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Bone metastases, as one of the common types of metastatic tumors, have a

great impact on the survival period and quality of life of patients. Bone

metastases are usually characterized by bone destruction. Skeletal related

events caused by bone destruction often lead to pain, pathological fractures

and even paralysis. In this review, we provide a detailed explanation of bone

metastases from the epidemiology, clinical features, pathogenesis, and

recently developed clinical treatment viewpoints. We concluded that the

incidence of bone metastases is increasing gradually, with serious clinical

symptoms, complex pathogenesis and diverse clinical treatment. Tumor

cells, immune cells, osteoblasts/osteoclasts and other cells as well as

cytokines and enzymes all play a key role in the pathogenesis of bone

metastases. We believe that the future treatment of bone metastases will be

diversified and comprehensive. Some advanced technologies, such as

nanomedicine, could be used for treatment, but this depends on

understanding how disease occurs. With the development of treatment, the

survival time and quality of life of patients will be improved.
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1 Introduction

Bone metastases are malignant tumors that colonize bone through such as

hematogenous metastases to form bone lesions (1). They are a common complication

of many malignant tumors and may lead to poor prognosis (2). As a kind of disease, the

epidemiological and pathological features of bone metastases are more complex than

those of other malignant tumors. With the development of comprehensive tumor

therapy, the survival time of tumor patients has been extended, and the occurrence

probability of bone metastases has also shown an increasing trend (3). Once a patient is

diagnosed with bone metastasis of malignant tumor, the prognosis will be significantly
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worse and the quality of life will be significantly decreased.

Related complications will significantly increase the financial

burden of patients and families (4). Therefore, bone metastases

of malignant tumors have gradually attracted extensive attention

from clinicians and clinical researchers. With the development

of relevant scientific experiments and clinical studies, clinicians’

views on the treatment of bone metastases are constantly being

updated, from the previous negative conservative treatment and

analgesic treatment to the current personalized comprehensive

treatment such as surgery, radiotherapy, chemotherapy and

targeted therapy, which improves the quality and survival time

of patients (5). Multidisciplinary cooperation has also helped

improve the quality of life of patients with bone metastases. A

variety of medical concomitant symptoms and drug side effects

can be diagnosed and treated in time. In addition, based on the

development of scientific research in related fields, some newer

fields, such as the diagnosis and treatment of bone metastases

with nanomaterials, are developing rapidly. In view of the

important role of bone metastases in bone and soft tissue

tumors, we reviewed the epidemiology, pathogenesis and

clinical treatment of bone metastases in order to provide

necessary guidance for the development of related disciplines.
2 Epidemiological, pathological and
clinical features of bone metastases

According to the existing epidemiological data, bone

metastases can appear in many types of malignant tumors,

especially breast cancer, lung cancer, prostate cancer, kidney

cancer and thyroid cancer (6). Bone metastases have been

reported in 40% of non-small cell lung cancer (7). More than

70-85% of patients with advanced prostate cancer develop bone

metastases (8). The incidence of bone metastases in

differentiated thyroid carcinoma(DTC) ranges from 1% to

20%. About 44% of metastatic DTC patients have lesion that

has spread to bone (9). About 75% of patients with advanced

breast cancer develop bone metastases (10). Bone metastases

have been reported in 30% of patients with renal cell carcinoma

(RCC) (11). Some reports concluded that bone is the second
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most common site of RCC metastasis (12, 13). About 35-40% of

patients with RCC metastases are bone related (12). In addition,

cancers such as bronchial carcinoma often cause bone

metastases (14). The incidence of bone metastases in

gastrointestinal cancer is relatively low (14). According to

current clinical observation, it is rare for gastrointestinal

tumors to develop bone metastases without liver and lung

metastases. The relevant data is described in Table 1.

Clarifying the relevant epidemiological data of bone metastases

has important clinical significance, which can help clinicians to

make a comprehensive assessment of patients with related

malignant tumors and develop appropriate follow-up protocols.

The pathological features of bone metastases are also varied.

For common bone metastases, some bones show a higher

incidence, such as the spine, pelvis, femur, humerus and so on

(15). Studies have indicated that spinal metastases are common

in patients with advanced malignancies, with a reported

incidence of 30-50% (16, 17). The prevalence of spinal

metastases in some malignancies may even be as high as 70%,

with most metastases occurring in the thoracic spine (70%),

followed by the lumbar spine (20%) and the cervical and sacral

vertebrae (10%) (18, 19). Some long bones such as humerus and

femur may also exhibit bone metastasis. Guzik noted in his study

that about 10% of patients with primary malignant tumors

develop proximal femur metastases (20). In metastatic tumors

of the femur, 50% of the lesions occurred in the neck of the

femur, 30% occurred in the subtrochanteric site, and 20%

occurred in the intertrochanteric site, which may be related to

the local developed blood supply (20). Wedin et al. mentioned in

their study that the humerus is the second most common site of

bone metastases in long bones (21). The common metastatic

sites showed more cancellous bone and more abundant blood

circulation. In addition, different bone metastases have different

forms of bone damage. According to the changes of bone

content in the lesion, bone metastases are mainly divided into

osteoblastic lesions and osteolytic lesions (22). However, in some

patients with bone metastases, both lesions may be present (23).

Osteoblastic bone metastases are more common in prostate

cancer (24, 25). On the contrary, most of the bone metastases

of breast cancer, kidney cancer and other malignant tumors are
TABLE 1 A summary of the types of bone destruction, occurrence probability and common sites of bone metastasis.

Type of primary tumor Main type of bone destruction Proportion of metastasis Common site of metastasis

Lung cancer Osteolytic destruction 40% Spinal metastases:
——thoracic vertebra (70%)
——lumbar vertebra (20%)
——Cervical and sacral vertebrae (10%)
Pelvis;
Femur:
——Neck of the femur (50%)
——Subtrochanteric site (30%)
——Intertrochanteric site (20%);
Other parts of long bones.

Prostatic cancer Osteogenic destruction >70-85%

Breast cancer Osteolytic destruction 75%

Thyroid cancer Osteolytic destruction 1~ 20%

Renal carcinoma Osteolytic destruction 30%
The concluded data presented in the table are reported in partial typical literature. Relevant references are reflected in the preceding paragraphs.
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often presented as osteolytic lesions (26–29). Bone metastases of

lung cancer and thyroid cancer are also often presented as

osteolytic lesions (30, 31). It is important to identify the

relevant pathological mechanism for subsequent treatment.

The clinician can give appropriate clinical examination and

symptomatic treatment according to the type and location of

lesions that may occur. At the same time, the specific mechanism

of the lesion is also the key basis for the design of the treatment

of bone metastases.

Once bone metastases occur in malignant tumors, they often

present complicated symptoms, and the prognosis of patients is

often significantly worse. For example, bone metastasis is the

main cause of death in prostate cancer patients, and there is no

good treatment plan at present (32, 33). When bone metastases

occur in patients with DTC, the survival rate may be reduced by

more than 60% (34). Patients with bone metastases often

experience pain, spinal cord compression, pathological

fractures, and bone radiation; these symptoms are known as

skeletal-related events (SREs) (35, 36). SREs occurs in a large

number of patients with metastatic bone tumors, and brings

great difficulties to the treatment. For example, it has been

reported that 30-40% of patients with advanced lung cancer

develop bone metastases that lead to SREs, which causing

hypercalcemia, pathological fractures, spinal compression, and

bone pain, leading to a poor prognosis (14, 37). SREs associated

with bone metastases in prostate cancer have also been reported

(38). Although bone metastases of prostate cancer are mainly

osteoblasts, pathological fractures are still common (39). This

may be due to the fact that the mechanical properties and

structure of the diseased area are abnormal despite the “bone

formation”. Liu et al. mentioned in their study that more than

70-85% of patients with advanced prostate cancer develop bone

metastases, which are characterized by severe pain and an

increased possibility of fracture (8). Bone metastases with SREs

have been reported to induce lower survival rates (40). After

metastatic renal carcinoma metastases to the spine, pelvis and
Frontiers in Oncology 03
proximal femur, SREs such as pain, pathological fracture,

hypercalcemia and spinal cord compression may occur,

seriously affecting the quality and survival time of patients

(12). Particularly severe SREs include pathological fractures,

spinal cord compression and hypercalcemia requiring dialysis,

which can incapacitate the patient in a relatively short period of

time, and can quickly become life-threatening. In addition, due

to the comprehensive impact of SREs on patients with bone

metastases, the overall health of patients may deteriorate rapidly

in a short time, making it difficult for them to withstand

radiotherapy and chemotherapy with greater side effects.

Therefore, clinicians should detect, diagnose and treat patients

with bone metastases as early as possible, and take necessary

preventive measures for possible serious complications.

Laboratory and imaging tests such as X-ray, CT, MRI, bone

scans, and tumor markers should be considered and used if

necessary to achieve early and accurate diagnosis.
3 Advances in the pathogenesis of
bone metastases

At present, studies on the pathogenesis of bone metastases

are increasing, including the formation mechanism of bone

metastases and the pathogenesis of local bone destruction.

These scientific studies provide an important reference for

clarifying the pathophysiology and clinical treatment of

diseases. From the perspective of pathophysiology, bone

metastases are a comprehensive disease. Tumor cells,

osteoblasts/osteoclasts, immune cells and other components all

play an important role in the pathogenic process. The relevant

contents are shown in Figure 1. The pathogenesis and

development of bone metastases will be discussed from the

perspectives of tumor cells, osteoblasts/osteoclasts, immune

cells, cytokines and other possible aspects.
FIGURE 1

The role of different cell types in bone metastases.
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3.1 The role of tumor cells in the
pathogenesis of bone metastases

Metastatic tumor cells are one of the major players in bone

metastases. In essence, the occurrence of bone metastases is a

coordinated process in which malignant tumor cells leave the

primary site to spread to bone and survive in the bone

microenvironment (41). The metastases of malignant tumors

generally include tumor cells leaving the primary site, entering

the blood circulation and ectopic colonization. In particular, for

bone metastases, circulating tumor cells reside and become

dormant in the normal vascular of the bone marrow long

before clinically detectable metastases develop. Over time they

proliferate and regulate the function of bone resorption

(osteoclasts) and bone formation (osteoblasts) cells, leading to

the development of bone metastases (42). Tumor cells show a

tendency to metastasize more easily under certain conditions.

For example, the tumor has gene mutation, epithelial-

mesenchymal transformation, and metabolic changes. The

gene mutation of malignant tumor cells plays a key role in

bone metastasis. In a study by Huang et al. on the mechanism of

bone metastasis in lung cancer, 425 and 422 genomic alterations

were detected in primary and metastatic lesions respectively

(43). There were significant differences in tumor mutational

burden between primary lung adenocarcinoma and matched

bone metastases (43). This indicates that tumor mutational

burden may play a role in bone metastasis of lung cancer.

Arnold et al. mentioned in their study that the number of

somatic mutations in the site of bone metastasis was

statistically significantly higher than that in the site of primary

or soft tissue metastasis (44). Bartels et al. concluded through

their study that mutations in ESR1 are associated with estrogen

receptor expression as well as high proliferative activity, and

affect bone metastases in a part of estrogen receptor positive

breast cancers (45). However, the current researches on the

influence of gene mutation on the occurrence of bone metastases

are mostly reflected in the research level of epidemiological data

statistics, and there are few in-depth researches on the

mechanism. In the future, related research needs to be further

in-depth. In addition to some reported gene mutations,

epithelial mesenchymal transformation (EMT) in tumor cells

may also be an important factor promoting the occurrence of

bone metastases. EMT refers to the differentiation and

transformation process of epithelial cells into mesenchymal

cells, which is believed to be related to tumor progression

including tumor metastasis (46, 47). Several studies have been

published on the pathogenesis of the relationship between

epithelial mesenchymal transformation and bone metastases.

Liu et al. pointed out in their study that Notch3 was associated

with EMT and overexpressed in bone metastases of NSCLC, and

inhibition of Notch3 expression could reduce the invasion ability

of NSCLC cells in vitro (48). Epithelial mesenchymal
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transformation may also be associated with metastasis of

malignant tumors such as breast cancer and prostate cancer.

Horas et al. confirmed that the deficiency of vitamin D receptor

(VDR) in human breast cancer cells can promote can promote

EMT and the spread of cancer cells (49). In the study of the

pathogenesis of bone metastases, EMT is often mentioned (50,

51). Therefore, EMT can be used as a key breakthrough in future

research on the treatment of bone metastases. In addition,

metabolic changes of tumor cells are also considered to be a

key factor in the development of tumor metastasis (52). Studies

have shown that different tumor stem cells adapt to unique

metabolic characteristics for organ metastasis (53). Thysell et al.

analyzed the metabolism of bone metastasis in prostate cancer

and identified metabolites such as cholesterol that might be

associated with prostate cancer metastasis (54). In addition to

the mechanisms mentioned above, cancer stem cells (CSCs), a

new concept proposed in recent years, are also believed to be

closely related to bone metastasis of tumors (55). Based on

existing studies, we believe that in bone metastases of malignant

tumors, the tumor cells should usually be changed compared to

the primary site. Such changes may be at the genetic level, at the

metabolic level, or at the cellular phenotype level. However, the

specific changes of bone metastases in different malignancies

may be different, so specific studies are needed. At present, there

is still a relative lack of research on mutant genes or altered

metabolic functions. After the relevant epidemiological data are

revealed, more mechanism studies should be conducted to

identi fy the target of bone metastas is and design

corresponding interventions.
3.2 The role of osteoblasts/osteoclasts in
the pathogenesis of bone metastases

The role of osteoblasts/osteoclasts in bone metastases has

been studied for a long time, and many drugs are gradually being

completed in clinical trials. During the occurrence and

development of bone metastases, many pathological changes

are related to abnormal regulation of osteoblasts and osteoclasts.

Inhibition of osteoblasts and abnormal activation of osteoclasts

are often the key mechanisms of osteolytic metastases.

Osteoblasts and osteoclasts are the direct “executors” of bone

destruction in bone metastases, and their regulation may be

related to a variety of cells and factors, such as tumor cells,

immune cells and inflammatory factors (56–58). For osteoblasts

and osteoclasts themselves, Wnt/b-catenin pathway, RANK-

RANKL pathway and other pathways closely related to

osteogenesis/osteoclast process are the focus of research (59,

60). Wnt signaling pathway may play an important role in bone

metastasis of malignant tumors (61). The Wnt pathway and the

role of osteoblasts have attracted much attention since bone

metastases of prostate cancer are often manifested as osteoblastic
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lesions. Dai et al. showed in their study that prostate cancer can

promote osteoblast differentiation through classical and non-

classical Wnt signaling pathways and stimulate BMP-dependent

and BMP-independent osteoblast differentiation (62). However,

there are some different studies. Aufderklamm et al. have shown

that DKK-1, an inhibitor of the Wnt pathway, mediated

osteoblast inhibition contributes to prostate cancer progression

(63). The RANK/RANKL signaling pathway has also received

attention in bone metastases. This pathway mainly affects the

function of osteoclasts in the local microenvironment of bone

metastases. It has been suggested that the RANK/RANKL

signaling pathway is involved in the castration-insensitive

prostate cancer (64). SREs can be prevented with the RANKL

inhibitor Denosumab (65). Interestingly, RANKL connects bone

to the immune system, while RANK-RANKL is a regulator of

osteoclast development, lymph node development, bone

metabolism, and T cell/dendritic cell communication (66).

This suggests that the regulation of the RANK/RANKL

signaling pathway does not only affect osteoclasts. Not only

the above common pathways, but also the effects of other factors

on osteoblasts/osteoclasts have been extensively studied. For

example, osteoblasts may be negatively regulated by cancer

cells and appear apoptosis (67). The main mechanisms of

interaction and regulation of osteoblasts/osteoclasts with

tumor cells in osteolytic bone metastases are summarized in

Figure 2. In the future, some more detailed cell interactions on

osteoblasts/osteoclasts in bone metastases should be further

investigated, for example, the regulation of osteoblasts/

osteoclasts by exosomes produced by bone metastatic tumor

cells. RANK/RANKL and Wnt/b-catenin pathways are both

downstream signaling pathways. In bone metastatic cancer,

which signaling pathway changes may trigger the changes of

the above downstream pathways is a more valuable

research direction.
3.3 The regulatory role of cytokines
other key proteins (enzymes)

Different from cells, cytokines are a class of small molecules

that regulate cell function with a wide range of effects. Common

cytokines include interleukin(IL), tumor necrosis factor(TNF),

and so on (68). In the past few decades, cytokines and cytokine

receptors have been extensively studied as targets for cancer

treatment (69). In the pathogenesis of metastatic tumor,

cytokines may be secreted by tumor cells and immune cells,

and the target may include tumor cells, immune cells,

osteoblasts/osteoclasts, etc. There are many types of

interleukin, which is closely related to inflammation and

tumor growth, etc. At present, certain studies have been

conducted in bone metastases. Claudia et al. reported in their

review that IL-1B is important in the inflammatory process, and

influences the growth of bone metastases in breast cancer,
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including angiogenesis, etc. (10). IL-6 overexpression is also

associated with bone metastases (70). Interleukin is also

produced by osteoclasts to regulate tumor cells. The study of

He et al. showed that lung cancer cells induced osteoclasts to

secrete IL-19 to act on IL20RB on the surface of lung cancer cells,

thus promoting the proliferation and bone metastasis of lung

cancer cells (71). Tumor necrosis factor also plays an important

role in the development of bone metastases. Hamaguchi et al.

found that inhibition of TNF-a has a novel role in reducing or

preventing bone metastasis in breast cancer models (72).

Interferon has been less studied in bone metastases.

Chemokines are a class of cytokines secreted by cells, which

can induce the directed migration of nearby cells (73).

Chemokines play an important role in metastatic tumors

because they have an important effect on cell migration,

colonization and other processes. Chemokine/chemokine

receptor CXCL12/CXCR4 pathway and CCR3/CCL7 pathway

can be used as mediators in the process of bone metastasis and

may affect the colonization of tumor cells in bone (74, 75).

According to current studies, the interleukin family and

chemokine family related pathways may be relatively

important in the influence of bone metastases. The design of
FIGURE 2

Schematic diagram of the interaction between tumor cells and
osteoblasts/osteoclasts in osteolytic bone metastases. In
osteolytic lesions, tumor cells may secrete molecules such as
DKK-1 to inhibit osteoblast Wnt signaling pathway and promote
osteoclast function through RANK-RANKL signaling pathway.
Osteoclasts may secrete IGF-1 and other molecules to promote
tumor growth.DKK-1, Dickkopf-1; IFG-1, Insulin-like growth
factor 1; RANK, Receptor Activator of NF-kB.
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relevant targeted drugs for these two pathways may be an

important idea to delay the progression of bone metastases or

prevent the appearance of bone metastases.

In addition to common cytokines some enzymes can also

promote the disease progression of bone metastases by

influencing immunity and bone formation. Matrix

metalloproteinases (MMPs) is a type of enzyme containing

zinc, which can decompose extracellular matrix (76). Since

MMPs is closely related to the synthesis of bone matrix and

the regulation of osteoblasts/osteoclasts, it is believed that MMPs

may promote the onset of bone metastases. Pego et al.

mentioned in their review that MMPs, especially MMP-9,

played an important role in bone metastasis of prostate cancer

(77). MMP-9 is also significant in the occurrence and

development of other bone metastases, such as breast cancer

bone metastases, and may be a therapeutic target for bone

metastases (78). In addition, MMPs such as MMP-13 also play

a role in promoting bone metastasis of malignant tumors (79). In

addition to MMPs, the role of Cyclooxygenase-2 (COX-2) in

bone metastases is also attracting increasing attention. COX-2 is

a key rate-limiting enzyme in the synthesis of prostaglandin E2

(PGE2), which is closely related to inflammation, tumor growth,

angiogenesis and other aspects (80). Studies have shown that

COX-2 can increase the proportion of osteoclast and is one of

the key genes in breast cancer bone metastasis (81). Karavitis et

al. mentioned that COX-2 and PGE2 can regulate bone

metastasis by influencing immunity (82). In addition, enzymes

such as Indoleamine 2, 3-dioxygenase 1 (IDO1) have also been

found to be associated with bone metastases (83). In the future,

more enzymes with the potential function of promoting tumor

bone metastasis can be identified through RNA sequencing and

proteomics. As a special catalyst, enzymes often correspond to

certain characteristics of substrates and products, as well as

related chemical reactions, which may provide conditions for

targeted therapy of bone metastases.
3.4 The role of immune cells in the
pathogenesis of bone metastases

The immune cells in the body include specific immune cells

and non-specific immune cells. The specific immune cells

include T cells, B cells and so on, and their mechanism of

action is often highly specific. Non-specific immune cells include

monocytes/macrophages, dendritic cells, etc., which usually

exhibit low specificity and are responsible for assisting specific

immune cells in some cases. In cancer patients, it is generally

believed that local immunity plays a potential role in promoting

the occurrence, development and metastasis of tumors. The

relevant immune cells may “migrate” to the tumor tissue and

“protect” it instead. Interestingly, bone is actually an important

immune organ in the body, because bone marrow is an

important site of white blood cell production (84). So there
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has to be a special environment for immune activation to be

suppressed. The relationship between bone marrow and

metastatic tumors began to be studied earlier, and many cells

were found to be related to immunosuppression, such as

myeloid-derived suppressor cells (MDSCs) and Mesenchymal

stem cells (MSCs) (85, 86). However, the mechanisms related to

immune microenvironment are. For example, regarding the Irf7

pathway, existing studies have shown that its role in bone

metastasis of breast cancer and prostate cancer seems to be

suppressive (87, 88). The immunosuppressive mechanism of

bone metastases with different primary lesions should be studied

independently. Regulatory T cells (Tregs) play an important role

in specific immunity (89). CD4+CD25+ Tregs are an important

group of T cells in bone marrow and may be highly related to

immunosuppression (90). The study of Tan et al. indicated that

the RANKL-RANK pathway may affect the content of Tregs,

thus affecting local immunity (91). Tregs can secrete anti-

inflammatory cytokines such as IL-10, TGF-b and IL-35, and

act on such as CD8+T cells to achieve immune suppression (92,

93). These related cytokines may play a key role in circulating

tumor cell dormancy in bone metastases or in tumor cell

proliferation in metastatic sites. CD8+T cells are also regulated

by immature myeloid cells and osteoblasts (94). In non-specific

immunity, macrophages, especially tumor-associated

macrophages(TAMs), have a great influence on the

pathogenesis of metastatic tumors (95). The role of

macrophages is diverse, and under different circumstances

they will polarize into different subtypes, mainly including M1

type and M2 type (96). Their main effects on tumor cells are

almost opposite, with M1-type macrophages often showing

killing effect on tumor, while M2-type macrophages often

showing promoting effect on tumor (97). TAMs in malignant

tumor usually exhibit an M2-like appearance (98). Macrophages

are often regulated by cytokines and other factors, which may

promote the occurrence of bone metastases (99). According to

the results of current studies, the representative role of different

types of immune cells in bone metastases is shown in Figure 3. In

future studies, we believe that in terms of the immune regulation

of bone metastases, how to correctly find the immune cells that

promote tumor bone metastases and make them defunction,

apoptosis or transform into normal immune cells is the key to

the research.
3.5 Other mechanisms related to the
pathogenesis of bone metastases

It can be seen from the above description that the

pathogenesis of bone metastases is very complex. As the main

function of bone metastases, different types of cells are widely

affected by immune, metabolic and tumor microenvironments.

In recent years, the role of some connective tissue cells in bone

metastases, such as fibroblasts and endothelial cells, in bone
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metastases has received increasing attention. Similar to

macrophages, fibroblasts in malignant tumor tissues are

known as cancer-associated fibroblasts (CAFs) and they often

show potential tumor-promoting effects (100). CAFs may

promote tumor metastasis (101). Li et al. mentioned in their

study that CAFs played a key role in bone metastasis of breast

cancer cells by influencing tumor microenvironment and other

aspects (102). Mukaida et al. fully described the possible effects

of CAFs on tumor bone metastasis, including the function of

tumor cells and immune cells through the secretion of cytokines

by CAFs (103). The relevant content is illustrated in Figure 4. In

addition to CAFs, the role of endothelial cells in metastases has

also been emphasized. Zhang et al. indicated that bone-derived

endothelial cells (BDECs) may be involved in pathologic bone

lysis in the pathogenesis of bone metastases (104). Wang et al.

proposed that tumor cell-vertebral bone marrow endothelial cell

interactions promote spinal metastasis in NSCLC (105). In fact,

whether in the primary lesion of malignant tumor or the

metastasis of bone metastases, tumor cells are only part of the

tumor, and the influence of non-tumor cells on the occurrence

and development of bone metastases should be paid more

attention. Regulation of these cells may have a positive

significance in reducing the incidence of bone metastases,

delaying the occurrence time of bone metastases, and

alleviating the symptoms of bone metastases.
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4 Clinical treatment prospects of
bone metastases

With the deepening of the research on the pathogenesis of

bone metastases, clinicians’ understanding of bone metastases is

also constantly innovating. In the past, the general consensus

reached in clinical practice was that the occurrence of bone

metastases in malignant tumors meant that the survival time of

patients was shorter, and the treatment should be mainly

palliative therapy such as analgesia rather than surgery.

However, with the development of scientific progress and

clinical research, clinicians gradually found the positive

significance of various surgical procedures, especially when

there was only a single bone metastasis. With the further study

of pathogenesis, some therapies targeting specific cell types are

being developed, including advanced nanotechnology therapy.

Based on the above scientific research basis, we introduce a series

of cutting-edge clinical treatment viewpoints of bone metastases

and emerging treatment methods under development.
4.1 Progress and prospect of surgical
treatment and chemotherapy

The surgical treatment of bone metastases has been paid

more attention due to the progress of epidemiological research.

In recent years, more emphasis has been placed on the surgical

treatment of bone metastases. Surgical treatment of bone

metastases often includes pain relief, quality of life

improvement and SREs treatment, and may also be used as a

means to create conditions for radiotherapy. Because of the

complex local pathology, excision may have some positive

significance. However, it is important to note that not all

patients are candidates for surgery. Whether or not a patient

should be treated surgically depends on a number of factors,

including systemic conditions, primary tumor status, number

and location of metastases, expected survival time, and financial

status of the patient. Prior to surgical treatment of bone

metastases, it is important to conduct examinations. Some

patient-specific scores are important in assessing whether a

patient with bone metastases is ready for surgery. For example,

for patients with spinal metastases, the Tokuhashi score is a

commonly used method to determine whether a patient should

be operated on (106). At the same time, the New England Spinal

Metastasis Score (NESMS) score had relatively good clinical

accuracy in predicting complications after spinal metastasis

surgery (107). For patients with limb metastases, Katagiri score

might be important references (108, 109). With the development

of treatment methods, the surgical methods of spinal metastasis

and limb metastasis are gradually diversified. Both open surgery

and minimally invasive surgery are used in bone metastases

(Table 2), and their adaptations have been recognized based on
FIGURE 3

Typical mechanisms of action of key specific and non-specific
immune cells in bone metastases. The red lines represent
inhibitory effects.
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epidemiological studies (115). In particular, the development of

new techniques has led to advances in bone metastases surgery.

For example, the application of 3D printing technology in joint

prostheses enables patients to achieve better motor function and

improve the quality of life of patients (116). However, it should

be noted that there are potential complications, including

intraoperative and postoperative complications, such as spinal

cord and vascular injury, failure of internal fixation, local tumor

recurrence and so on, no matter what kind of surgery. Bone

metastatic tumor surgery has been used as an important

treatment method for many patients, but it is different from

general orthopaedic trauma surgery, orthopaedic joint surgery

and other conventional operations, it is often difficult to operate,

high risk, and so far there is a lack of appropriate procedure

standards. Therefore, surgery for bone metastases needs to be

conducted by an experienced orthopaedic surgeon who carefully

evaluates each patient and follows the principle of

“personalization.” More epidemiological studies should be

carried out.
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The deepening of scientific research also has a certain impact

on the concept of chemotherapy for bone metastases. Surgical

treatment of bone metastases usually has limited effects. As

mentioned earlier, circulating tumor cells may metastasize

before they are detected. Subsequently, these circulating tumor

cells may form micrometastases, which are the main cause of

tumor recurrence and a major factor affecting survival.

Therefore, it is necessary to supplement the corresponding

medical treatment. The specific chemotherapy regimen for

different bone metastases is different, which is related to the

pathological type of the primary lesion.
4.2 Targeted therapy—more advanced
and promising systemic therapy for bone
metastases

With the progress of research on the pathogenesis of bone

metastases and primary bone tumors, the concept of “precision

therapy” has been gradually formed. Some malignancies may be

hormone-related, so some hormone-targeted therapies have

been developed, such as Tamoxifen (estrogen inhibitor),

Darolutamide (androgen receptor inhibitor), etc. (117, 118) A

more widely known type of targeted therapy is targeting specific

proteins or signaling pathways, such as Bevacizumab (VEGF

inhibitor) (119), Trastuzumab (HER2 inhibitor) (120), Imatinib

(tyrosine kinase inhibitor) (121), Olaparib (PARP inhibitor)

(122), etc. Other organ-specific drugs such as I131 also act as

targeted therapies (123). The basic principle of tumor targeted

therapy is to design drugs or antibodies for molecules that may

be abnormally expressed or have abnormal functions in certain

malignant tumors according to epidemiological and

pathogenesis studies, so as to interfere with tumor growth and

promote tumor killing. Targeted therapy drugs usually cause less

damage to normal human tissue than conventional

chemotherapy drugs. The combination of targeted therapy

with conventional chemotherapy often produces better effects

(124). Now, targeted therapy is starting to be used in bone

metastases. Tokito et al. showed that bevacizumab may enhance

the antitumor activity of chemotherapy against bone metastases

and reduce the incidence of SREs (125). A HER2-overexpressed

Salivary carcinoma reported by Bergamini et al. developed bone
TABLE 2 Comparison of characteristics of minimally invasive surgery and traditional open surgery.

Minimally invasive surgery Traditional open surgery

Type PVP/PKP (110, 111), RFA (112) Total vertebrae excision, separation surgery (113, 114)

Complication Relatively rare More common, such as wound infection

Blood loss and transfusion rate The blood loss is small and the transfusion rate is low Often associated with greater blood loss and higher transfusion rate

Hospital stays Short Long
FIGURE 4

The role of CAFs in the pathogenesis of bone metastases. The
purple arrow represents an influence. EMT, epithelial-
mesenchymal transition; PGE2, prostaglandin E2; EVs,
extracellular vesicles; HGF, hepatocyte growth factor; VEGF,
vascular endothelial growth factor.
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metastases and the treatment plan included trastuzumab (126).

It is worth noting that bone-targeting drugs are more widely

used in bone metastases. In patients with bone metastases,

targeted drugs targeting the primary tumor are often used as a

means of comprehensive therapy. In addition to targeting the

primary tumor, the more commonly used targeted therapy for

bone metastases is “bone-modulatory drugs” for bone lesions,

which can be regarded as a type of bone targeting. As mentioned

in the previous part, osteoclasts and osteoblasts play an

important role in the occurrence of bone metastases. Although

the therapeutic effect on tumor is limited, bone targeting drugs

can regulate osteoblasts/osteoclasts to inhibit bone destruction

and delay the occurrence of SREs, which will greatly improve the

quality of life of patients. Some commonly used bone-targeting

drugs such as bisphosphonates (BPs) can promote osteoclast

apoptosis (127). Denosumab inhibits osteoclast differentiation

and activity as a RANK/RANKL inhibitor to delay bone

metastasis (128). Some common bone-regulating drugs that

inhibit bone destruction in bone metastases are shown in

Table 3. The positive effect of bone-targeting drugs in bone

metastases confirms the necessary for their use in patients.

However, in practice, targeted drugs are not targeted to

tumor cells, which may limit the efficiency of their application to

some extent. In recent years, combined with published

pathogenesis and clinical studies, more targeted therapies are

being developed. Among them, nanotechnology as an emerging

means of targeted therapy has attracted wide attention.

Nanomaterials can be targeted by a variety of relevant
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chemical modifications, and properly designed nanomaterials

often show high safety and degradability (139). It is a common

idea to combine nanotechnology with traditional bone targeting

drugs to prepare nanoparticles for the treatment of bone

metastases. For example, He et al. have designed a

nanoparticle DSP-Zn@PEG-ALN targeted to focal bone via

the alendronate molecule, which has great potential for

improving the efficacy of chemotherapy for bone metastatic

breast cancer (140). Qiao et al. highlighted the importance of

therapeutic nanomedicine and osteocyte-targeted therapy in the

treatment of early bone metastases (141). More representative

studies related to nanomaterials with bone targeting drugs for

the treatment of bone metastases are presented in Table 4. Also,

Tamura et al. mentioned in their review that extracellular

vesicles may play an important role in tumor bone metastasis,

especially in influencing the local tumor microenvironment

(148). Ge et al. designed a multifunctional scaffold called

CePO4/CS/GO scaffold that promotes bone formation while

killing tumors for the treatment of breast cancer with bone

metastases (149). These studies are closely related to the

pathogenesis of bone metastases. The relevant signaling

pathways here have been mentioned in related pathogenesis

studies. In future studies, targeting immune cells, osteoblasts or

other stromal cells may be an important direction for the

innovation of targeted therapy for bone metastases. Until now,

the main methods to target nanomaterials to cells have been

through specific ligands on the cell surface, through essential

substances for cell metabolism, or through the preparation of
TABLE 3 Common types of bone regulatory drugs, representative drugs, related mechanisms and typical applications.

Drug class Representative
drug Mechanism of action Partial relevant BM treatment

Typical
relevant
reference

BP
Alendronate,
Zoledronate,
Risedronate

Inhibits osteoclast activity and promotes osteoclast
apoptosis

Pain control/delayed occurrence of SREs in
cancer patients with bone metastasis

(129–131)

RANK-L
mAb

Denosumab
Inhibits osteoclast differentiation and activity by
inhibiting the RANK-RANKL pathway

To reduce the skeletal complications of cancer (132, 133)

mTOR
inhibitor

Everolimus
Inhibition of osteoclast differentiation and activation;
Promotion of osteoclast apoptosis

Everolimus plays a bone-protective role in bone
metastasis of breast cancer

(134)

Proteasome
inhibitor

Bortezomib,
Carfilzomib

Inhibits osteoclast formation and promotes osteoblast
differentiation

Improves bone destruction in breast cancer (135)

CYP17
inhibitor

Abiraterone
Inhibits the generation and activity of osteoclasts and
promotes the differentiation of osteoblasts

Combined with other BRIs for the treatment of
bone metastases from prostate cancer

(136)

Tyrosine
kinase
inhibitor

Cabozantinib
TKI; Inhibition of VEGF/VEGFR pathway;
Regulation of osteoblast activity

Bone metastasis of advanced renal cell
carcinoma

(137)

ET-1
antagonist

Bosentan Regulation of angiogenesis, etc. – (138)

DKK-1
inhibitor

– Promote Wnt pathway and osteoblast differentiation – –
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biomimetic nanoparticles (nanoparticles coated with natural cell

membranes, etc.). These methods can be used as reference for

the design of nanomaterials for the treatment of bone

metastases. The development of new targeted therapies must

be strictly dependent on the pathogenesis of bone metastases.

Therefore, the development of clinical diagnosis and treatment

and the study of pathogenesis are complementary.
5 Summary and scope

In summary, we summarized the development status of bone

metastases from the aspects of epidemiology, clinical features,

pathogenesis and clinical practice. So far, compared with kinds

of primary tumors, there are still relatively few researches on

bone metastases either in pathogenesis or clinical trials. As the

most common malignant tumor of bone, bone metastases

should receive more attention in the future. In the future,

research on the pathogenesis of bone metastases should focus

on the cellular level interaction mechanism. The establishment

of animal models of bone metastases is also a very important

direction, because successful animal model preparation is the

basis of in vivo experiments. There should be more studies and

reviews on the establishment of in vivo models of bone

metastases, such as Peng et al. ‘s review of in vivo

experimental design for intervertebral disc disease (150).

Clinical research requires researchers to develop a wide range

of new drugs. Nanomaterials are an emerging approach to

targeted therapy because they can be multi-functional through

modified design. However, its development must rely on the

study of pathogenesis, including the discovery of new and

effective local targets, how to kill tumors while promoting

osteogenesis and tissue recovery, etc. In the future, the

comprehensive treatments of bone metastases need to be

further improved. The clinician should ensure that the patient
Frontiers in Oncology 10
has the best quality of life while fully considering the patient’s

survival, disease status, and financial status.
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TABLE 4 Representative studies related to nanomaterials with bone targeting drugs for the treatment of bone metastases.

Components of bone
targeting

The main components of
nanomaterials

Loaded components with thera-
peutic effects

Related disease/
models Reference

Alendronate PLGA Curcumin and bortezomib
Breast cancer bone
metastasis

(142)

Alendronate Liposome Doxorubicin
Breast cancer bone
metastasis

(143)

Zoledronic acid Au@mesoporous silica nanoparticles Gold nanorods and zoledronic acid
Breast cancer bone
metastasis

(144)

cRGD Complex Bortezomib Bone metastasis (145)

RNA aptamer targeting PSMA Atelocollagen miR-15a and miR-16-1
Prostate cancer bone
metastasis

(146)

Alendronate and hyaluronic
acid

Complex Doxorubicin
Breast cancer bone
metastasis

(147)
f
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