiotherapy (3). Widely

recognised kidney cancer targeted agents fall into two categories,

TKI and mTOR inhibitors, acting through VHL/HIF/VEGF and

PI3K/AKT/mTOR signalling pathways respectively (4). Some TKI

drugs, including sorafenib and sunitinib, can slow down neo-

angiogenesis by blocking VEGF (38). Temsirolimus and

everolimus, as mTOR pathway inhibitors, can block mTOR

proteins to exert therapeutic effects (4). Benoit et al. constructed

mccRCC-related molecular markers to predict patient response to

treatment with sunitinib and identified four different molecular

subtypes (mccRCC1-4) (35). Interestingly, we found that high

IRFscore matched mccRCC1/4, while low IRFscore matched

mccRCC2/3. Therefore, we proposed that IRFscore not only

serves as a marker for mccRCC typing, but also predicts targeted

therapeutic efficacy. ICIs restore T-cell anti-tumour activity by

blocking intra-tumour immunosuppressive signalling (6). PBRM1

mutations, TMB and tumour immunophenotypes influence ICI

efficacy to some extent. In this work, we revealed significant

associations between IRFscore and PBRM1 mutations, TMB and

immunotype and confirmed the predictive value of IRFscore in

immunotherapy efficacy.

Due to technical limitations, most conclusions in this paper

were based on information from public databases. In future,

appropriate clinical cohorts and basic trials will be required to

address these issues.
Conclusion

The IRFscore, constructed based on the transcriptomic expression

of the IRF family, has independent prognostic value and can provide

accurate survival prediction for ccRCC patients. Furthermore,

IRFscore can help us to comprehensively assess the IRF-related

immune and molecular subtypes in individual patients and guide

more effective individualised clinical treatment.
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