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Background: Early gastric cancer (EGC) is defined as a lesion restricted to the

mucosa or submucosa, independent of size or evidence of regional lymph

node metastases. Although computed tomography (CT) is the main technique

for determining the stage of gastric cancer (GC), the accuracy of CT for

determining tumor invasion of EGC was still unsatisfactory by radiologists. In

this research, we attempted to construct an AI model to discriminate EGC in

portal venous phase CT images.

Methods: We retrospectively collected 658 GC patients from the first

affiliated hospital of Nanchang university, and divided them into training

and internal validation cohorts with a ratio of 8:2. As the external validation

cohort, 93 GC patients were recruited from the second affiliated hospital of

Soochow university. We developed several prediction models based on

various convolutional neural networks, and compared their predictive

performance.

Results: The deep learning model based on the ResNet101 neural network

represented sufficient discrimination of EGC. In two validation cohorts, the

areas under the curves (AUCs) for the receiver operating characteristic (ROC)

curves were 0.993 (95% CI: 0.984-1.000) and 0.968 (95% CI: 0.935-1.000),

respectively, and the accuracy was 0.946 and 0.914. Additionally, the deep

learning model can also differentiate between mucosa and submucosa tumors

of EGC.
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Conclusions: These results suggested that deep learning classifiers have the

potential to be used as a screening tool for EGC, which is crucial in the

individualized treatment of EGC patients.
KEYWORDS
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Background

Gastric cancer (GC) is one of the most primary cancers and

ranked as fifth and fourth in the global incidence rate and

mortality rate in 2020 (1). The prognosis of GC was closed

associated with the depth of invasion, because the patients with

advanced GC had a 5-year survival rate of less than 30%, however,

the patients with early gastric cancer (EGC) were more than 90%

(2, 3). EGC is defined as a lesion restricted to the mucosa or

submucosa, independent of size or evidence of regional lymph

node metastases. Accurate preoperative diagnosis at an early stage

of GC provides the greatest prognosis and is critical for planning

effective therapy, such as endoscopic submucosal dissection

(ESD), endoscopic mucosal resection (EMR) and laparoscopic

surgery (4, 5). Notably, the early identification and precise

preoperative staging of EGC are particularly crucial.

For the preoperative diagnosis of EGC, computed

tomography (CT) and endoscopic ultrasonography (EUS) are

the most commonly used methods. The main tumor can be

seen on a CT scan, which can also measure the extent of tumor

invasion and find nodal involvement and distant metastases (6).

According to reports, CT’s overall diagnostic accuracy for T-

staging ranges from 73.8% to 88.9%. Radiologist evaluation of its

T1 stage diagnostic accuracy, however, was average from 63% to

82.7% (7, 8). In certain postoperative cases of EGC (9, 10), it was

discovered, based on several published research and our

experience, that some EGC was over-staged as advanced GC in

clinical practice. As a result, the majority of EGC patients

underwent an excessive amount of D2 lymphadenectomy

therapy (11). There have been many studies on the diagnostic

power of EUS, because it allows for a clear view of the various

layers of the stomach wall, making it one of the most helpful

techniques for T staging (12, 13). According to prior research, for

T1 staging, individual EUS accuracy varied from 14 to 100%, and

the pooled accuracy was 77% (95 CI: 70-84%) (14, 15). However,
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due to the limits of medical technology and equipment, EUS can

only be carried out in reputable medical facilities. Additionally,

various tumor sites and stenosis of natural orifices also reduced

the effectiveness of EUS for staging, particularly at the

gastroesophageal junction (16). This pushes us to come up with

a fresh method of enhancing EGC staging diagnosis.

Nowadays, Deep learning has been extensively discussed in

the context of medical image analysis, including disease

diagnosis, prognosis, and therapy. The deep learning-based

models were trained utilizing enormous volumes of data from

individuals with known messages, then the accomplished

convolutional neural network (CNN) model may utilize data

from other persons to predict their likelihood for that occurrence

(17). Ole-Johan et al. created a biomarker of patient outcome

after primary colorectal cancer resection by directly analyzing

scanned conventional haematoxylin and eosin-stained sections

using deep learning, which may help doctors make better

decisions regarding adjuvant therapy options (18). An

international multicenter study, that sought to develop a deep

learning radiomic nomogram based on the images from

multiphase CT, was successful in distinguishing the number of

lymph node metastasis in local GC with excellent accuracy (19).

For peritoneal recurrence and prognosis in GC, a multitask

prediction models that incorporated preoperative CT images

with CNNs demonstrated good accuracy. Adjuvant treatment

was linked to increased disease-free survival (DFS) in stage II-III

illness for patients with a forecasted high probability of

peritoneal recurrence and low survival (20). However, there

haven’t been any reports of using CT images along with deep

learning to diagnose EGC staging. With the use of portal venous

phase CT images, the goal of this work is to build a deep learning

model for accurately distinguishing EGC.
Materials and methods

Patients

The cohort 1 in this study were 658 GC patients who had

surgery in the first affiliated hospital of Nanchang University

between June 2018 and December 2021. The training and internal

validation cohorts were split up at random from the GC patients
frontiersin.org
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of cohort 1 with the ratio of 8:2. As the external validation cohort,

93 GC patients were recruited from the second affiliated hospital

of Soochow university from January to December 2021. The

following patients were excluded from the study (1): patients

with incomplete clinical information after diagnosis (2), patients

without preoperative CT images (3), patients whose quality of

preoperative CT images was insufficient for further analysis (4),

patients who had preoperative CT examinations more than 14

days before surgery (5), patients who had received neoadjuvant

chemotherapy. Supplementary Figure 1 showed the flowchart of

inclusion and exclusion criteria for EGC patients for the cohort 1.

We employed PASS software to estimate the sample size, and the

sample size of the advanced GC was 1.5 times of the EGC patients

as control group (Supplementary Figure 2). According to the

purpose of our study, all GC patients were divided into two

categories, including EGC and advanced GC, to develop a

prediction model for identifying EGC. Advanced GC was

defined when the invasion depth exceeded the submucosal level.

There were 210 EGC patients and 316 advanced GC patients in

the training cohort, 53 EGC patients and 79 advanced GC patients

in the internal validation cohort, and 23 EGC patients and 70

advanced GC patients in the external validation cohort. The

medical ethics committee of the first affiliated hospital of

Nanchang University approved this retrospective study protocol

(IRB number: 2022-CDYFYYLK-09-041).
Image acquisition

For contrast-enhanced CT scanning, the following scanners

were used: 128-channel CT (IQon Spectral CT), 256-channel CT

(Philips Brilliance iCT 256), 256-channel CT (Siemens

Healthcare) and 128-channel CT (Siemens Healthcare). The

scanning specifications were as follows: a tube voltage range of

80 to 120 kVp, a tube current range of 120 to 300 mAs, a pitch
Frontiers in Oncology 03
range of 0.6 to 1.25 mm, an image matrix of 512×512, and a

reconstruction slice thickness range of 1 or 2 mm. Before having

an abdominal contrast-enhanced CT, each patient had an

intramuscular injection of 20 mg of Racanisodamine

Hydrochloride and drank 1,000-2,000 mL of water. Following

intravenous injection of contrast media (1.5mL/kg, at a rate of

3.0-3.5mL/s), the arterial phase and portal venous phase were

recorded in 25-30 seconds and 65-70 seconds, respectively.
Manual label of tumor and images
preprocessing

During the portal venous phase, the tumor lesion was

significantly increased and more easily separated from

peripheral normal tissue, and many earl ier studies

employed this phase to segment tumor lesions (21, 22). The

regions of interest (ROIs) of CT images were manually

labeled by two radiologists (Z.Y., a junior radiologist and

Z.F., a senior radiologist) using ITK-SNAP (version 3.6.0,

USA). After the junior radiologist had completed sketching

the tumor lesion, the senior radiologist checked the ROI for

quality and made a few tweaks. In the three-dimensional (3D)

medical imaging, we carefully delineated the adjacent upper

and lower slices of the solid tumor, making sure not to include

the normal stomach wall or any nearby air or fluid. The

radiologist determined the input volume’s nth slice to be the

one with the largest tumor lesion. Then, for further analysis,

we isolated the (n - 2)th, (n - 1)th, nth, (n + 1)th, and (n + 2)th

slices. These slices were saved as ‘png’ format. All GC pictures

had standardized image contrast based on the abdominal

window (window level: 200 HU, window width: 55 HU). The

ROI was resized to 224×224 pixels, after being clipped out

from these had extracted slices. Figure 1 displayed the flow

chart for the entire research design.
FIGURE 1

The workflow of entire research design.
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Deep learning and deep transfer learning
features extraction

In this study, we extracted DL and deep DTL features to

constructed a prediction model, respectively. DL features were

extracted based on various CNN models from every standardized

ROI image, including ResNet18, ResNet34, ResNet50, ResNet101,

ResNet152, Densenet121, Densenet201 and inception v3, which

were pre-trained based on images of reality. For DTL features, the

parameters of these CNNmodels were pre-trained by all of the ROI

images from cohort 1. Then, the pre-trained CNN models were

used to extract DTL features for each ROI image. The following

process was utilized for all feature acquisition: ROI pictures were

input into each CNNmodel or pre-trained CNNmodel, the average

probability from all images was used to produce DL or DTL

features, and the output from the penultimate FC layer was used

as DL or DTL features (Figure 2). Since every ROI of the (n - 2)th,

(n - 1)th, nth, (n + 1)th, and (n + 2)th slices were extracted from one

GC patients, the DL or DTL features of five slices were averaged to

represent each GC patient. Furthermore, our research was

implemented in Python 3.10 and run on a system with an Intel

Xeon Silver 4214 CPU and 256 GB memory.
DL and DTL feature prediction
model building

Each features group was employed individually to normalize

combined features by z score normalization in the training,
Frontiers in Oncology 04
internal validation and external validation cohorts to merge

features of various magnitudes into one magnitude. Non-zero

coefficients served as useful predictors in each feature group using

the absolute shrinkage and selection operator (LASSO) regression

for feature selection in the training cohort (Supplementary

Figure 3). To create machine learning classification models for

multiple feature groups, we used Python Scikit-learn. The

performance of several machine learning classifiers, including

the support vector machine (SVM), K-nearest neighbor (KNN),

decision trees, random decision forests (RF), extra trees, XGBoost

and lightGBM was compared using the DeLong test. The receiver

operator characteristic (ROC) analysis was used to evaluate the

performances of all established models, and the area under the

ROC curve (AUC) was used to determine their discriminative

ability. A few quantitative metrics were specificity, sensitivity and

accuracy. After constructing the classifier for diagnosing EGC, we

will verify its generalization ability in the internal validation and

external validation cohorts.
Statistical analysis

Statistical analyses were performed with IBM SPSS Statistics

(Version 20.0, USA) for windows. The Student’s t-test and

analysis of variance were used to analyze the quantitative data,

which were reported as mean ± SD. Chi-square test and Fisher

exact test were used to analyze the qualitative data. we used the

DeLong test to calculate differences between several models

using the MedCalc software (version 20.100). A statistically
FIGURE 2

The workflow of deep learning and deep transfer learning (Pre-trained CNNs). DL, deep learning; DTL, deep transfer learning.
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significant difference was determined to exist when P-value was

less than 0.05. LASSO regression analysis and z score

normalization were carried out using Python (version 3.10,

available at https://www.python.org/).
Results

Demographics of patients

Table 1 summarized the detailed demographics of GC

patients. There were 526, 132 and 93 GC patients enrolled in

the training, internal validation and external validation cohorts.

The proportions of EGC were 39.92%, 40.15% and 24.73 in the

training, internal validation and external validation cohorts.
Frontiers in Oncology 05
There were 81 invasion of the mucosa (T1a) patients and 129

invasion of the submucosa (T1b) patients in the training cohort,

while the internal validation cohort enrolled 19 invasion of the

mucosa patients and 34 invasion of the submucosa patients.

After statistical analysis by SPSS software, we found that age,

tumor size, tumor location, pathological T stage (T1 vs T2-4),

lauren’s classification, grade of differentiation, CEA level, CA12-5

level and CA19-9 level were no significantly statistical differences

between the training and internal validation cohorts (P-value >

0.05), instead of gender. While, age, gender, tumor location,

pathological T stage (T1 vs T2-4), lauren’s classification and

CA19-9 level were shown significantly statistical differences

between the training and external validation cohorts (P-value <

0.05). Only tumor size, grade of differentiation, CEA level and

CA12-5 level were not significantly different between the training
TABLE 1 Characteristics of GC patient including for classification modeling.

Characteristics Training cohort
(n=526)

Internal validation cohort
(n=132)

P-
value

External validation cohort
(n=93)

P-
value

Age, mean ± SD, year 61.33 ± 11.30 60.27 ± 10.81 0.333 67.26 ± 9.54 <0.001

Tumor size, mean ± Std,
mm

37.94 ± 22.86 41.00 ± 25.08 0.178 40.55 ± 27.09 0.325

Gender, No.(%) 0.047 <0.001

Male 313 (59.51) 91 (68.94) 74 (79.57)

Female 213 (40.49) 41 (31.06) 19 (80.43)

Tumor location, No.(%) 0.316 0.004

Upper-third 93 (17.68) 27 (20.46) 27 (29.03)

Middle-third 158 (30.04) 31 (23.48) 15 (16.13)

Lower-third 275 (52.28) 74 (56.06) 51 (54.84)

Pathological T stage†,
No.(%)

0.962 0.005

T1 210 (39.92) 53 (40.15) 23 (24.73)

T2-4 316 (60.08) 79 (59.85) 70 (75.27)

Lauren’s classification,
No.(%)

0.074 0.006

Intestinal type 301 (57.22) 69 (52.27) 37 (39.78)

Diffuse type 97 (18.44) 36 (27.27) 27 (29.04)

Mixed type 128 (24.34) 27 (20.46) 29 (31.18)

Grade of differentiation,
No.(%)

0.604 0.437

Poor/undifferentiated 206 (39.16) 58 (43.94) 43 (46.24)

Moderate 280 (53.23) 65 (49.24) 44 (47.31)

Well 40 (7.61) 9 (6.82) 6 (6.45)

CEA level, No.(%) 0.067 0.518

Negative 488 (92.78) 116 (87.88) 88 (94.62)

Positive 38 (7.22) 16 (12.12) 5 (5.38)

CA12-5 level, No.(%) 0.853 0.382

Negative 504 (95.82) 126 (95.45) 88 (94.62)

Positive 22 (4.18) 6 (4.55) 5 (5.38)

CA19-9 level, No.(%) 0.342 0.004

Negative 445 (84.60) 116 (87.88) 89 (95.70)

Positive 81 (15.40) 16 (12.12) 4 (4.30)
frontie
Quantitative variables were in mean ± SD and qualitative variables are in n (%). †According to the eighth edition AJCC Cancer Staging Manual. Bold values meant P-value < 0.05.
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and validation cohorts. This was mainly due to the limited sample

size of the external validation cohort.
Result of the feature extraction
and selection

As shown in Figure 2 and Supplementary Table 1, multiple

CNN and pre-trained CNN models were used to extract 512-

2,048 DL and DTL features for each patient from each ROI slice.

All features were examined using LASSO regression and z sore

normalization, and all features with non-zero coefficients were

chosen to build classification models with the five-fold cross test.

For example, in ResNet101 and pre-trained ResNet101 models,

there were 85 DL and 15 DTL features selection using LASSO

regression. The detail selection features of several CNN models

were displayed in Supplementary Table 2.
The performance of different
CNN models

We analyzed the performance of ResNet18, ResNet34,

ResNet50, ResNet101, ResNet152, Densenet121, Densenet201
Frontiers in Oncology 06
and inception v3 to determine the best model for diagnosing

EGC (Table 2 and Figure 3). Our research showed that the

ResNet101 model represented the best performance for

diagnosing EGC with AUC 0.992 (95% CI: 0.984-1.000) and

0.968 (95% CI: 0.935-1.000) in the internal and external

validation cohorts, respectively. Furthermore, the internal

validation cohort had an accuracy of 93.1%, a sensitivity of

94.4%, and a specificity of 94.8%, meanwhile, the external

validation cohort had an accuracy of 82.8%, a sensitivity of

100%, and a specificity of 85.7%.

In order to make the CNN model more suitable for medical

diagnosis scenarios, we pre-trained the various CNN models and

constructed diagnosing EGC models. For the pre-trained model,

in two validation cohorts, the pre-trained ResNet101 also

represented better diagnosis ability with AUC 0.965 (95% CI:

0.932-0.999) and 0.936 (95% CI: 0.886-0.986) than others (Table 3

and Figure 4). The internal validation cohort had an accuracy of

90.9%, a sensitivity of 96.2%, and a specificity of 89.8%,

meanwhile, the external validation cohort had an accuracy of

89.2%, a sensitivity of 95.7%, and a specificity of 80.0%. Although

the AUC score of several training cohorts showed better

performance than validation cohorts, we thought the validation

cohort was the most suitable data to evaluate the generalization
TABLE 2 The difference between various deep learning models.

Models Groups AUC (95%CI) Accuracy Sensitivity Specificity

Resnet18 Training 0.980 (0.969-0.991) 0.937 0.956 0.930

Internal validation 0.981 (0.963-0.998) 0.924 0.925 0.948

External validation 0.935 (0.888-0.983) 0.839 0.957 0.814

Resnet34 Training 0.979 (0.970-0.989) 0.916 0.995 0.873

Internal validation 0.974 (0.954-0.995) 0.916 0.925 0.935

External validation 0.877 (0.808-0.946) 0.796 1.000 0.710

Resnet50 Training 0.988 (0.981-0.994) 0.941 0.961 0.924

Internal validation 0.977 (0.946-1.000) 0.962 0.962 0.961

External validation 0.939 (0.894-0.984) 0.860 1.000 0.800

Resnet101 Training 0.975 (0.960-0.990) 0.946 0.966 0.949

Internal validation 0.992 (0.984-1.000) 0.946 1.000 0.897

External validation 0.968 (0.935-1.000) 0.914 1.000 0.929

Resnet152 Training 0.982 (0.971-0.992) 0.946 0.928 0.958

Internal validation 0.981 (0.963-0.999) 0.931 0.944 0.948

External validation 0.950 (0.911-0.990) 0.828 1.000 0.857

Densenet121 Training 0.996 (0.994-0.999) 0.965 0.995 0.952

Internal validation 0.985 (0.963-1.000) 0.962 0.925 1.000

External validation 0.903 (0.837-0.969) 0.806 0.913 0.829

Densenet201 Training 0.995 (0.992-0.998) 0.967 0.966 0.971

Internal validation 0.985 (0.963-1.000) 0.969 0.962 0.974

External validation 0.953 (0.914-0.993) 0.860 0.957 0.829

Inception v3 Training 0.986 (0.977-0.995) 0.944 0.961 0.949

Internal validation 0.987 (0.973-1.000) 0.946 0.944 0.961

External validation 0.929 (0.873-0.985) 0.839 0.826 0.929
fro
AUC, area under the receiver operating characteristic curve; 95%CI, 95% confidence intervals.
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ability of the model. Figure 5A represented the P-value of the

DeLong test of different diagnosing EGC model in internal and

external validation cohorts.
Performance of various machine learning
classifications

We used different machine learning classifiers to develop

diagnosing EGC models, including SVM, KNN, decision trees,

RF, extra trees, XGBoost and lightGBM. In all classifiers, the

AUC value of SVM classifier represented better performance

than other classifiers both in CNN and pre-trained CNN models
Frontiers in Oncology 07
(Supplementary Tables 3 and 4). For example, in ResNet101

model, the AUCs value of the SVM, KNN, decision trees, RF,

extra trees, XGBoost and lightGBM were 0.993 (95% CI: 0.985-

1.000), 0.963 (95% CI: 0.924-1.000), 0.914 (95% CI: 0.870-0.959),

0.902 (95% CI: 0.850-0.955), 0.874 (95% CI: 0.785-0.962), 0.956

(95% CI: 0.918-0.994) and 0.956 (95% CI: 0.942-0.972) in the

internal validation. Additionally, the accuracy of SVM

classification was also better in terms of performance than

KNN, decision trees, RF, extra trees, XGBoost and lightGBM

classification, such as accuracy of 0.947, 0.939, 0.818, 0.826,

0.811, 0.682 and 0.738 in internal validation cohort and accuracy

of 0.914, 0.903, 0.871, 0.828, 0.892, 0.839 and 0.903 in the

external validation cohort.
FIGURE 3

The AUC of various groups of deep learning feature (CNN) models in the internal and external validation cohorts using support vector machine
(SVM), K-nearest neighbor (KNN), decision trees, random decision forests (RF), extra trees, XGBoost and lightGBM classifiers.
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Discussion

With the advancement of human living conditions, the rise in

the incidence of GC has drawn the attention of an increasing

number of individuals. However, the majority of patients with GC

received an advanced diagnosis after their initial diagnosis, which

had a significant impact on their prognosis (23, 24). EGC has the

characteristics of less treatment trauma and a 5-year overall

survival rate of more than 90%, especially for endoscopic

therapy was more acceptable to patients (2, 3). As a result, the

diagnosis of EGC is particularly important. In recent years, AI

technology has been widely used in the medical field, particularly

in medical image analysis. The goal of this work is to use deep

learning technology to create a CT diagnosis model of EGC and

increase its efficiency. According to the Chinese recommendations

for diagnosing and treating gastric cancer and the Japanese Gastric

Cancer Association treatment guidelines, we can provide a more

individualized diagnosis and treatment advice (5, 25).

To our knowledge, various researches were kept on

diagnosing T staging of GC, including CT, EUS, double

contrast-enhanced ultrasonography and laparoscopic

exploration (6, 26–28). In enhanced CT portal vein phase

images, the appearance of different densities in the normal
Frontiers in Oncology 08
stomach wall was used to discriminate T stage of GC (29).

Radiologists diagnose T stage of GC based on the size of greatly

enhanced lesions to the layers of the stomach wall in contrast-

enhanced scans. The criterion of the T1 stage on CT image was

as following: between the high enhancement of the inner part of

the tumor and somewhat higher enhancement of the outside

stomach muscle, there are continuous and complete low

enhancement bands, or the highly enhanced lesions are not

more than 50% of the total thickness of the stomach wall (25).

Various previous studies showed that the accuracy of using CT

to diagnose the T1 stage of GC was average from 63% to 82.7%

and radiologists with different experiences had various rates to

misdiagnose stage T1 as T2 (6, 30). Wang and colleagues

reported a gastric window, which had a much higher accuracy

more than 90% using CT diagnosing EGC (6). Although the

strategy of adjusting the CT window can greatly enhance the

diagnosis rate of EGC, this study had a small sample size, and the

generalizability had to be confirmed further. In this study, the

accuracy of the ResNet101 model diagnosing EGC was both

94.6% in the training and internal validation cohorts. In order to

demonstrate the generalization performance of the CNN model,

the external validation cohort that we collected also showed a

good accuracy rate of 91.4%. To our surprise, the sensitivity of
TABLE 3 The difference of various deep transfer learning models.

Models Groups AUC (95%CI) Accuracy Sensitivity Specificity

Resnet18 Training 0.848 (0.814-0.882) 0.775 0.790 0.781

Internal validation 0.917 (0.864-0.969) 0.825 0.830 0.911

External validation 0.942 (0.900-0.987) 0.806 0.957 0.829

Resnet34 Training 0.886 (0.854-0.918) 0.823 0.914 0.765

Internal validation 0.940 (0.894-0.985) 0.871 0.905 0.873

External validation 0.885 (0.819-0.951) 0.785 0.957 0.771

Resnet50 Training 0.926 (0.904-0.949) 0.863 0.833 0.889

Internal validation 0.966 (0.940-0.992) 0.886 0.943 0.873

External validation 0.905 (0.845-0.965) 0.817 0.957 0.757

Resnet101 Training 0.904 (0.876-0.932) 0.849 0.833 0.870

Internal validation 0.965 (0.932-0.999) 0.909 0.962 0.898

External validation 0.936 (0.886-0.986) 0.892 0.957 0.800

Resnet152 Training 0.907 (0.881-0.934) 0.853 0.885 0.835

Internal validation 0.975 (0.944-1.000) 0.954 0.943 0.974

External validation 0.919 (0.861-0.977) 0.892 0.826 0.928

Densenet121 Training 0.930 (0.907-0.953) 0.853 0.933 0.819

Internal validation 0.925 (0.877-0.974) 0.871 0.830 0.898

External validation 0.927 (0.873-0.981) 0.860 0.913 0.843

Densenet201 Training 0.962 (0.948-0.977) 0.901 0.866 0.927

Internal validation 0.924 (0.879-0.969) 0.833 0.886 0.835

External validation 0.635 (0.506-0.763) 0.699 0.826 0.522

Inception v3 Training 0.953 (0.934-0.973) 0.882 0.923 0.901

Internal validation 0.935 (0.895-0.974) 0.825 0.905 0.848

External validation 0.816 (0.691-0.941) 0.806 0.696 0.886
fro
AUC, area under the receiver operating characteristic curve; 95%CI, 95% confidence intervals.
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the diagnostic model in both validation cohorts reached 100%.

The benefit of our findings is that we established a strategy to

reduce the over-staging EGC patients, avoiding the need of

unnecessary D2 lymphadenectomy or neoadjuvant treatment.

The depth of invasion of EGC is an essential evidence in

deciding on endoscopic resection (31). Absolute indications for

endoscopic resection of EGC, according to the second

guidelines, are mostly for EGC with intramucosal invasion (5).

Due to the high diagnostic rate of EUS, it is the first choice for

evaluating the depth of invasion in EGC. Previous studies had

explored the utility of CT in diagnosing the depth of invasion in

EGC, but the final result was that EUS diagnosis was suggested
Frontiers in Oncology 09
before determining the treatment plan (6, 10). In this study, we

tried to construct a model for identifying intramucosal EGC

(T1a) using the ResNet101 neural network using the whole EGC

patients from cohort 1. The results showed that the accuracy of

diagnosing T1a was 88.6% and 62.3% in the training and internal

validation cohorts (Figure 5B). The sensitivity of diagnosing T1a

was 97.5% and 73.7%, and the specificity was 80.6% and 61.8% in

the training and internal validation cohorts, respectively. In the

internal validation cohort, the accuracy of diagnosing the T1a

model was lower than Lee and Wang (6, 10). Compared to EUS

diagnosing depth of EGC, the performance of CT images still

faces a huge challenge.
FIGURE 4

The AUC of various groups of deep transfer learning feature (pre-trained CNN) models in the internal and external validation cohorts using support
vector machine (SVM), K-nearest neighbor (KNN), decision trees, random decision forests (RF), extra trees, XGBoost and lightGBM classifiers.
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In order to choose the best CNN model for diagnosing

EGC, we developed various diagnostic models based on

different neural network models, including ResNet18,

ResNet34, ResNet50, ResNet101, ResNet152, Densenet121,

Densenet201 and Inception v3 in this study. We found that

the performance of CNN models for diagnosing EGC was

almost no significant difference using the DeLong test. It

justly seemed the AUC value of the ResNet101 model

represented the highest compared to others. Deep learning

model training needs a significant amount of processing power

(32). When choosing the best model, the burden of a large

computing load should also be considered, especially for big

data in medical scenarios (33, 34). ResNet model uses residual

learning to reduce gradient dispersion and accuracy loss in the

deep networks, which can speed up the training of neural

networks while improving model accuracy (35, 36). Resnet18 is

an 18-layer convolutional neural network with fewer layers

than ResNet101, and the result showed a satisfying ability of

diagnosing EGC with AUC 0.981(95% CI: 0.963-0.998) and

0.935(95% CI: 0.888-0.983), and the accuracy of 92.4% and

83.9% in the internal and external validation cohorts.

Densenets model significantly improves the transmission

speed of information and gradients in the network, and it

just requires half of the parameters and computation of ResNet

to achieve the same accuracy (37, 38). The performance of the

Densenet201 model for diagnosing EGC was also not inferior

to the ResNet101 model with AUC 0.985(95% CI:0.963-1.000)

and 0.953(95% CI: 0.914-0.993), and accuracy of 96.9% and

86.0% in the internal and external validation cohorts. In
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addition, previous studies indicated that pre-training CNN

models with medical images to adjust the network

parameters could significantly increase classification

performance (39, 40). However, our results demonstrated

that the pre-trained CNN model did not significantly

improve its ability of diagnosing EGC, compared to the

original CNN models, which may be due to insufficient

training sample size. As a result, while treating clinical issues

using a CNNmodel, not only the model’s performance but also

the model’s applicability in hospitals must be addressed.

Artificial intelligence (AI) has advanced rapidly in

biomedicine in recent years. The merging of AI technology and

medical images such as endoscopy, radiographic images and

pathology plays an important role in the diagnosis, staging and

prognosis (41). Dong et al. employed a deep learning radiomics

nomogram based on CNN to predict the degree of lymph node

metastases in patients with advanced GC in an international

multicenter trial (19). The model accurately distinguishes the

degree of lymph node metastases in patients and is connected

to the overall survival rate. Besides, Jiang et al. used CNN to build

a model for predicting peritoneal metastasis of gastric cancer, and

the AUC value exceeded 0.90, indicating a significant diagnostic

benefit (20). Previous study indicates that AI technology has a

good data analysis capability in the field of medical images;

nevertheless, the low interpretability of AI is an important

factor hindering its application (32, 41). Although some studies

have improved their interpretability by examining the connection

of deep learning features with clinical characteristics and

radiomics features, they are still unable to match the present
A B

FIGURE 5

(A) The heatmap of the DeLong test P-value for various CNN and pre-trained CNN model of diagnosing EGC in the internal and external
validation cohorts. The blue represented P-value < 0.05. (B) The AUC of ResNet101 model for diagnosing the depth of EGC in the training and
internal validation cohort.
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high demand for clinical proof (42, 43). In this study, we utilized

deconvolution to create a heatmap of tumor images, but only

explained the regions that the deep learning network focused on,

without further explanation (Supplementary Figure 4). Therefore,

the interpretability of deep learning features needs to be further

explored to speed up its clinical application.

There are several limitations in this study (1). This study was

a retrospective study, which is prone to sample selection bias.

Therefore, follow-up prospective studies are needed to provide

more clinical evidence (2). The patients included in this study

were patients with confirmed GC diagnosis and lesions were

found in the CT image. So this CNN model of diagnosing EGC

did not applicable to EGC patients with no lesions found in CT

images (3). We only used CT images of the portal vein phase to

develop CNN diagnosing model in this study. In the future, we

will employ several phases to construct the model.
Conclusion

We firstly constructed a CNN prediction model for

diagnosing EGC from GC patients, and the deep learning

model also had the potential for differentiating between

mucosa and submucosa tumors of EGC. These results suggest

CNN model can provide favorable information for

individualized treatment of EGC patients.
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features selection.
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The heatmap of the ResNet101 identified feature regions of diagnosing

EGC models. The red region represented important.
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