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Background: As a processing method of RNA precursors, alternative splicing

(AS) is critical to normal cellular activities. Aberrant AS events are associated

with cancer development and can be promising targets to treat cancer.

However, no detailed and unbiased study describes the current state of AS of

cancer research. We aim to measure and recognize the current state and

trends of AS cancer research in this study.

Methods: TheWeb of Science Core Collection was used to acquire the articles.

Utilizing three bibliometric tools (CiteSpace, VOSviewer, R-bibliometrix), we

were able to measure and recognize the influence and collaboration data of

individual articles, journals, and co-citations. Analysis of co-occurrence and

burst information helped us identify the trending research areas related to AS of

cancer.

Results: From 2012 to 2021, the total number of papers on AS of cancer

published in 766 academic journals was 3,507, authored by 20,406 researchers

in 405 institutions from 80 countries/regions. Research involving AS of cancer

genes was primarily conducted in the United States and China; simultaneously,

the Chinese Academy of Sciences, Fudan University, and National Cancer

Institute were the institutions with strong research capabilities. Scorilas

Andreas is the scholar with the most publications, while the most co-

citations were generated by Wang, Eric T. Plos One published the most

papers on AS of cancer, while J Biol Chem was the most co-cited academic

journal in this field. The results of keyword co-occurrence analysis can be

divided into three types: molecular (P53, CD44, androgen receptor, srsf3,

esrp1), pathological process (apoptosis, EMT, metastasis, angiogenesis,

proliferation), and disease (breast cancer, colorectal cancer, prostate cancer,

hepatocellular carcinoma, gastric cancer).

Conclusion: Research on AS of cancer has been increasing in intensity over the

past decade. Current AS of cancer studies focused on the hallmarks of AS in
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cancer and AS signatures including diagnostic and therapeutic targets. Among

them, the current trends are splicing factors regulating epithelial–

mesenchymal transition and other hallmarks, aberrant splicing events in

tumors, and further mechanisms. These might give researchers interested in

this field a forward-looking perspective and inform further research.
KEYWORDS
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1 Introduction

The spatiotemporal-specific expression of genes determines

cellular physiological functions, and abnormal expression of

genes is commonly associated with pathological conditions,

including carcinogenesis (1). According to the central dogma,

RNA is the key molecule for transmitting genetic information,

and its stability during transcription and translation ensures

successful gene expression and functional protein production

(2). The production of mature mRNA from mRNA precursor

involves steps such as splicing, adding cap structure,

polyadenylation, and nucleobase modification (3). These

processing steps regulated by their respective regulatory

systems increase the diversity of the transcriptome

and proteome.

Alternative splicing (AS) is one of the processing methods of

mRNA precursors, including the critical process of removing

introns and connecting exons (4). As a result of AS, a single gene

is capable of generating multiple transcripts, enhancing the

structure and activity of protein domains (5). AS is completed

by a synthetic spliceosome protein complex and is regulated by

the complicated interaction of cis-elements and trans-factors (6,

7). This precise regulation maintains the balance of different

gene transcripts and ensures the accurate process of

physiological activities and cell homeostasis (8). Due to

abnormal expression and interaction of AS regulatory factors,

aberrant splicing leads to the overproduction of tumor-

promoting transcripts and the decrease in tumor-suppressing

transcripts, both of which play a crucial role in tumor

development (9–11).

In recent years, research on the panoramic delineation and

regulatory mechanisms of AS events in tumorigenesis has

developed rapidly (4, 7, 12). Identifying tumor-promoting

transcripts, aberrant splicing factors, and mutated cis-element

sequences is capable of providing diagnostic models and guiding

the design of small-molecule compounds or oligonucleotide

therapeutic drugs in a targeted manner (13–16). These studies

have expanded the research direction of new targets and specific

drugs for the early diagnosis and treatment of tumors.
02
Numerous reviews have summarized research on AS in

cancer diagnosis and treatment, but to our knowledge, there is

no comprehensive picture of AS splicing in cancer. Bibliometrics

enables the qualitative and quantitative analyses of data,

including contributions and collaborations of authors,

institutions, and countries, and also the assessment of research

trends (17–19). Thence, this report aimed to use the bibliometric

method to assess the overall research trends of AS splicing in

tumors and the hot issues over the past decade.
2 Materials and methods

2.1 Data collection

The Web of Science, which is broadly used in bibliometrics,

can provide extensive and authoritative global academic data

bibliometric software needs (20, 21). We mainly use the Web of

Science Core Collection (WoSCC). The data were obtained on

21 July 2022 from the WoSCC database. The search formula was

[TS = (alternative splicing)] AND TS = (cancer* OR anticancer*

OR tumor* OR oncology OR neoplasm* OR carcinoma* OR

lymphoma* OR sarcoma* OR leukemia*). The wildcard

character (*) was used to allow variable endings of keywords

to capture as much data as possible. There was a limitation on

the publication year (2012–2021). The inclusion of English-

language literature was limited to original articles and reviews.

We downloaded the search results as “Full Record and Cited

References” and “Plain Text.” Following this, the files were

renamed as “download_*.txt” to be analyzed by the

CiteSpace software.
2.2 Data analysis

We used three bibliometric tools, CiteSpace 6.1.R2 Basic

(22), R-bibliometrix 4.0.0 (23), and VOSviewer 1.6.18 (24), to

conduct bibliometric evaluation and visualization and Microsoft

Excel 2021 for statistics and the plotting part of the figure. The
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first step was to clean our data. For example, “splicing factors”

and “splicing factor” were merged as “splicing factor” and “rna

splicing,” “pre-mrna splicing,” and “alternative splicing” were

unified as “alternative splicing” (25).

CiteSpace is capable of discovering collaboration, keywords,

domain research structure, future direction, and evolution as a

bibliometric and visual analysis tool in a scientific field (26).

Using CiteSpace, we utilize its co-occurrence, timeline, bursts,

and dual-map functions to draw a series of figures about

countries/regions and institutions, journals, references,

citations, and keywords. We use the analysis process and

parameter settings recommended by the software developers,

where the time span is 2012–2021, the time slice is 1 year, the

selection criterion is the g index (k = 25), pruning is none, and

the minimum duration of burstness is 2 years. The size of the

node in the CiteSpace visualization portrays the number of co-

occurrence. Furthermore, linkages show the relationships

between the co-occurrences (22). As time passes from 2012 to

2021, the node and line’s colors change from purple to red to

symbolize the different years. High betweenness centrality

(≥0.10) nodes with purple circles serve as a hub between

distinct networks (26–28).

Another bibliometric tool that excels in producing and

visualizing knowledge maps is VOSviewer, which displays the

kinds of clusters, overlays, or density colors (24). We mainly

applied the co-occurrence analysis function of VOSviewer,

including authors, journals, references, and their co-citations,

as well as keywords. The specific parameters applied are

mentioned in the corresponding chapters. In addition, we use

the full counting method as a counting method. The meaning

of the size of the node is the same as that of CiteSpace. Nodes

with the same color belong to the same cluster. Additionally,

links show the relationship between co-occurrences, and their

degree of thickness is determined by the estimated strength

value. The value is related to the number of papers published by

the two authors or the frequency of the co-occurrence of the two

keywords (24). The co-cited frequency is positively correlated

with the word and round sizes as well as the yellow opacity in

density maps. The color on the overlay map represents the

typical publishing year.

R-bibliometrix is an R package for executing a

comprehensive science mapping analysis of scientific literature

(23). To be adaptable and make integration with other statistical

and graphical R packages easier, R-bibliometrix was

programmed in R. Maps of the geographical distribution of

the countries/regions were produced using it. The network map

displays the current state of research and communication

between various countries/regions (23).

Excel 2021 software was used to anatomize the yearly

publications and cited frequency. Additionally, we obtained

impact factor (IF), journal citation report (JCR), average per

item (ACI), journal classification, and author H-index fromWeb

of Science on 1 August 2022.
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3 Results

3.1 Annual growth trend

From the WoSCC database, we acquired 3,544 papers, and

we ultimately included 3,507 publications that qualified

(Figure 1; Supplementary Table 1). The number of

publications related to AS of cancer and the frequency of

citations have both steadily increased over the past 10 years, as

illustrated in Figure 2.
3.2 Distribution of countries/regions and
institutions

There were 3,507 papers in total, representing 80 different

countries/regions and 405 institutions. The United States, China,

and Germany are the top 3 countries in terms of the number of

published articles, with 1,165, 1,013, and 249, respectively

(Table 1). China’s centrality, however, was less than 0.10,

suggesting that it may not be a “hub” node in the AS of cancer

studies (20). In contrast, the United States (centrality = 0.41),

England (centrality = 0.25), and Germany (centrality = 0.20) had

high centrality, which is depicted in Figure 3A by a purple circle.

As shown in Figure 3A, the closeness of the co-occurrence atlas

of countries/regions was 0.1864, denoting lively collaboration

between them (27). Figure 3C shows the relative proportion of

annual publications for the top 10 countries from 2012 to 2021.

It was evident that China’s share had gradually increased. A

country/region co-authorship network was created by R-bibliometrix

(Figure 3D). The network map showed the current state of research

and communication activities between these countries/regions. The

Chinese Academy of Sciences is the scientific research institution with

the largest number of published papers, as shown in Figure 3B;

however, its centrality is just 0.07 (n = 76). By contrast, the National

Cancer Institute (n = 65, centrality = 0.14), the University of California

San Diego (n = 48, centrality = 0.2), and Karolinska Institute (n = 25,

centrality = 0.14) had a high centrality. The publication counts, H-

index, and ACI of the top 10most productive institutions are displayed

in the bar graph of Figure 3E.
3.3 Authors and co-cited authors

There were 20,406 authors active in AS of cancer research,

and 25 of them published 10 or more articles, as shown in

Figure 4A and Supplementary Table 2. Scorilas Andreas, a

National and Kapodistrian University of Athens scholar, was

the most prolific author (n = 25), followed by Adamopoulos

Panagiotis G. and Karni Rotem (Table 2). Different colors

represent different clusters in Figure 4, a total of 15 (29).

Active partnerships, such as Ladomery Michael and Oltean
frontiersin.org
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FIGURE 2

Tendency via bar and line graphs of alternative splicing of cancer publications and cited frequency nearly 10 years.
FIGURE 1

Flowchart of data collection, cleaning, and analysis.
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Sebastian, are frequently found in the same cluster. Additionally,

there were alliances between two linked authors of different

colors, which seemed to be Ghigna Claudia and Fu Xiangdong.

Authors who have been cited in one article are known as co-

cited authors (30). From Figure 4B and Supplementary Table 2,

we can see that 83 authors out of the 85,667 co-cited authors had
Frontiers in Oncology 05
more than 100 co-citations. They are displayed as a density map

in Figure 4B, which made it easy to identify the writers who were

co-cited frequently. The hue gets warmer with more citations

(31). Wang Eric T., Venables Julian P., and David Charles J. had

the most co-citations, as indicated in Table 2 and Figure 4B. The

images cannot display all the information due to CiteSpace and
A B

D E

C

FIGURE 3

The co-occurrence atlas of (A) countries/regions (n ≥ 100) and (B) academic institutions (n ≥ 40) in alternative splicing of cancer research. As
time passes from 2012 to 2021, the color of the node and line changes from purple to red. Purple-round nodes indicate strong betweenness
centrality (≥0.1). (C) The relative fraction of annual publications in the top 10 countries from 2012 to 2021. (D) Network diagram of countries/
regions (min edges = 2) involved in alternative splicing of cancer research. (E) The top 10 most productive institutions’ publication counts, h-
index, and ACI.
TABLE 1 Top 10 countries/regions and academic institutions involved in alternative splicing of cancer research.

Rank Countries/regions Centrality Count Institution Centrality Count

1 United States 0.41 1,165 Chinese Acad Sci (China) 0.07 76

2 China 0.05 1,013 Fudan Univ (China) 0.03 68

3 Germany 0.2 249 National Cancer Institute (United States) 0.14 65

4 England 0.25 216 Shanghai Jiao Tong Univ (China) 0.03 57

5 Italy 0.08 204 Sun Yat Sen Univ (China) 0.06 49

6 Canada 0.02 183 Univ Calif San Diego (United States) 0.2 48

7 Japan 0.03 179 Zhejiang Univ (China) 0.04 48

8 France 0.14 167 China Med Univ (China) 0.05 44

9 Spain 0.09 141 Univ Penn (United States) 0.02 40

10 Australia 0.17 116 Univ Texas MD Anderson Canc Ctr (United States) 0.07 39
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A

B

FIGURE 4

The co-occurrence (A) authors’ (documents ≥5) cluster map and (B) co-cited authors’ (citations ≥100) density map of alternative splicing of
cancer research. (A) Nodes with the same color represent that they belong to the same cluster, the size of the node is proportional to the
number of articles published by the author, and the thickness of the connection is proportional to the number of articles co-published by two
authors. (B) The co-cited frequency is positively correlated with the size and depth of the word and the yellow color, respectively.
Frontiers in Oncology frontiersin.org06
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VOSviewer visualization’s intrinsic restrictions. As a result, we

have supplemented this with detailed information on the graphs

in the Supplementary Material.
3.4 Journals and co-cited academic
journals

Articles about AS of cancer research have been published in

766 scholarly journals overall. Nine hundred and five papers, or

25.81% of the total publications, were published in the top 15

journals (Table 3). The number of papers published in Plos One is

the largest (n = 145, 4.1%), followed by the International Journal

of Molecular Sciences (n = 84, 2.4%) and Oncotarget (n = 77,
Frontiers in Oncology 07
2.2%). A co-citation map of journals was produced by VOSviewer,

as shown in Figure 5A. The required minimum was established at

100 citations, and 292 journals satisfied the requirement.

Of the 6,707 cited journals, 84 have more than 500 citations.

Among them, the Journal of Biological Chemistry (n = 7,922),

Nature (n = 7,333), and Proceedings of the National Academy of

Sciences of the United States of America (PNAS) (n = 6,656)

ranked in the top 3 in the number of citations (Table 3).

Additionally, 31.16% of all cited sources came from the top 15

co-cited journals.

The dual-map overlay of journals represents the field

distribution of citing and cited journals, as seen in Figure 5B

(32). Citation relationships are indicated by colored paths, with

citing journals on the left and cited journals on the right (22).
TABLE 2 Top 10 authors and co-cited authors related to alternative splicing of cancer.

Rank Author Count H-index Co-cited author Count H-index

1 Scorilas Andreas 25 56 Wang Eric T. 493 34

2 Adamopoulos Panagiotis G. 18 11 Venables Julian P. 470 26

3 Karni Rotem 17 28 David Charles J. 462 12

4 Kontos Christos 16 25 Pan Qun 407 25

5 Chen Gang 14 18 Trapnell C. 325 54

6 Jia Rong 14 19 Zhang Jian 303 12

7 Ladomery Michael 14 26 Oltean Sebastian 295 23

8 Oltean Sebastian 13 23 Wang Yang 290 12

9 Valcarcel Juan 13 51 Anczukow Olga 273 15

10 Fu Xiangdong 12 65 Warzecha Claude C. 271 14
fron
TABLE 3 Top 15 journals and co-cited journals related to alternative splicing of cancer.

Rank Journal Count JCR
(2021)

IF
(2021)

Cited journal Cited
count

JCR
(2021)

IF
(2021)

1 Plos One 145 Q2 3.752 Journal of Biological Chemistry 7,922 Q2 5.486

2 International Journal of Molecular Sciences 84 Q1 6.208 Nature 7,333 Q1 69.504

3 Oncotarget 77 Q2 5.168 Proceedings of the National Academy of
Sciences of the United States of America

6,656 Q1 12.779

4 Scientific Reports 71 Q2 4.996 Cancer Research 6,448 Q1 13.312

5 Nucleic Acids Research 68 Q1 19.160 Nucleic Acids Research 6,230 Q1 19.160

6 Oncogene 59 Q1 8.756 Cell 6,194 Q1 66.850

7 Cancers 56 Q1 6.575 Oncogene 4,845 Q2 8.756

8 Journal of Biological Chemistry 50 Q2 5.486 Molecular Cell 4,009 Q1 19.328

9 Frontiers in Oncology 48 Q2 5.738 Plos One 3,795 Q2 3.752

10 Gene 48 Q2 3.913 Science 3,569 Q1 63.714

11 Proceedings of the National Academy of
Sciences of the United States of America

47 Q1 12.779 Molecular and Cellular Biology 3,436 Q2 5.069

12 Nature Communications 44 Q1 17.694 Genes and Development 3,220 Q1 12.890

13 Biochemical and Biophysical Research
Communications

36 Q3 3.322 Nature Genetics 2,570 Q1 41.302

14 BMC Genomics 36 Q2 4.547 Blood 2,547 Q1 25.476

15 Cancer Research 36 Q1 13.312 Clinical Cancer Research 2,210 Q1 13.801
tie
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The principal citation channel indicates that papers published in

Molecular/Biological/Immunology journals mainly cite papers

published in Molecular/Biological/Genetics journals (Figure 5B).
3.5 Co-cited references and reference
burst

Thirty-seven references out of the 132,804 cited ones were

quoted at least 100 times (Supplementary Table 3). The top 10

co-cited references are included in Table 4, with a minimum of
Frontiers in Oncology 08
157 co-citations. The article by Wang Eric T. et al. from Nature

in 2008 (n = 465) is the one that has received the most co-

citations out of all of them. In addition, four of the top 10 were

reviews, and six of the top 10 were research articles.

The entire network map might be partitioned into several

clusters using the clustering function, and studies inside a cluster

might have distinct study themes to studies from other clusters

(Figure 6A). Each cluster’s most prevalent terms were designated

as cluster labels (38). The references’ timeline view could allow

users to see how various research hotspots have changed over

time. As shown in Figure 6B, cluster #0 (post-transcriptional
A

B

FIGURE 5

(A) Analysis of journals on alternative splicing of cancer co-citations via VOSviewer. (B) The dual-map overlay of journals on alternative splicing
of cancer. The colored channel denotes the citation relationship, with the citing journals on the left and the cited journals on the right.
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TABLE 4 Top 10 co-cited references related to alternative splicing of cancer.

Title First author Journals Citations Type Year

1 Alternative isoform regulation in human tissue transcriptomes (5) Wang Eric T. Nature 465 Article 2008

2 Deep surveying of alternative splicing complexity in the human transcriptome by
high-throughput sequencing (33)

Pan Qun Nature Genetics 372 Article 2008

3 Alternative pre-mRNA splicing regulation in cancer: pathways and programs
unhinged (10)

David Charles J. Genes and Development 284 Article 2010

4 Hallmarks of alternative splicing in cancer (11) Oltean Sebastian Oncogene 234 Review 2014

5 Expansion of the eukaryotic proteome by alternative splicing (1) Nilsen Timothy
W.

Nature 218 Review 2010

6 The gene encoding the splicing factor SF2/ASF is a proto-oncogene (34) Karni Rotem Nature Structural and
Molecular Biology

213 Article 2007

7 The spliceosome: design principles of a dynamic RNP machine (6) Wahl Markus C. Cell 163 Review 2009

8 HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing
in cancer (35)

David Charles J. Nature 162 Article 2010

9 Hallmarks of cancer: the next generation (36) Hanahan Douglas Cell 159 Review 2011

10 The functional impact of alternative splicing in cancer (37) Climente-
González Héctor

Cell Reports 465 Article 2017
Fro
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FIGURE 6

The reference co-citation analysis maps in (A) cluster view and (B) timeline view were produced by CiteSpace. (C) Visualization map of the top
25 references related to alternative splicing of cancer that have received the most citations. (B) Each cluster is represented as a horizontal axis;
the larger the number of the cluster label, the smaller the cluster. The linkages show co-cited associations, and the node size represents co-
citation frequencies. The node and line colors indicate distinct years. LLR used the title to extract cluster labels. (C) The red bars indicate citation
burstness, whereas the blue bars indicate that the reference has been published.
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regulation), #3 (prognostic alternative), #4 (alternative splicing),

#6 (circular RNA), #7 (androgen receptor), and #8 (non-coding

RNAmalat1) started earlier, while cluster #1 (splicing signature),

#2 (aberrant splicing), and #5 (oncogene srsf3) are still ongoing,

which could be considered as the frontier.

with citation bursts indicate that their citations have grown by

leaps and bounds in a particular period (27). Two hundred and

fifty references were included in the citation bursts analysis, and

the top 25 are listed in Figure 6C. One paper, entitled “Alternative

pre-mRNA splicing regulation in cancer: pathways and programs

unhinged,” had the strongest burstness (strength = 31.24) with

citation burstness from 2012 to 2015 (10), which was published in

Gene Dev by David Charles J. et al. in 2010. It is worth noting that

five references (15, 37, 39–41) were still in burstness. Climente-

González Héctor et al. (37) explored the functional influence of AS

in cancer, Kahles André et al. (15) conducted a comprehensive

analysis of AS across tumors, Ryan Michael et al. (39) provided a

web-based resource for exploring the AS patterns of TCGA
Frontiers in Oncology 10
tumors, Li Yuan et al. (40) discovered a series of AS signatures

in non-small cell lung cancer, and Seiler Michael et al. (41)

analyzed the functional consequences of somatic mutation of

splicing factor genes, respectively.
3.6 Keyword analysis of trending
research topic

In total, 6,116 keywords were recovered, 121 of which

appeared at least 10 times, and there were 31 keywords that

appeared at least 30 times. As represented in Table 5, alternative

splicing (n = 1,238), cancer (n = 215), and prognosis (n = 125) were

the three most popular keywords. We divided the keywords into

three categories, namely, molecules, pathological processes, and

diseases associated with AS of cancer, and listed the top 15

keywords in Table 6, respectively. Obviously, P53 (n = 39),

CD44 (n = 35), androgen receptor (n = 31), srsf3 (n = 24),
TABLE 5 Top 20 keywords related to alternative splicing of cancer.

Rank Keywords Counts Rank Keywords Counts

1 Alternative splicing 1,238 11 Prostate cancer 76

2 Cancer 215 12 Hepatocellular carcinoma 63

3 Prognosis 125 13 EMT 61

4 Isoform 119 14 Metastasis 55

5 Breast cancer 115 15 RNA-binding protein 55

6 Splicing factor 114 16 TCGA 53

7 RNA-seq 102 17 Transcriptome 43

8 Apoptosis 94 18 Gastric cancer 41

9 Colorectal cancer 82 19 Angiogenesis 40

10 Expression 81 20 Lung cancer 39
fronti
TABLE 6 Top 15 molecules, pathological processes, and diseases related to alternative splicing of cancer.

Rank Molecules Counts Pathological processes Counts Diseases Counts

1 P53 39 Apoptosis 94 Breast cancer 115

2 cd44 35 EMT 61 Colorectal cancer 82

3 androgen receptor 31 Metastasis 55 Prostate cancer 76

4 srsf3 24 Angiogenesis 40 Hepatocellular carcinoma 76

5 esrp1 16 Proliferation 34 Gastric cancer 41

6 srsf1 15 Epigenetics 23 Lung cancer 39

7 brca1 14 Drug resistance 22 Glioblastoma 25

8 rbm10 14 Invasion 22 Non-small cell lung cancer 25

9 rbm5 14 Survival 22 Pancreatic cancer 25

10 htert 12 Tumor microenvironment 20 Melanoma 22

11 mdm2 11 Autophagy 19 Acute myeloid leukemia 22

12 ptbp1 11 Migration 19 Glioma 21

13 srpk1 11 Metabolism 18 Ovarian cancer 21

14 bcl-x 10 Proliferation 18 Cervical cancer 18

15 pkm2 10 DNA damage 15 Lung adenocarcinoma 16
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and esrp1 (n = 16) were several molecular keywords with the

highest frequency; apoptosis (n = 94), EMT (n = 61), metastasis

(n = 55), angiogenesis (n = 40), proliferation (n = 34), and

epigenetics (n = 23) were several pathological process keywords

with the highest frequency; and breast cancer (n = 115), colorectal

cancer (n = 82), prostate cancer (n = 76), hepatocellular carcinoma

(n = 76), and gastric cancer (n = 41) were several disease keywords

with the highest frequency in AS of cancer studies.

Keywords with high co-occurrence counts (n ≥ 10) are

displayed as an overlay map in Figure 7A, with the hue

denoting the typical year of publication. As we can see, the

emerging fields that were given the color yellow include splicing

factor, prognosis, immunotherapy, and TCGA (The Cancer

Genome Atlas). Each cluster displayed the top 3 keywords

over time in the timeline view (Figure 7B). Six of the seven

clusters were still active except for cluster #6. Among them, #0

(splicing event) is the biggest cluster, followed by #1 (therapeutic

target), #2 (epithelial–mesenchymal transition), and #3 (splicing

factor). Supplementary Table 2 provides further details.
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Bursts of keywords are those that were used a lot during a

certain time frame (27). Figure 7C demonstrates that in vivo had

the strongest bursts, with a strength of 15.42, followed by a

splicing factor at 12.08 and visualization at 10.82. Notably, until

2021, the landscape, prognosis, splicing factor, and other

keywords were in burstness. The results of VOSviewer and

CiteSpace had a considerable similarity regarding keywords,

indicating the reliability of our analysis.
4 Discussion

4.1 General information

Based on the information from the WoSCC database, a total

of 3,507 AS of cancer publications by 20,406 writers in 405

institutions from 80 countries/regions were published between

2012 and 2021 in 766 academic journals. Increasing publications

indicate that curiosity and attention are growing regarding the
A C

B

FIGURE 7

The (A) overlay map (n ≥ 10, max lines = 1,000) and (B) timeline view of keywords associated with alternative splicing of cancer. (C) Greatest
citation bursts for the top 25 keywords (sorted by the starting year). (A) The color of the node represents the average publication year, the size
of the node is proportional to the counts of co-occurrences of keywords, and the thickness of the link is positively correlated with the number
of co-occurrences of the keywords represented by the two nodes. (B) Each cluster is represented as a horizontal axis; the larger the number of
the cluster label, the smaller the cluster. LLR used the title to extract cluster labels. (C) The red bars indicate citation burstness.
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AS of cancer. The AS research officially started in 1977, when

Roberts R.J. and Sharp P.A. found the phenomenon of

“alternative splicing” (42, 43). Since that time, AS research has

expanded quickly. Our focus is on the relationship between

alternative splicing and cancer. AS research of cancer has

steadily increased in steps during the last 10 years, and the

relevant published article and cited frequency in 2021 are almost

twice and over 80 times those of 2012, respectively.

The volume of published articles is a very important

indicator, but the centrality is a crucial indicator for the

quality of published articles in country/region analysis, where

high centrality nodes (≥0.10) indicate the “hub” influence of

particular countries/regions in the worldwide collaboration map

(26, 28, 38, 44). The United States and China made the largest

contributions to papers on AS of cancer, as shown in Table 1 and

Figure 3A. The top 10 institutions by the number of publications

were mainly from China and the United States: six were from

China and four were from the United States, respectively. China

and Chinese institutions, on the other hand, had a centrality of

less than 0.1, while the United States had a centrality of 0.41,

suggesting that the United States may continue to dominate AS

of the cancer field. Furthermore, the United States, England,

Germany, Australia, and France had high betweenness

centrality, which indicates that they were important hubs in

AS of the cancer field’s international collaboration. Moreover, it

could be seen that countries/regions and institutions had an

active collaboration in terms of network density, respectively.

Scorilas Andreas not only published the most articles related

to AS of cancer but is also the top 1 H-index scholar (Table 2),

demonstrating his excellent contribution to AS of cancer

research. Scorilas is a researcher at the National and

Kapodistrian University of Athens, committed to AS, gene

transcription, and next-generation sequencing. For the past 10

years, his group has published a series of articles (45–50) that

described the process of identification of novel alternative

splicing variants using next-generation sequencing

methodology and discussed their expression situation and

pathophysiological implications. Furthermore, Oltean

Sebastian is also a scholar working at the University of Exeter;

his team centered on the regulation and form of AS in prostate

cancer and therapeutic targets associated with AS in cancer. In

2014, Nature published an Oltean and Bates’s review entitled

“Hallmarks of alternative splicing in cancer” (11). They

summarized how the numerous phenotypic traits that tumors

acquire are influenced by AS and identified a new class of

anticancer treatments called alternative splicing inhibitors;

This article was co-cited up to 234 times with citation bursts

from 2015 to 2019. Significantly, the top 1 co-cited author, Wang

Eric T., a professor at the University of Florida, focused on

exploring the function of the short and long gamma subunit

splice variants of human GABA(A) receptors. He published the

top 1 co-cited reference that reviewed the regulation of AS (5),

with the second strongest citation burst strength.
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According to a journal analysis (Table 3), Plos One was the

ninth most referenced journal and published the most AS of

cancer studies. The fact that Nucleic Acids Research was among

the top 5 academic journals, as well as co-cited journals, shows

how important it is to the dissemination of AS of cancer

research. The top 10 most-cited papers were published in the

journals, which are also generally the most-cited journals. For

instance, Nature obtained the second-highest number of co-

citations, in part due to three of the top 10 extremely co-cited

references (1, 5, 35) (Table 4). Similar to the dual-map study

(Figure 5), we found that the majority of the journals were on the

subjects of molecular, genetics, and comprehensive fields.

The knowledge network may be represented in part by the

co-cited references cited by the papers in the corresponding field

(22, 27, 51). The study’s top 10 co-cited articles found that three

articles primarily explored the relationship between AS and

hallmarks of cancer (11, 36, 37), two were about the discovery

of alternative splicing isoforms using high-throughput

sequencing (5, 33), two were related to the regulation of AS (6,

10), and two papers focused on several specific molecules,

splicing factor SF2/ASF, and heterogeneous nuclear

ribonucleoproteins (hnRNPs) controlled by c-Myc, respectively

(34, 35). Moreover, one review discussed the mechanisms of

proteome expansion by AS (1). As shown in our citation bursts

results (Figure 6C), five references in the AS of cancer research

are still active: three are related to the function and mechanisms

of AS (37), one is a dedicated effort to mine prognostic AS

signatures (40), and three present the landscape of AS in TCGA

tumors (15, 39, 41).
4.2 The hotspots and trending

4.2.1 Hallmarks of alternative splicing in cancer
A transformation of the AS state occurs concurrently with

the acquisition of cancer characteristics during carcinogenesis

(11). Erroneous splicing produces tumor-specific isoforms, and

the disordered expression of these isoforms propels tumor

malignant progression (52). Alterations in isoform-specific

splicing patterns of many genes drive tumor cells to acquire

sustained proliferative signals, escape growth inhibition, resist

cell death, induce angiogenesis, invade and metastasize, and

escape immune evasion surveillance (4). As shown in Figure 6C,

the results of the reference burst showed that a review by Oltean

Sebastian systematically expounded the hallmarks of AS in

cancer. Among the keywords of the pathological process

(Table 6), it also covered many hot words such as apoptosis,

migration, angiogenesis, and proliferation, which were closely

related to cancer hallmarks.

In our study, the keyword co-occurrence analysis by

VOSviewer (Figure 7A) and cluster label (#2) from CiteSpace

(Figure 7B) both highlighted epithelial–mesenchymal transition

(EMT), during which relatively quiescent, tightly connected
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epithelial cells acquire highly motile and invasive mesenchymal

properties (53, 54). As epithelial cancers progress, cancer cells

develop aggressive and migratory characteristics that allow them

to invade nearby tissues and disseminate to distant organs (55),

and 90% of cancer deaths are caused by this metastasis

deve lopment process (56) . EMT is l inked to the

reprogramming of multiple genes’ expression. E-cadherin,

claudins, and occludins are examples of epithelial-specific

genes that are inhibited by the SNAIL proteins (SNAIL1 and

SNAIL2) (57, 58). N-cadherin, fibronectin, and matrix

metalloproteases are examples of mesenchymal-specific genes

that can be stimulated by the bHLH transcription factors

(TWIST1 and TWIST2) and ZEB proteins (ZEB1 and ZEB2)

(59–61). There is a ton of evidence to support the idea that AS

events cause mesenchymal and epithelial cells to differ

proteomically (62). According to reports, the modulation of a

number of splicing factors is crucial to the EMT process (63).

Numerous pre-mRNA targets can be regulated by a single AS

factor. As a result, variations in their expression levels may have

an impact on multiple aspects of the development of EMT (53).

The fifth keyword of Molecules in our study is esrp1

(Table 6). Depending on where their binding sites (UGG-rich

motifs) are located in their RNA targets, ESRP proteins have a

positional effect and either promote or repress exon inclusion

(64, 65). esrp1 and esrp2 are two epithelial-restricted splicing

regulators (66). During the activation of EMT programs, ESRPs

regulate a network of epithelial regulators, and AS has a

significant impact on the physical connections between

isoforms (67). The isomers may have completely different

effects. By boosting P120’s affinity for E-cadherin, P120

isoforms 3 and 4 can help epithelial cells adhere to one

another (68). In contrast, p120 isoform 1 promotes RAC1

activity and stimulates cell migration and invasiveness by

blocking the RHOA–ROCK signaling pathway (69).

Another molecule in Table 6 closely related to EMT is CD44.

Various extracellular matrix elements are bound by the cell

surface glycoprotein that CD44 encodes for (70). Mesenchymal

CD44 splicing isoforms can be produced more readily when

esrp1 is inhibited by ZEB1 (71). Notably, the change from the

epithelial isoform (CD44v) to CD44s reveals a crucial function

in EMT (72).

Other hallmarks of cancers are also closely related to AS.

Epidermal growth factor receptor (EGFR) is an important

molecule that affects cell proliferation and motility. EGFR

lacking the fourth exon after AS can consistently activate the

proliferation of cancer cells (73). Loss of p53 function causes

tumors to escape growth suppressors, and a splice variant of p53

without tumor-suppressor function even competes with wild-

type p53 (74). Bcl-x has two splice isoforms, including the pro-

apoptotic Bcl-xS and the anti-apoptotic Bcl-xL, which is a

common aberrant AS event in several types of cancer (75).

Similarly, molecules of the vascular endothelial growth factor

(VEGF) family commonly have multiple splice forms, which are
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closely associated with abnormal tumor angiogenesis (76).

Pyruvate kinase (PKM) is an important molecule in cellular

metabolism, and its splice isomers, PKM1 and PKM2, are

expressed in the adult and embryonic stages, respectively;

PKM2 is aberrantly expressed in a variety of cancers (35). The

same strategy is used by tumors to evade immune destruction, as

HLA and MHC-I molecules have a variety of aberrant splice

isomers that assist tumors to escape immune recognition

(77, 78).

Alternative splicing occurs in the vast majority of genes, and

many of the spliced isoforms are closely associated with cancer

hallmarks (11). An understanding of the relationship between

abnormal AS regulatory mechanisms and cancer hallmarks will

facilitate the development of specific targeted drugs to inhibit the

progression of cancer phenotypes (79–81).

4.2.2 Alternative splicing signature of cancer
In our research, signature-related words appeared many

times. For example, one of the cluster labels of the reference is

splicing signature (#1, Figure 6B), therapeutic target (#1, Figure 7B)

is in the keywords cluster labels, and signature and prognostic

signature are in the keywords burst (Figure 7C). In the last 10 years,

transcriptome sequencing at the genome-wide level has

demonstrated that AS is closely modulated in a tissue- and

developmental stage-specific way, and it has also been shown that

AS is frequently dysregulated in a variety of human cancer types

(63, 82–85). As a result, the study of AS events as tumor indicators

and therapeutic targets has gained a lot of attention. Additionally,

the range of tumor biomarkers and therapeutic targets has been

considerably broadened by AS (86).

Currently, it is understood that the principal causes of

tumorigenesis are splicing abnormalities, which include genetic

changes in the spliced gene and changed expression of either or

both of the key regulators or core components of the precursor

messenger RNA (pre-mRNA) splicing machinery (8, 87). This

also provides a theoretical basis for AS to become a tumor

marker and a therapeutic target.

The core issues in oncology continue to be the early detection

and diagnosis of cancer as well as the selection of the best-

customized treatment for each patient. It is now possible to

identify genome-wide AS thanks to the advancement of high-

throughput sequencing methods, particularly RNA sequencing

(88–93). Numerous potential benefits of RNA-seq include its

capacity to estimate the great amount of both acknowledged and

original alternative transcripts, as well as its ability to offer a finer

resolution, deeper coverage, and greater accuracy (93). Due to

advancements in sequencing and bioinformatics technology, a

number of cancer-specific AS events with potential prognostic

and predictive significance in clinical situations have been found

thus far (40, 94–98). For instance, hormone-directed therapy is

less successful in castration-resistant prostate cancer patients who

carry the alternatively spliced androgen receptor variation 7 (99).

It was proposed that the tumors with increased background
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expression of PKM2 show a more aggressive phenotype and poor

response to chemotherapy in pancreatic ductal adenocarcinoma

patients undergoing radical surgery and adjuvant chemotherapy

(100). A prospective therapeutic target in colorectal cancer is

CD44 variation 6, an independent negative prognostic factor

(101–103). Similar to our research, these molecules appear in the

molecular keywords (Table 6), indicating that they have potential

clinical translation value and are research hotspots.

Numerous effective therapeutic approaches have been

developed as a result of the discovery of cancer-specific AS

mutations. First, reversing faulty RNA splicing has been made

possible by inhibiting post-translational modifications of

splicing factors or RNA-binding proteins, particularly with the

help of small-molecule inhibitors that target protein kinases

(104, 105). The dual-specificity Cdc2-like kinases and SR-rich

protein-specific kinases are these agents’ two primary targets

(106). Second, a critical treatment focus is the adjustment of

signaling pathways that control AS events (107). For instance,

the PI3K/AKT/mTOR pathway inhibitors MK2206 and BEZ235

can alter splicing results (108, 109). Third, antisense

oligonucleotides can hinder the splicing machinery’s ability to

reach the regulatory regions in the pre-mRNA for therapeutic

purposes and encourage the purge of the targeted mRNA by

endogenous cellular nucleases (110, 111). Bcl-x is a critical gene,

ranked 14th in our molecular keywords (Table 6). Bcl-x

antisense oligonucleotides were created to encourage a splicing

transition that favors the generation of pro-apoptotic Bcl-xS

rather than anti-apoptotic Bcl-xL (112). Fourth, AS isoform

proteins unique to tumors have always been prospective

therapeutic targets. Certain tactics have been devised to use

immunotherapies to target cancer-specific isoforms (86). The

EGFR isoforms de4 and vIII are among the most extensively

researched therapeutic targets (113).

In the realm of tumor research, the identification and

therapy of cancers are enduring focus topics. More

significant biomarkers may be represented by AS signature

spectra or characteristics. These AS signatures can be used as

biomarkers for tumor diagnosis or to develop more effective

drug candidates.

4.2.3 Mechanism of alternative splicing
As shown in Table 6, it can be seen that splicing-related

proteins such as srsf3, esrp1, srsf1, ptbp1, rbm10, and rbm5 have

constantly been research hotspots. Among them, srsf3 (#5, Figure 6B)

ranks sixth in the reference cluster label, and the splicing factor (#3,

Figure 7B) is also one of the keyword cluster labels. The keyword

splicing factor is also reflected in the keywords burst (strength = 12.08,

Figure 7C), with burstness until 2021. This part mainly discusses the

important role of splicing factors in AS. Splicing factors are auxiliary

proteins that take part in the splicing of pre-mRNA.

Trans-acting splicing factors, which bind to sequence motifs

connected to the stimulation (enhancers) or inhibition

(silencers) of splicing, usually control AS. These motifs can be
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found in exons and introns, and they frequently have the greatest

impact near splice sites (114, 115).

Our research indicates that splicing factors from the families

of hnRNPs and serine/arginine-rich proteins (SR proteins) have

been a focus of this field’s research. Many splicing factors ranked

high in the molecular keywords (Table 6) belong to the SR

proteins, RNA-binding motif (RBM) proteins, etc. An article

with research on the mechanism of hnRNPs is the eighth cited

reference (Table 4) and also ranks fifth in the strength of the

reference burst (Figure 6C).

In addition to a carboxy-terminal arginine/serine-rich

domain that contributes to protein–protein interactions, SR

proteins have one or two copies of an RNA recognition motif

domain at the amino terminus that offers RNA-binding

specificity (116, 117). The majority of SR proteins function as

splicing activators, helping the spliceosome to recognize exons

and enable exon inclusion by binding to pre-mRNA at exonic

splicing enhancers. SR proteins frequently face competition from

splicing repressors such as hnRNPs. By binding to exonic or

intronic splicing silencers, hnRNPs obstruct spliceosome

elements’ access and suppress splice site choice. RNA-binding

domains and somewhat unstructured domains, which are likely

involved in protein–protein interactions, are both present in

hnRNPs in a comparable manner. Exon skipping is prevented by

SR proteins’ concentration-dependent inhibition of hnRNPs’

activity (115, 118, 119).

In conclusion, many RNA-binding proteins, such as SR

proteins and hnRNPs, bind splicing enhancers and silencers

(120). Furthermore, some members of RBM proteins also play

important physiological roles as splicing factors. Similar to our

study, among them, there are more reports about RBM4 (121),

RBM5 (122), and RBM10 (123). Similar to SR protein and

hnRNPs protein, RBMs can also regulate the occurrence of

splicing events alone or cooperate with other splicing factors

to regulate the splicing process (124).
4.3 Strengths and limitations

Overall, as far as we know, this article may be the first to

apply bibliometric methods to comprehensively examine papers

associated with AS of cancer research published in the last 10

years. The bibliometric method offers a fresh and unbiased

perspective on the changing research hotspots and fashion in

contrast to conventional reviews (21). Simultaneously, we

conducted an investigation using various bibliometric tools,

which could produce more prosperous outcomes across

numerous dimensions (21, 125). This study will educate the

public about the significance of AS of cancer, offer scholars a

complete image of AS of cancer study, and additionally provide a

detailed and impartial direction for the field’s upcoming growth.

This study unavoidably has certain shortcomings. First, we only

obtained the WoSCC database’s English-language articles,
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leaving out non-English or non-WoSCC items. However,

WoSCC’s English articles are the most often utilized data

source in bibliometrics; thus, to some extent, they may

represent the majority of the field (21, 126). Secondly, some

studies report that bibliometric methods are inevitably biased

because they are based on natural language processing (17, 20).

Our findings, however, are comparable to recent conventional

reviews while offering more comprehensive and unbiased data

(4, 11, 86).
5 Conclusion

In conclusion, research on AS of cancer has steadily

advanced step by step with active cooperation over the past 10

years, with the possibility that the United States will continue to

hold the lead in this field. Scorilas Andreas and Wang Eric T.

were the authors with the most publications and co-citations in

AS of the cancer field, respectively. Currently, AS of cancer

research is predominantly centered on hallmarks of AS in

cancer, AS signatures, and therapeutic targets, as well as

further mechanisms underlying AS. Among them, splicing

factors that regulate EMT or other hallmarks, aberrant AS

signatures and therapeutic targets in cancer research, and the

mechanism of AS may become popular and fruitful directions.

These could offer directions and fresh perspectives for future

studies in the AS of cancer.
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37. Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional
impact of alternative splicing in cancer. Cell Rep (2017) 20:2215–26. doi: 10.1016/
j.celrep.2017.08.012

38. Ma L, Ma J, Teng M, Li Y. Visual analysis of colorectal cancer
immunotherapy: A bibliometric analysis from 2012 to 2021. Front Immunol
(2022) 13:843106. doi: 10.3389/fimmu.2022.843106

39. Ryan M, Wong WC, Brown R, Akbani R, Su X, Broom B, et al.
TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic
Acids Res (2016) 44:D1018–1022. doi: 10.1093/nar/gkv1288

40. Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, et al. Prognostic alternative
mRNA splicing signature in non-small cell lung cancer. Cancer Lett (2017) 393:40–
51. doi: 10.1016/j.canlet.2017.02.016

41. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic
mutational landscape of splicing factor genes and their functional consequences across
33 cancer types. Cell Rep (2018) 23:282–296.e4. doi: 10.1016/j.celrep.2018.01.088

42. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of
adenovirus 2 late mRNA*. Proc Natl Acad Sci (1977) 74:3171–5. doi: 10.1073/
pnas.74.8.3171

43. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence
arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell (1977) 12:1–8.
doi: 10.1016/0092-8674(77)90180-5

44. Liu S, Xia K, Liu X, Duan Y, HuM, Xia H, et al. Bibliometric analysis of birt-
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86. Bessa C, Matos P, Jordan P, Gonçalves V. Alternative splicing: Expanding
the landscape of cancer biomarkers and therapeutics. Int J Mol Sci (2020) 21
(23):9032. doi: 10.3390/ijms21239032

87. Rahman MA, Nasrin F, Bhattacharjee S, Nandi S. Hallmarks of splicing
defects in cancer: Clinical applications in the era of personalized medicine. Cancers
(2020) 12:E1381. doi: 10.3390/cancers12061381

88. Zhao S, Fung-LeungW-P, Bittner A, Ngo K, Liu X. Comparison of RNA-seq
and microarray in transcriptome profiling of activated T cells. PLos One (2014) 9:
e78644. doi: 10.1371/journal.pone.0078644

89. Zhang C, Dower K, Zhang B, Martinez RV, Lin L-L, Zhao S. Computational
identification and validation of alternative splicing in ZSF1 rat RNA-seq data, a
preclinical model for type 2 diabetic nephropathy. Sci Rep (2018) 8:7624.
doi: 10.1038/s41598-018-26035-x

90. Zhang C, Zhang B, Lin L-L, Zhao S. Evaluation and comparison of
computational tools for RNA-seq isoform quantification. BMC Genomics (2017)
18:583. doi: 10.1186/s12864-017-4002-1

91. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet (2009) 10:57–63. doi: 10.1038/nrg2484

92. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-seq. Nat Methods (2008) 5:621–8.
doi: 10.1038/nmeth.1226

93. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW.
Translating RNA sequencing into clinical diagnostics: opportunities and
challenges. Nat Rev Genet (2016) 17:257–71. doi: 10.1038/nrg.2016.10

94. Hu Y-X. Systematic profiling of alternative splicing signature reveals
prognostic predictor for cervical cancer. J Transl Med (2019) 17(1):379.
doi: 10.1186/s12967-019-02140-x

95. Zhu J, Chen Z, Yong L. Systematic profiling of alternative splicing signature
reveals prognostic predictor for ovarian cancer. Gynecol Oncol (2018) 148:368–74.
doi: 10.1016/j.ygyno.2017.11.028

96. Yang C, Wu Q, Huang K, Wang X, Yu T, Liao X, et al. Genome-wide
profiling reveals the landscape of prognostic alternative splicing signatures in
pancreatic ductal adenocarcinoma. Front Oncol (2019) 9:511. doi: 10.3389/
fonc.2019.00511

97. Zhang D, Hu Q, Liu X, Ji Y, Chao H-P, Liu Y, et al. Intron retention is a
hallmark and spliceosome represents a therapeutic vulnerability in aggressive
prostate cancer. Nat Commun (2020) 11:2089. doi: 10.1038/s41467-020-15815-7

98. Xiong Y, Deng Y, Wang K, Zhou H, Zheng X, Si L, et al. Profiles of
alternative splicing in colorectal cancer and their clinical significance: A study
based on large-scale sequencing data. EBioMedicine (2018) 36:183–95.
doi: 10.1016/j.ebiom.2018.09.021

99. Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z, et al. Constitutively active AR-
V7 plays an essential role in the development and progression of castration-
resistant prostate cancer. Sci Rep (2015) 5:7654. doi: 10.1038/srep07654
frontiersin.org

https://doi.org/10.1038/nrc1886
https://doi.org/10.1242/jcs.01004
https://doi.org/10.2174/15680096113136660102
https://doi.org/10.2174/15680096113136660102
https://doi.org/10.1016/j.cell.2004.07.011
https://doi.org/10.1016/s1097-2765(01)00260-x
https://doi.org/10.1016/s1097-2765(01)00260-x
https://doi.org/10.1038/sj.onc.1208429
https://doi.org/10.1038/sj.onc.1208429
https://doi.org/10.1016/j.bbapap.2009.05.001
https://doi.org/10.1371/journal.pgen.1002218
https://doi.org/10.4161/rna.6.5.9606
https://doi.org/10.1038/emboj.2010.195
https://doi.org/10.1038/emboj.2010.195
https://doi.org/10.1016/j.molcel.2009.01.025
https://doi.org/10.1128/MCB.00019-16
https://doi.org/10.1016/j.cell.2010.01.017
https://doi.org/10.1074/jbc.M801192200
https://doi.org/10.1016/j.semcancer.2008.03.015
https://doi.org/10.1172/JCI76725
https://doi.org/10.1172/JCI44540
https://doi.org/10.1593/neo.101744
https://doi.org/10.1593/neo.101744
https://doi.org/10.1016/j.bbrc.2011.08.098
https://doi.org/10.1074/jbc.M800353200
https://doi.org/10.1074/jbc.M800353200
https://doi.org/10.1002/j.1460-2075.1996.tb00521.x
https://doi.org/10.1002/ijc.21151
https://doi.org/10.1371/journal.pone.0022939
https://doi.org/10.1038/nrd3625
https://doi.org/10.1007/978-1-4939-1221-6_9
https://doi.org/10.1016/j.coph.2015.07.005
https://doi.org/10.1038/nsmb.1608
https://doi.org/10.1186/1471-2164-7-325
https://doi.org/10.1186/1471-2164-7-325
https://doi.org/10.1128/MCB.00709-10
https://doi.org/10.1128/MCB.00709-10
https://doi.org/10.1158/1541-7786.MCR-09-0528
https://doi.org/10.3390/ijms21239032
https://doi.org/10.3390/cancers12061381
https://doi.org/10.1371/journal.pone.0078644
https://doi.org/10.1038/s41598-018-26035-x
https://doi.org/10.1186/s12864-017-4002-1
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.1186/s12967-019-02140-x
https://doi.org/10.1016/j.ygyno.2017.11.028
https://doi.org/10.3389/fonc.2019.00511
https://doi.org/10.3389/fonc.2019.00511
https://doi.org/10.1038/s41467-020-15815-7
https://doi.org/10.1016/j.ebiom.2018.09.021
https://doi.org/10.1038/srep07654
https://doi.org/10.3389/fonc.2022.1068805
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tian et al. 10.3389/fonc.2022.1068805
100. Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, et al.
Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine
resistance in pancreatic cancer cells. Oncogene (2016) 35:2031–9. doi: 10.1038/
onc.2015.270

101. Fan C-W, Wen L, Qiang Z-D, Chen T, Zhou Z-G, Mo X-M, et al. Prognostic
significance of relevant markers of cancer stem cells in colorectal cancer - a meta
analysis. Hepatogastroenterology (2012) 59:1421–7. doi: 10.5754/hge10727

102. Saito S,OkabeH,WatanabeM, IshimotoT, IwatsukiM, BabaY, et al. CD44v6
expression is related to mesenchymal phenotype and poor prognosis in patients with
colorectal cancer. Oncol Rep (2013) 29:1570–8. doi: 10.3892/or.2013.2273

103. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al.
CD44v6 is amarker of constitutive and reprogrammed cancer stem cells driving colon
cancer metastasis. Cell Stem Cell (2014) 14:342–56. doi: 10.1016/j.stem.2014.01.009

104. Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer.
Nat Med (2016) 22:976–86. doi: 10.1038/nm.4165

105. Antonopoulou E, Ladomery M. Targeting splicing in prostate cancer. Int J
Mol Sci (2018) 19:E1287. doi: 10.3390/ijms19051287

106. Aubol BE, Wu G, Keshwani MM, Movassat M, Fattet L, Hertel KJ, et al.
Release of SR proteins from CLK1 by SRPK1: A symbiotic kinase system for
phosphorylation control of pre-mRNA splicing. Mol Cell (2016) 63:218–28.
doi: 10.1016/j.molcel.2016.05.034

107. Black AJ, Gamarra JR, Giudice J. More than a messenger: Alternative
splicing as a therapeutic target. Biochim Biophys Acta Gene Regul Mech (2019)
1862:194395. doi: 10.1016/j.bbagrm.2019.06.006

108. Sanidas I, Polytarchou C, Hatziapostolou M, Ezell SA, Kottakis F, Hu L, et al.
Phosphoproteomics screen reveals akt isoform-specific signals linkingRNAprocessing
to lung cancer.Mol Cell (2014) 53:577–90. doi: 10.1016/j.molcel.2013.12.018

109. Passacantilli I, Frisone P, De Paola E, Fidaleo M, Paronetto MP. hnRNPM
guides an alternative splicing program in response to inhibition of the PI3K/AKT/
mTOR pathway in Ewing sarcoma cells. Nucleic Acids Res (2017) 45:12270–84.
doi: 10.1093/nar/gkx831

110. Levin AA. Treating disease at the RNA level with oligonucleotides. N Engl J
Med (2019) 380:57–70. doi: 10.1056/NEJMra1705346

111. Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as
therapeutic drugs. Nucleic Acids Res (2016) 44:6549–63. doi: 10.1093/nar/gkw533

112. Mercatante DR, Bortner CD, Cidlowski JA, Kole R. Modification of
alternative splicing of bcl-x pre-mRNA in prostate and breast cancer cells.
analysis of apoptosis and cell death. J Biol Chem (2001) 276:16411–7.
doi: 10.1074/jbc.M009256200
Frontiers in Oncology 18
113. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G,
Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor
receptor in multiple human tumors. Cancer Res (1995) 55:5536–9.

114. Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory
elements to an integrated splicing code. RNA N Y N (2008) 14:802–13.
doi: 10.1261/rna.876308

115. Fu X-D, Ares M. Context-dependent control of alternative splicing by
RNA-binding proteins. Nat Rev Genet (2014) 15:689–701. doi: 10.1038/nrg3778

116. Zahler AM, Lane WS, Stolk JA, Roth MB. SR proteins: a conserved family
of pre-mRNA splicing factors. Genes Dev (1992) 6:837–47. doi: 10.1101/gad.6.5.837

117. Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, Garcia-Blanco MA,
et al. Protein-protein interactions and 5’-splice-site recognition in mammalian
mRNA precursors. Nature (1994) 368:119–24. doi: 10.1038/368119a0

118. Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory
factors. Wiley Interdiscip Rev RNA (2012) 3:1–12. doi: 10.1002/wrna.100

119. Long JC, Caceres JF. The SR protein family of splicing factors: master
regulators of gene expression. Biochem J (2009) 417:15–27. doi: 10.1042/
BJ20081501
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