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Introduction

Cellular therapies have attracted huge research and clinical attention lately (1, 2).

Natural killer cells (NKCs) are a class of innate immune lymphoid cells (ILP) mainly

derived from bone marrow lymphoid stem cells (3). They are mainly distributed in

peripheral blood (PB) and peripheral lymphoid tissues, accounting for about 10% of the

total lymphocytes in PB (4–7). Presently, NK cell immunotherapeutics utilize cells

derived from many sources including PB, umbilical cord blood (8), immortalized NK cell

lines, and more recently, induced pluripotent stem cells (iPSC) (9–11). They are

characterized by rapid response and non-specific cytotoxic effect without prior antigen

sensitization, and are independent on antibodies or complements (12, 13). NKCs induce

apoptosis of target cells by secreting perforin, granzyme, cytokines and chemokines (14,

15). NKCs also selectively attacks foreign and diseased cells through expression of killer-

cell immunoglobulin-like receptors (KIRs) and Fc receptor (CD16) where the later

mediates antibody-dependent cell-medicated cytotoxicity (ADCC) (16–18).

Human NKCs are defined by the CD3-CD56+ surface phenotype (19, 20). According

to their surface expression of CD56, they are divided into two main subpopulations:

CD56bright and CD56dim, which differ significantly in biological characteristics (20–22).

Briefly, CD56bright NKCs are immature cells and the progenitor for effector cells with

high expression of CD56 and low expression of CD16 and KIRs (21), and accounts for

about 5- 10% of the total NKCs. Also, they are weakly immunoregulatory and rely mainly

on the secretion of cytokines, growth factors and chemokines (22). On the contrary,
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CD56dim subset accounts for about 90-95% of the circulating

NKCs. They are characterized by low expression of CD56 and

high expression of CD16, KIRs, FcgRIII and a variety of NK cell

inhibitory receptors. They exhibit intrinsic cytotoxicity and

ADCC but have weak cytokine secretion ability (23, 24).

Many studies have revealed the role of NKCs in pathologies like

autoimmune diseases (25, 26), leukemia (25), pregnancy-related

conditions (27), liver diseases (28–30), HIV (31), HPV (32),

atherosclerosis (33) and in many age-related diseases. Aging is

usually associated with increased susceptibility to infectious diseases

and cancers due to immunosenescence which is particularly

reflected in the biological changes in the population and subsets

of NKCs throughout life (34). As the functioning of the immune

system decreases with age, NKCs have difficulties in initiating

adaptive immune responses and mobilizing effective immune

molecules, leading to the occurrence of diseases related to aging,

such as infections and tumors (35–38). The proportion of CD56dim

NKCs in the elderly increased with age, while the CD56bright

NKCs decreased significantly, suggesting that the increased

CD56dimNK : CD56brightNK ratio is significantly age related

(39, 40). Studies have also shown that the mortality risk in the

elderly with low NK cell counts is three-fold higher than that in the

elderly with high NK cell counts (41). In addition to the decreased

CD56bright NKCs in older adults (42–44), Sagiv et al.

demonstrated that the decline in perforin-mediated NK

cytotoxicity is similarly age-related, and may hinder the ability of

NKCs to clear senescent cells in the elderly (45). Similarly, NKCs

from geriatric population have synonymous reduction in

proliferative response to interleukin 2 (IL-2) and expression of

the CD69 activation antigen (46–49). With immunosenescence

being almost inevitable, many are willing to explore therapies to

escape the negative consequences of aging especially tumor

development which is increasingly prevalent. Therefore,

undergoing NK cell therapy in early old age may help particularly

in alleviating cancers.

Studies have shown that the therapeutic efficiency of NK cell

therapeutics while encouraging in hematopoietic malignancies, is

unsatisfactory in solid tumors as it is problematic for NKCs to

infiltrate tumor sites (50, 51). The function, activation, and

persistence of NKCs are significantly diminished by the tumor

microenvironment (TME), leading to their dysfunction or

exhaustion. In this paper, we wish to draw the attention of

researchers to the fact that NK cellular products are highly

promising in the fight against cancer and other age-complicated

diseases and if they must be applied safely, more efforts should be

directed towards addressing the bottlenecks. Broadly, NK cell

infiltration, solid tumor targeting, in vivo persistence and

resistance to TME must be improved, and reproducible and

standardized protocols must be developed for the generation and

expansion of NKCs. Here in, we highlight the strategies employed

in tackling the challenges as this will serve as guide to the research

trend and future directions considered in the development of

clinical grade NK biotherapeutics.
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Improving tumor targeting,
microenvironment resistance and
solid tumor infiltration

Clinical trials involving NKCs is generally not a new topic as

they have been in progress for over two decades from where

preliminary data regarding the safety and efficacy of NKCs have

been obtained following their adoptive transfer to treat

hematologic malignancies (25, 52). Nevertheless, some

limitations have been encountered in the application of NK

cell therapy to solid tumors largely because the TME harbors

suppressive ligands, metabolites and cytokines which threatens

the survival of NKCs (53). Additionally, the tumor itself

possesses other defense mechanisms against attack by NKCs.

Therefore, enormous research efforts are directed towards

producing or modifying NKCs to be more resistant to attack

from tumors and TME while harnessing their cytolytic effect

after tumor penetration (54, 55). One of such approaches include

blocking of inhibitory receptors with monoclonal antibodies

(mAbs) like monalizumab (56).

Increasing the efficacy of tumor cell recognition is achievable

via genetic modification (57) (58). For example, CAR-NKCs have

enhanced cytolytic activity attributable to the synergistic effect of

targeted specificity against tumor associated antigens and

intracellular signaling of receptors (59, 60). CAR-NKCs can also

be fashioned with receptors for a wide range of antigens with the

CAR expression permitting carrier cells to recognize antigens on

tumor-cell surfaces without major histocompatibility complex

restriction (9, 58, 61). Also, unlike CAR-T cell therapies, CAR-

NKCs possess reduced risk of cytokine release syndrome,

neurological complications and better potential for allogeneic

applications (62).

Transfection efficiency for primary NKCs is a key obstacle to

the large-scale manufacture of genetically modified CAR-NKCs

and different techniques like viral transduction and non-viral

electroporation are underway to addressing this challenge (63,

64). Kumar et al. has recently led the production and evaluation

of CRISPR-engineered NK-92 cell constitutively expressing Cas9

or dCas9 which have shown good prospects for further research

and possible clinical application (65).
Pharmacokinetics and
pharmacodynamics of
natural killer cell therapeutics

NK and other cellular therapeutics are different from

conventional (chemical) drugs therefore great disparity exists in

their pharmacokinetics and pharmacodynamics properties. There is

substantial evidence from clinical studies regarding the safety and

efficacy of NK cell therapeutics. Nonetheless, more research is on
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demand to explore the sensitivity a wider variety of tumors to NK

cell therapy, determine the mechanism(s) of action (cytotoxic

response) against different types of tumors and identify possible

contraindications. Some of the identified issues are as thus:
Fron
1. Allogenic NKCs from PB are relatively safe and

satisfactorily effective against tumors but are

susceptible to rejection by the host (66, 67).

2. Although several studies show the relationship between

high NKCs, their receptors/ligands levels and better

overall survival in patients with hepatocellular

carcinoma (HCC), the underlying mechanism of

remains unclear (13).

3. In obese patients, significant numbers of NK and T cells

are recruited to the visceral adipose tissue at the expense

of successful tumor infiltration and eradication (68),

thus posing a serious challenge for the application of NK

cell therapy in certain comorbid situations.

4. Combination therapy with NK and T cells or other

tumor therapy strategies need to be confirmed with

large-scale clinical trials as the clinical outcome can

vary between tumor types.
Hence, several research efforts are geared towards unravelling

possible NK mechanism of cytolysis like mitochondrial apoptosis

(64) and release of perforin and granzymes (69); factors that may

increase their cytotoxicity such as E26 transformation-specific

transcription factor ELK3 expression by cancer cells (70); factors

that attenuate cytolytic function like increased transforming growth

factor-beta 1 (TGF-b1) (32), inhibition of O-GlcNAcylation (71),

low surface expression and impaired function of transient receptor

potential melastatin 3 (TRPM3) (32, 71–75); and addressing the

complications accompanying rejection-prone cellular products (67,

76, 77).
Expansion and activation of natural
killer cells

Another obstacle to the manufacture of clinical grade NK

cell therapeutics is the large-scale expansion of NKCs without

loss of their cytotoxic activity (78). The expansion of NKCs can

be ex vivo or in vivo followed by isolation by CD3+ cell depletion

and subsequent positive selection of CD56+ cells. Other

strategies involve a single step depletion of CD3+ and CD19+

cells using magnetic beads (79), and differentiation of functional

NKCs from enriched CD34+ progenitors present in cord blood

and bone marrow (80, 81). While good manufacturing practice

(GMP) guidelines have been established, inconsistencies exist
tiers in Oncology 03
between the cytotoxicity, expansion rate, receptor expression,

cytokine secretion and phenotype based on their respective

source and expansion method (80, 82–84) which may

influence their therapeutic activity. iPSCs derived NKCs

possess improved expansion rate, cytokine secretion and

cytotoxic compared to those from PB. They can also be

genetically functionalized to harness tumor targeting, cytolytic

activity and persistence in the TME (85). They have been

clinically tested for different diseases including graft versus

host disease, Parkinson’s disease and heart failure (86, 87).

Synergistic activity of iPSCs-derived NKCs with other effector

T-cells and successful in vitro tumor infiltration has been

described in animal studies (86). Other studies in this regard

are focused on developing efficient methods and designing

biomaterials for activation, expansion and isolation of NKCs

(85, 88–91). Gao et al. recently classified the biological and

transcriptomic signatures of cord blood and placenta-derived

NKCs revealing the cellular/molecular level similarities and

differences existing between the NK cell types (92). More of

such studies are needed as they serve as database for cell-based

immunotherapy and will be beneficial to understanding and

categorizing the mechanism of action of different NKCs.
Optimizing persistence and cytolytic
activity of natural killer cells

There is a huge need of novel technologies to enhance the

activity of NKCs and their interaction with tumors. Consequently,

several methods have been proposed. For instance, concomitant

use of NK cell adoptive transfer and other therapeutic methods,

including T-cells, chemotherapeutic agents, cytokines and

immunomodulatory drugs could fortify NKCs against the TME

and be synergistic in tumor immunotherapy (93–95). The

biological targets of these supplementary molecules like

cytokines and drugs vary from those of NKCs providing

synergy (96) but their safety must also be assured before clinical

application. Biber et al. describes the design of a non-viral lipid

nanoparticle-based delivery system that encapsulates small

interfering RNAs which targets NKCs in vivo, silences

inhibitory molecules, and activate NK cell anti-tumor activity

(97). Park et al. reports that Aurantii Fructus Immaturus, a

commonly used herb in traditional medicine enhances the

anticancer efficacy of NK (98), Bispecific killer cells engagers

(BiKEs) and trispecific killer cells engagers (TriKEs) improve in

vitro secretion of cytokines and efficiently induce the cytotoxic

effects of NKCs (99, 100). Moving forwards, optimizing and

improving these formulations to avoid undesirable side effects

are vital steps toward their clinical application.
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Conclusion

The role of NKCs in neutralizing senescent, stressed and

malignant cells has attracted enormous research attention

aimed at producing clinical grade NKCs for adoptive cell

immunotherapy. Currently, some clinical studies are

designed to determine the safety and efficacy of ex vivo

activated and expanded NKCs while others test the effect of

administering the NKCs in combination with other immune

molecules. Major advances, including the development of

efficient ex vivo expansion systems, prolonged in vivo

persistence and genetic manipulation strategies involving

CARs are currently explored to facilitate clinically applicable

NK cell therapeutics. However, additional research effort is

needed to enhance tumor targeting, overcome immune

suppression by inhibitory signals or cells and exhaustion in

the TME, increase persistence in allogeneic settings, facilitate

expansion in patients, sustain in vivo surveillance against

tumor relapse, and increase the applicability of NK cell

therapy to a wider range of life-threatening diseases

especially those marked by depletion in NK cell function.

Finally, iPSC-NKCs hold great prospects and further

refinement of their differentiation protocol is necessary to

match the phenotypic properties of PB NKCs.
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