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Correlation between the
Warburg effect and progression
of triple-negative breast cancer

Shaojun Liu, Yuxuan Li, Meng Yuan, Qing Song* and Min Liu*

Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese
Medicine, Suzhou, China
Triple-negative breast cancer (TNBC) is ineligible for hormonal therapy and

Her-2-targeted therapy due to the negative expression of the estrogen

receptor, progesterone receptor, and human epidermal growth factor

receptor-2. Although targeted therapy and immunotherapy have been

shown to attenuate the aggressiveness of TNBC partially, few patients have

benefited from them. The conventional treatment for TNBC remains

chemotherapy. Chemoresistance, however, impedes therapeutic progress

over time, and chemotherapy toxicity increases the burden of cancer on

patients. Therefore, introducing more advantageous TNBC treatment options

is a necessity. Metabolic reprogramming centered on glucose metabolism is

considered a hallmark of tumors. It is described as tumor cells tend to convert

glucose to lactate even under normoxic conditions, a phenomenon known as

the Warburg effect. Similar to Darwinian evolution, its emergence is attributed

to the selective pressures formed by the hypoxic microenvironment of pre-

malignant lesions. Of note, theWarburg effect does not disappear with changes

in the microenvironment after the formation of malignant tumor phenotypes.

Instead, it forms a constitutive expression mediated by mutations or epigenetic

modifications, providing a robust selective survival advantage for primary and

metastatic lesions. Expanding evidence has demonstrated that the Warburg

effect mediates multiple invasive behaviors in TNBC, including proliferation,

metastasis, recurrence, immune escape, and multidrug resistance. Moreover,

the Warburg effect-targeted therapy has been testified to be feasible in

inhibiting TNBC progression. However, not all TNBCs are sensitive to

glycolysis inhibitors because TNBC cells flexibly switch their metabolic

patterns to cope with different survival pressures, namely metabolic plasticity.

Between the Warburg effect-targeted medicines and the actual curative effect,

metabolic plasticity creates a divide that must be continuously researched

and bridged.
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1 Introduction

Global cancer statistics reported that by the end of 2021,

female breast cancer incidence had surpassed that of lung

cancer, ranking first in the world and being the leading cause

of female cancer death (1). Breast cancer is classified into three

subtypes based on the expression of estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth

factor receptor-2 (Her-2). The luminal A subtype (ER

positive, PR positive, Her-2 negative), the luminal B subtype

(ER positive, PR positive, Her-2 negative or positive), the Her-2

subtype (ER negative, PR negative, Her-2 positive), and the

basal-like subtype (ER negative, PR negative, Her-2 negative)

(2, 3). The basal-like subtype overlaps with triple-negative

breast cancer (TNBC) (4) and is the most aggressive subtype

of breast cancer, with a higher recurrence rate, tremendous

metastatic potential, and shorter overall survival, and is

generally associated with a higher cancer burden and poorer

disease outcomes (5–7). The lack of relevant receptor

expression means that TNBC has lost its candidate status for

both hormone therapy and Her-2-targeted therapy (8, 9).

Despite significant advances in developing emerging targets

in recent years, few patients have benefited from them, and

chemotherapy remains the current standard of care (10–12).

However, evolving chemoresistance has hampered treatment

progress, and chemotherapy toxicity has significantly increased

the patient burden (13, 14). The Warburg effect may be a

promising therapeutic entry point for the immediate

introduction of more effective treatment procedures for the

clinical management of TNBC.

As is common knowledge, cancer cells carry out metabolic

reprogramming to deal with the survival pressures derived from
Abbreviations: TNBC, triple-negative breast cancer; ER, estrogen receptor; PR,

progesterone receptor; (Her-2), human epidermal growth factor receptor-2;

OXPHOS, oxidative phosphorylation; ECM, extracellular matrix; COL17A1,

collagen Type XVII Alpha 1 Chain; HIF, hypoxia-induced factor; GLUT,

glucose transporter; HK, hexokinase; PFK, phosphofructokinase; ENO,

enolase; MCT, monocarboxylate transporter; AMPK, adenosine 5’-

monophosphate (AMP)-activated protein kinase; LOX, lysyl oxidase; CAF,

carcinoma-associated fibroblasts; EDAC, epithelial defense against cancer;

EPLIN, epithelial protein lost in neoplasm; ROCK, Rho-associated coiled-coil

kinase; CTGF, connective tissue growth factor; PM, plasma membrane;

PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PKM2,

pyruvate kinase isozyme typeM2; MIC, metastasis-initiating cell; CSC, cancer

stem cell; EMT, epithelial-mesenchymal transition; YBX1, Y-box binding

protein 1;CTC, circulating tumor cell; LDHA, lactate dehydrogenase; MRD,

Minimal residual disease; TAM, tumor-associated macrophages; PPP, pentose

phosphate pathway; ROS, reactive oxygen species.
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several aspects, such as the immune system, chemotherapeutics,

and anoikis. Glucose metabolism rewiring is a significant part of

this process, manifested as tumor cells maintaining a high-flux

glycolysis phenotype rather than oxidative phosphorylation

(OXPHOS) even under normoxia conditions, known as the

Warburg effect (or aerobic glycolysis) (15, 16). The Warburg

effect was postulated by the team of Otto Warburg, who found

that tumor cells allocate 66% of glucose under oxygen

availability conditions for fermentation and the remainder for

respiration (17). Impaired mitochondrial structure and function

in tumor cells is the initial explanation for this phenomenon

(18). A recent study demonstrated a high frequency of

mitochondrial defects in TNBC cells, resulting in a metabolic

bias towards glycolysis and the promotion of cancer metastasis

(19). On the contrary, Reda A. et al. suggest that the

mitochondria of tumor cells function normally and serve as a

protective mechanism against glycolysis inhibition (20). Current

opinion prefers the latter, where the metabolic phenotypes of

tumor cells are plastic. However, its regulatory agencies have not

been entirely clarified (21).

The emergence of the Warburg phenotype is in line with an

evolutionary model. The localized hypoxic microenvironment in

which the pre-malignant lesion is located creates a selective

pressure that drives its cellular metabolism to glycolysis.

Mutations and epigenetic modifications allow glycolysis to

break through hypoxic constraints, leading to its constitutive

expression (22, 23). Furthermore, hypoxia-induced remodeling

of the TNBC extracellular matrix (ECM) positively affects the

development of the Warburg phenotype (24). Evidence suggests

that the Warburg effect participates in TNBC invasive behaviors,

including proliferation, metastasis, recurrence, drug resistance,

and immune escape (25–28). The up-regulation of TNBC

aerobic glycolysis is a high-probability event in breast cancer

subtypes (29, 30). The enhanced reliance of TNBC stem cells on

the Warburg effect supports their aggressive phenotype (31).

However, there are always two sides to the coin. While the

Warburg effect confers TNBC with a higher degree of

malignancy, it simultaneously creates opportunities for

metabolic-targeted therapeutic strategies (32). In addition, the

Warburg effect flux and its product abundance have been used to

evaluate the prognosis of TNBC patients receiving glycolysis

inhibitors (33). Interestingly, not all TNBC cells are sensitive to

glycolysis inhibitors (34), indicating that different states of

TNBC cells differ from their choice of glycolytic pathways

(35), which is consistent with the metabolic plasticity theory.

This theory is strongly supported by the fact that mitochondrial

copper depletion drives the MDA-MB-231 cells to reorient their

metabolism from mitochondrial respiration to glycolysis to

suppress TNBC translocation (36, 37). Consequently, precision

medicine requires the customized and stratified management of

TNBC patients based on their metabolic directivity.
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2 Hypoxia is an incubator for the
Warburg phenotype in TNBC

2.1 Hypoxia breeds the Warburg
phenotype via forming selective pressure

Hypoxia-mediated Warburg-like metabolic changes are

analogous to the Darwinian evolutionary model (23). Epithelial

cells acquiring oncogenic transformation is the first step in breast

carcinogenesis, whether under the stochastic or stem cell

hypothesis (38). Upon reciprocal touch, non-oncogenic breast

epithelial cells abide by contact inhibition and halt growing and

reproducing (39). However, cells with oncogenic transformation

evade contact inhibition (40), continuing to grow and proliferate

in a compacted epithelial environment until apical extrusion

occurs, completing the transition from monolayer to multilayer

epithelium under the coordination of the CD44/COL17A1

pathway and progressively developing into pre-malignant

lesions (41) which are separated from the surrounding matrix

by a nearly continuous layer of myoepithelial and basement

membrane proteins (42). Therefore, oxygen in the vascular

matrix must traverse the basement membrane and tumor cell

layer. Studies have indicated a limiting distance for oxygen

diffusion (approximately 150µm), pre-malignant lesions with

uncontrolled proliferation are bound to exceed this diffusion

limit, resulting in a hypoxic region (23). Under normoxic
Frontiers in Oncology 03
conditions, hypoxia-inducible factors (HIFs) are rapidly

degraded by prolyl hydroxylation of EglN family members,

whereas hypoxia inhibits EglN1 activity, resulting in a massive

accumulation of HIFs. In addition, glutamate secretion from

TNBC causes EglN1 to undergo oxidative self-inactivation,

which can also prevent HIFs from being degraded (43). Studies

have shown that HIF directly or indirectly up-regulates the

expression of critical glycolysis regulatory elements, resulting in

metabolic adaptive transformation (OXPHOS to glycolysis), and it

simultaneously stimulates angiogenesis to prepare for eventual

vascular normalization. However, angiogenesis invariably lags

behind, exposing tumor cells to persistent hypoxic stress (44,

45). Only glycolytic tumor cells, according to the evolutionary

models, can survive in a constant hypoxic environment.

Mutations or epigenetic modifications during selection lead to a

glycolytic constitutive expression (manifested as the removal of

oxygen concentration limitation) that is up-regulated in response

to specific survival pressures, thereby conferring a survival

advantage to tumor cells (Figure 1) (23). The “specific survival

pressures” argument is based on the metabolic plasticity doctrine,

which holds that the dominant metabolism maintained by tumor

cells must be elastic in response to variations in survival pressures

(15). For example, TNBC, which keeps a hybrid metabolic

phenotype, activates the AMPK pathway to enhance OXPHOS

when exposed to glycolytic inhibitor toxicity and vice versa (21).

In addition, the 3D model of TNBC developed by Liu C. et al.
FIGURE 1

Hypoxia selects the Warburg phenotype. Hypoxia-mediated angiogenesis is gradual in precancerous lesions, and the creation of persistent
hypoxia induces the Warburg phenotype to become the predominant metabolic pathway in TNBC cells. Continuous mutations and epigenetic
modifications throughout the growth of cancers lead glycolysis to exceed the oxygen concentration restriction, resulting in the constitutive
expression of the Warburg phenotype. HIF, Hypoxia-induced factor; VEGF, Vascular endothelial growth factor; Glut, Glucose transporter; HK,
Hexokinase; PKM2, pyruvate kinase isozyme typeM2; LDHA, Lactate dehydrogenase; MCT4, Monocarboxylate transporter 4; G-6-P, Glucose-6-
phosphate; PEP, Phosphoenolpyruvate; Acetyl-CoA, Acetyl-coenzyme A.
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revealed that the tumor tissue exhibits escalating matrix stiffness

from the core to the periphery, and the dominant metabolism also

manifests a distribution from the core glycolysis to the peripheral

OXPHOS and fatty acid metabolism (46). Microenvironmental

acidification and glucose limitation as consequences of up-

regulation of glycolysis will further select tumor cells with

survival advantages (47–50).
2.2 Hypoxia breeds the Warburg
phenotype via inducing ECM remodeling

ECM, a substantial 3D supramolecular entity composed of

hundreds of different building blocks, is an essential component

of TNBC, and its changes profoundly affect the fate of TNBC

cells (51, 52). Divergent matrix-remodeling strategies mediated

by Mmp14/MT1-MMP define the branching morphology of

developing and neoplastic epithelial cells early in breast

carcinogenesis (53). This process may involve the effect of

matrix remodeling on the chromatin state of mammary

epithelial cells (54). On the other hand, ECM stimulates tumor

growth in various ways throughout the development of TNBC.

For instance, ECM compliance controls the cellular response to

contact guidance by generating population transfer between

round and elongated cells, hence affecting the migratory

dynamics of tumor cells (55). Consequently, ECM remodeling

plays a crucial role in carcinogenesis and progression. The

preceding section identified hypoxia as an early event in

TNBC. Interestingly, current research indicates hypoxia as a

potential trigger for ECM remodeling (56, 57). Increased matrix

proteins due to disruption of ECM deposition and degradation

homeostasis (58), enhanced matrix cross-linking driven by lysyl

oxidase (LOX) (59), and local compaction and distant stretching

of matrix fibers derived from CAFs-mediated contractile forces

(60, 61) are direct behaviors that cause ECM remodeling. Studies

have demonstrated that hypoxia affects the aforementioned

behaviors in a HIF-dependent manner (57), such as HIF-1a/
miR-142-3p/LOX pathway (62) and the HIF-1a/CAF pathway

(63), ultimately leading to changes in ECM biophysical and

biological properties. Notably, a recent study in which ECM

remodeling activated the glycolytic pathway in murine 4T1 cells

suggests that ECM is involved in regulating the metabolism of

TBNC cells (64). Concerning its regulation mechanism, Sullivan

WJ et al. determined that ECM remodeling boosted lactate

generation in TNBC cells via the Zfp36/TXNIP/Glut1

signaling pathway (65). Additionally, connective tissue growth

factor (CTGF) in conjunction with ECM deposition accelerated

TNBC glycolysis via integrin b3/FAK/Src/NF-B P65/Glut3

signaling (66). Moreover, ROCK isoforms differentially

regulate the RhoA/ROCK1/p-MLC and RhoA/ROCK2/p-

cofilin pathways through integrin b1-activated FAK signaling

in an ECM stiffness-dependent manner to regulate MDA-MB-

231 cell motility (67), and Rho/ROCK signaling can stimulate
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Glut1 translocation to the PM and enhance extra-membrane

glucose uptake TNBC cells (68). In summary, hypoxia promotes

matrix remodeling in various ways that further influence the

metabolic pattern of TNBC cells (Figure 2) , which

simultaneously provides suggestions for developing innovative

ECM-targeting treatment approaches (69).
3 The Warburg effect contributes to
the progress of TNBC

3.1 The Warburg effect with
TNBC proliferation

Growth factor stimulation of TNBC cells commences the

proliferation program (70), and cell proliferation undergoes

three periods: I. interphase; II. mitosis; and III. cytokinesis

which is called the cell cycle. The interphase accounts for

about 90% of the time required for the entire cell cycle and is

divided into three phases, namely G1, S, and G2. The cell cycle is

precisely modulated by checkpoints such as cyclin-cyclin-

dependent kinase complex (cyclin-CDK) and CDK inhibitors

(examples include P15, P21, P27), inactivation or mutation of

anti-oncogenes, and overexpression or amplification of proto-

oncogenes leading to cell cycle checkpoint disorders and

ultimately to uncontrolled cancer cell proliferation (71, 72).

Positive cell cycle regulation of the Warburg effect is generally

achieved through cell cycle checkpoints (73), such as critical

glycolytic kinase 6-phosphoglucose-2-kinase (PFKFB3),

pyruvate kinase (PKM2) was shown to promote cell cycle (72).

Mechanistically, PFKFB3 is transported to the nucleus, and its

products F2 and 6BP activate CDKs. Moreover, F2 and 6BP

induce degradation of the CDK-mediated G1/S transition
FIGURE 2

Hypoxia promotes the ECM remodeling. Hypoxia causes ECM
remodeling, which affects tumor progression further. ①Enhanced
matrix cross-linking. ②Local compaction and distant stretching
of matrix fibers derived from CAFs-mediated contractile forces.
③ECM remodeling promotes the Warburg effect. ④ECM stiffness
prevents drug penetration. LOX, Lysyl oxidase; CAF, Cancer-
associated fibroblast.
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inhibitor P27 (74, 75). PKM2 binds to b-linked proteins to form

the PKM2-b-linked protein complex to up-regulate cell cycle

protein D1 to drive the G1/S transition (72). A study targeting

PKM2 to regulate cell cycle progression and inhibit TNBC

invasion suggests that further study of the interaction between

the Warburg effect and cell cycle is a concern in TNBC

management (76).
3.2 The Warburg effect with
TNBC metastasis

Tumor metastasis starts from the early stage of the tumor

and continues until the cancer is removed. It can be divided into

three periods: dissemination, metastatic dormancy, and host

organ colonization (77). This process is not a simple linear

cascade; concurrency and overlap are more prevalent (78).

During dissemination, metastasis-initiating cells (MICs), which

are assumed to be derived from cancer stem cells (CSCs) or

CSC-like cells, lose their epithelial features and acquire

mesenchymal traits through epithelial-mesenchymal transition

(EMT) (79, 80), primarily manifested by downregulation of E-

calmodulin and reduced cell adhesion, in which the Warburg

effect plays an instrumental role (81). For example, high

expression of Y-box binding protein 1 (YBX1) was detected in

TNBC, which up-regulates aerobic glycolytic flux to accelerate

EMT progression (82). Immediately afterward, MICs with

mesenchymal properties detach from the tumor bed as single

cells or cell clusters and become circulating tumor cells (CTCs)
Frontiers in Oncology 05
(79). In fact, CTC clusters are more conducive to tumor

metastasis (83), so primary tumors significantly up-regulate

HIF-1a-mediated Desmoglein2 (DSG2) to promote the

formation of CTC clusters (84).

Subsequently, CTCs enter the TME, and the acidic TME

shaped by the accumulation of glycolytic acid metabolites

intensifies CTCs migration (85, 86). In addition, Glut3

overexpression in TNBC induces activation of M1 tumor-

associated macrophages (M1-TAM) via lactate/C-X-C motif

Chemokine ligand 8 (CXCL8), consequently creating an

inflammatory TME that promotes CTCs metastasis (87).

Notably, TNBC delivers Integrin beta 4 (ITGB4) to CAFs

located in TME through exosomes and initiates the glycolytic

phenotype of CAFs via BNIP3L-dependent mitophagy (known

as the reverse Warburg effect) (88). Its product lactate shuttles

between CAFs and CTCs via MCT4/MCT1 as a metabolic

coupling link and activates the TGFb1/P38 MAPK/MMP2/9

signaling axis to up-regulate CTCs’ mitochondrial activity and

promote metastasis (89).Even more to the point, glycolysis is not

the sole up-regulated metabolic phenotype in cancer cell

migration. Other metabolic patterns, such as OXPHOS, fatty

acid metabolism, and glutamine metabolism, are similarly up-

regulated under certain conditions (90). And the metabolic

phenotype of CTCs is dynamically remodeled at different

stages of tumor metastasis to help them manage the changing

microenvironment of the metastatic cascade and ensure a

successful transition (Figure 3) (91). Next, CTCs migrate

towards the vasculature, and the Glut1/integrin b1/Src/focal
adhesion kinase (FAK) signaling pathway activated by PCB29-
FIGURE 3

Metabolic characteristics of TNBC cells in different niches. When tumor cells leave the tumor bed and begin the metastasis process, they will
traverse multiple niches with diverse microenvironments. Different microenvironments impose distinct survival restrictions, and tumor cells must
change their metabolic pathways dynamically to resist these pressures. CTC, Circulating tumor cell; EMT, Epithelial-mesenchymal transition.
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P exposure may be involved in this process (92). CTCs entering

the blood circulation are challenged by ROS, and high

concentrations of ROS are cytotoxic. At this time, the

advantages of CTCs clusters gradually emerge, which induce

microenvironmental hypoxia and activate HIF-1a-mediated

glycolysis in response to oxidative stress (93). Moreover, when

CTC reaches the bloodstream and is threatened by Anoikis, only

a few Anoikis-resistant tumor cells survive (94). And the

phosphorylation and activation of lactate dehydrogenase

(LDHA), a glycolytic critical kinase, has been discovered to

boost Anoikis resistance (95).

Next is an overlap of host organ colonization and metastatic

dormancy, in which the majority of tumors metastasize to

specific organs, called “organotropism” (96). Studies have

shown that the lung, bones, and brain are more likely to serve

as TNBC target organs (97, 98). After reaching the targeted

organ, CTCs occupy the favorable niche and become

disseminated tumor cells (DTCs). Due to the balance between

tumor cell proliferation and apoptosis, DTCs enter the reversible

growth arrest of single cells located in the G0/G1 phase of the cell

cycle, called cell dormancy. This persists for years or even

decades, and DTCs reactivate when the balance swings toward

cell proliferation, either because of proangiogenic substances or

because tumor cells defy immune suppression (77, 79, 99). For

instance, CD39 PD-1 CD8 T cells were demonstrated to mediate

metastatic dormancy in TNBC lung-oriented DTCs, and

depletion of CD8 T cells may induce DTCs reactivation (100).

Activated DTCs destroy host organs and form metastases, such

as up-regulation of the Warburg effect by MDA-MB-231 cells

found in bone TME to produce excessive lactate, leading to

MCT4/MCT1-mediated osteolytic lesions (101).
3.3 The Warburg effect with
TNBC recurrence

Minimal residual disease (MRD) is considered the basis of

TNBC recurrence (102), and postoperative circulating tumor

DNA (ctDNA) sequencing and CTCs counting have been used

to detect MRD and evaluate the likelihood of patients suffering

from recurrence (103). Cell dormancy is critical for MRD survival

and reactivation (104, 105). Genetic heterogeneity, TME

regulation, ecological niche, and immunosuppression drive

MRD into a dormancy (106) characterized by cell cycle arrest,

ecological niche dependence, drug resistance, immune escape, and

reversibility (107). When conditions such as surgery, drugs, and

metabolic remodeling intervene, MRD exits dormancy and causes

recurrence (108). Glycolysis is possibly involved in the

reactivation of dormant MRD. Studies have shown that

dormant cells exhibit an increase in mitochondrial mass and

mitochondrial ROS. Therefore, dormant cells inhibit oxidative

stress-induced apoptosis via autophagy-related 7 (ATG7)

mediated autophagy (109), in which up-regulated AGT7
Frontiers in Oncology 06
suppresses the glycolytic phenotype (110). During the

transitional period of dormant cells toward reactivation,

autophagic inhibition and increased abundance of PFKFB3, a

key mediator of glycolysis, facilitate dormant escape (111). The

argument that a negative correlation between autophagy and the

Warburg phenotype differs from Radic Shechter et al., who found

that MRD retains the metabolic memory of original tumor cells

and maintains high aerobic glycolytic flux to ensure survival (112).

A possible explanation is that MRDs dynamically reshape the

balance between autophagy and glycolysis in response to varied

ecological niches (113). In addition, consistent with the primary

tumor, the metabolism of the cells that undergo macroscopical

metastasis after escaping the dormant state continues to be biased

toward glycolysis to sustain growth (114). Remarkably, the

tricarboxylic acid cycle (TCA cycle) metabolites succinate,

fumarate, and 2-hydroxyglutarate (2-HG) were associated with

post-treatment tumor reconstruction (115), and glycolytic

product lactate functions as a substrate to support TCA cycle

running (116).

As evident from recent reviews (106, 108, 117), despite the

emerging roles of theWarburg phenotype in metastatic dormancy

of tumor cells, there is a considerable blankness in the relevant

research, including how theWarburg phenotype controls DTCs to

enter a dormancy state? How does the Warburg phenotype help

dormant DTCs survive? Furthermore, how the Warburg

phenotype regulates dormant DTCs reactivation? Metastatic

dormancy is essential for DTCs survival and reactivation as a

protective mechanism (118), so filling these gaps may provide new

clinical opportunities for TNBC.
3.4 The Warburg effect with TNBC
immune escape

From the above discussion, it can be clarified that while

TNBCs adaptively modulate their metabolic phenotype

following different conditions, TNBCs up-regulate the

Warburg phenotype to maintain their invasion activity is still

a high probability event. Accordingly, high glycolytic flux means

an adequate supply of extra-membrane glucose is necessary.

Increasing evidence that most immune cells present in TME

(Figure 4), including innate immune cells such as NK cells,

macrophages, and dendritic cells; adaptive immune cells, such as

T cells in the activated state, mimic the metabolic patterns of

tumor cells (119, 120). Therefore, the competition between

tumor cells and immune cells for metabolic substrates is

inevitable (121), and the consequence is always that immune

cell function is curbed due to the lack of fuel (122). Because

tumor cells will induce immune cells’ glycolytic suppression, for

example, IFN-g secreted by T cells or the glycolytic phenotype of

the tumor itself triggers PD-L1 expression in tumor cells. In

turn, PD-L1 mediates up-regulation of the glycolytic pathway in

tumor cells via the Akt/mTOR pathway, imposing a nutrient
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limitation on T cells. Prolonged exposure to glucose limitation

will lead to irreversible functional impairment that cannot be

corrected by simple nutrient supplementation (122, 123). In

addition, the expression of CTL-4 associated with immune

suppression and its principal ligand CD80/CD86 were detected

in TNBCs (124), and a study of CTL-4 blockade by ipilimumab

linked Treg instability to its glycolysis, suggesting the

involvement of CTL-4 in metabolic competition between

TNBCs and immune cells (125).

Lactate mediates multiple pro-tumor behaviors, including

immune escape (126, 127). For instance, lactate works directly

with mitochondrial antiviral signaling proteins (MAVS),

attenuates retinoic acid-inducible gene I-like receptors (RLRs)

signal transduction and downstream type I interferons (IFNs)

production, and induces failure of immune surveillance (128).

Unfortunately, this mechanism has not been characterized in

TNBC cell lines, but it is a potential research direction.

Furthermore, the acidic microenvironment due to lactate

accumulation significantly down-regulates macrophage-

mediated Programmed Cell Removal (PrCR) damage to

MDA-MB-231 cells (129).

Indeed, the Warburg phenotype derived from TNBC can also

evade immune surveillance by activating immunosuppressive

cells. For example, tumor glycolysis regulates the molecular

network of AMPK-ULK1, autophagy, and CEBPB pathways.

This way, myeloid-derived suppressor cells (MDSC) are

activated, and immune suppression is maintained (130).

Moreover, Microenvironmental lactic acidosis induces tumor-

associated macrophages (TAM) to skew toward an M2-like

phenotype, resulting in the obstacle of immuno-detection of

tumor cells by macrophages (129, 131). A recent study found

that TNBC CTCs recruit neutrophils to form CTC-neutrophil

clusters, leading to an accelerated metastatic process (132).

However, further studies are needed to determine whether the
Frontiers in Oncology 07
Warburg phenotype is involved in neutrophil recruitment and

whether CTC-neutrophil clusters contribute to immune

evasion (133).
3.5 The Warburg effect with TNBC multi-
drug resistance

Currently, chemotherapy based on anthracyclines and taxanes

is the standard treatment for TNBC. The effectiveness of platinum

compounds in neoadjuvant chemotherapy has been confirmed by

evidence. Research on drugs related to targeted therapy,

immunotherapy, and endocrine therapy has also collected initial

results (134, 135). Nonetheless, multi-drug resistance deepens the

conflict between TNBC therapy options and adverse outcomes

(136). Studies have indicated that primary resistance genes pre-

exist and are adaptively selected by treatment regimens. Acquired

resistance gene transcriptional profiles are obtained by

reprogramming in response to treatment in TNBC patients

(137). Various mechanisms mediate drug resistance in TNBC

(138), including the Warburg phenotype (25, 139, 140). First, the

Warburg effect confers enhanced DNA repair capacity to tumor

cells. Rac1 enhances nucleotide production to defend MDA-MB-

231 cells from chemotherapeutic drug-induced DNA damage by

triggering the aldolase A and ERK signaling cascades and

upregulating aerobic glycolysis, especially its branching Pentose

phosphate pathway (PPP) fluxes (141). A recent study

demonstrating that overactivation of the ERK pathway

promotes apoptosis in TNBC cells shows the dual role of ERK

in TNBC biology, which should therefore be considered when

selecting ERK as a therapeutic target (142). Second, the Warburg

effect gives tumor cells a more robust antioxidant capacity. ROS

up-regulation induced by chemotherapy drugs exposed tumor

cells to oxidative stress, oxidative damage provoked the

overexpression of the PPP rate-limiting enzyme glucose-6-

phosphate dehydrogenase (G6PD), accelerated PPP enhanced

the production of nicotinamide adenine dinucleotide phosphate

(NADPH), thereby up-regulating the synthesis rate of the

antioxidant glutathione (GSH). Ultimately, the oxidative damage

caused by ROS can be inhibited (143). In addition, autophagy’s

clearance of injured organelles and macromolecules is essential for

inhibiting drug-induced apoptosis in TNBCs (144, 145). A recent

study identified Proviral Insertion in Murine Lymphomas 2

(PIM2) directly binding to hexokinase-II (HK-2) and

phosphorylating HK2 on Thr473. Phosphorylated HK2 up-

regulates glycolytic flux and induces autophagy to exert

chemoresistance by promoting protein stability (146). The

Warburg effect also manifests resistance by inhibiting drug

influx and promoting drug efflux. Glycolysis generates a large

amount of H+ accumulation in the cytoplasm, and if it is not

removed in time, the consequent acidosis threatens cell survival.

The existence of a net acid extrusion system ignores such events. It

leads to the rise of intracellular pH (pHi) and the reduction of
FIGURE 4

The Warburg effect enhances immune escape of TNBC.
Glycolysis facilitates tumor immune evasion via multiple
mechanisms. MDSC, Myeloid-derived suppressor cell.
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extracellular pH (pHe) simultaneously. This pH gradient has been

confirmed to be conducive to the formation of drug resistance

(147). Elevated pHi not only inhibits the influx of alkaline drugs

such as doxorubicin but also induces active drug efflux by

coordinating the transporter ABCB1 (148). In addition, ABC

transporters are ATP-dependent (149), and suppressing

glycolysis leads to transporter inactivation (150), so it is

reasonable to speculate that glycolysis provides energy support

for the actions of ABC transporters. Based on the above theory,

Omran Z et al. recommend that the intervention of proton pump

and transporter inhibitors is vital to manage resistance (151).

Notably, with the intervention of compounds other than

chemotherapy, the resistance spectrum of TNBC expands, such

as lactate modulating anti-PD-1/PD-L1 drug activity (152) via

activating TAMs (153). In summary, targeting the Warburg

effect seems perfect for curbing resistance; however, this is not

the case; silencing of GLUT1 does not ablate TNBC resistance as

expected but further induces drug resistance via Akt/GSK-3b/b-
catenin/survivin signaling (154). This opposite phenomenon

may involve dynamic remodeling of metabolism (155) since

switching metabolism to mitochondrial or lipid metabolism

equally mediates resistance, depending on the molecular
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phenotype of the interventional drug (156, 157). Hence,

careful considerations should be taken into account in

sequential drug resistance control programs.
4 Precision medicine for Warburg
effect-dependent TNBC

4.1 Stratified management of TNBC
patients based on metabolomics

In the early stages of TNBC, hypoxia gives birth to theWarburg

phenotype, and mutations or epigenetic modifications result in

constitutive expression of the Warburg effect. However, the

pressure on TNBC’s survival is ever-changing, necessitating that

it maintain a varied metabolic pattern (15). Therefore, glycolysis

inhibitors are only effective against a subset of TNBCs (34). Hence,

it is necessary to identify Warburg-dependent TNBC and

administer tailored treatment for it. With the advent of omics

approaches, several teams have stratified TNBC based on various

omics analyses and obtained experimental findings (34, 158–161)

(Table 1). However, the road is always tortuous; stratification
TABLE 1 TNBC stratification schemes based on different omics.

Omics Stratifications Characteristics

Genomics mesenchymal
stem–like

• Sharing enrichment of genes for similar biological processes with the M subtype; Unique to the MSL are genes
representing components and processes linked to growth factor signaling pathways
• Targeted therapy: Dasatinib, NVP-BEZ235

immunomodulatory • Is enriched for gene ontologies in immune cell processes
• Targeted therapy: Unknow

basal-like 1 • The top gene ontologies are heavily enriched in cell cycle and cell division components and pathways
• Targeted therapy: Veliparib, Olaparib, Cisplatin

basal-like 2 • Displaying unique gene ontologies involving growth factor signaling
• Targeted therapy: Veliparib, Olaparib, Cisplatin

mesenchymal • Displaying a variety of unique gene ontologies that are heavily enriched in components and pathways involved in
cell motility, ECM receptor interaction, and cell differentiation pathways
• Targeted therapy: Dasatinib, NVP-BEZ235

luminal androgen
receptor

• Gene ontologies are heavily enriched in hormonally regulated pathways including steroid synthesis, porphyrin
metabolism, and androgen/estrogen metabolism
• Targeted therapy: Bicalutamide, 17-DMAG

Immunogenomics Immunity High • Greater immune cell infiltration and anti-tumor immune activities, as well as better survival prognosis
• Increased activation of apoptosis, calcium signaling, MAPK signaling, PI3K–Akt signaling, and RAS signaling

Immunity Medium • Between Immunity High and Immunity Low

Immunity Low • Depressed immune signatures
• Increased activation of cell cycle, Hippo signaling, DNA replication, mismatch repair, cell adhesion molecule
binding, spliceosome, adherens junction function, pyrimidine metabolism, glycosylphosphatidylinositol (GPI)-anchor
biosynthesis, and RNA polymerase pathways

Genomics &
Transcriptomics

immunomodulatory • With high immune cell signaling and cytokine signaling gene expression
• Targeted therapy: Immune checkpoint inhibitors

(Continued)
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schemes relying on genomics and transcriptomics failed to break

through the barrier of LAR and BLIS tumors in later FUTURE

experiments (162). Of note, Xiao Y et al. integrated metabolomics

and genomics to classify TNBC into three subtypes: C1, with

ceramide and fatty acid enrichment; C2, with overexpression of

oxidative processes and glycosyl transfer-related metabolites; and

C3, with low-level metabolic dysregulation, and proposed that

genomics-based LAR subtypes overlap with C1 subtypes and

BLIS subtypes overlap with C2 and C3 subtypes, finding a new

solution for refractory TNBC (158, 163). Moreover, by investigating

metabolic dysregulation in TNBC, Gong Y et al. identified the

lipogenic subtype MPS1 with up-regulated lipid metabolism, the

glycolytic subtype MPS2 with up-regulated carbohydrate and
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nucleotide metabolism, and the mixed subtype MPS3 with

partially dysregulated pathways, each of MPS showed consistent

sensitivity to inhibitors targeting the same metabolic pathway (34).

Accordingly, stratified management of TNBC patients is crucial for

minimizing inefficient medical treatment and reducing the cancer

burden among patients (7).
4.2 Targeted therapy for Warburg effect-
dependent TNBC

Over the past few decades, significant progress has been made

in studying compounds targeting glycolysis (Table 2). Certain
TABLE 1 Continued

Omics Stratifications Characteristics

luminal androgen
receptor

• Characterized by androgen receptor signaling
• Targeted therapy: Anti-androgen therapy, targeting ERBB2, CDK4/6 inhibitors

basal-like and
immune-suppressed

• Characterized by upregulation of cell cycle, activation of DNA repair, and downregulation of immune response
genes
• Targeted therapy: Platinum drugs, PARPi

mesenchymal-like • Enriched in mammary stem cell pathways
• Targeted therapy: STAT3 inhibitors

Metabolomics MPS1 • Upregulation of lipogenesis genes and lipids
• Targeted therapy: lipid synthesis inhibitors

MPS2 • Partial metabolic pathway dysregulation
• Targeted therapy: Need to be explored

MPS3 • Upregulation of glycolytic and nucleotide genes and intermediate metabolites
• Targeted therapy: Glycolysis inhibitors; Combination of LDH inhibitors and ICIs

Metabolomics &
Genomics&
transcriptomics

C1 • Was featured with sphingolipids and FAs enrichments
• Alternatives for refractory TNBC subtypes(LAR/BLIS)

C2 • Was characterized by upregulated carbohydrate metabolism and oxidation reaction

C3 • Showed mild metabolic differences compared with normal tissue
TABLE 2 Compounds targeting the Warburg effect in TNBC.

Compounds Signaling pathways Therapeutic strategies References

Hemin& metformin BACH1 Suppressing glycolysis and OXPHOS (164)

FX-11& anti-PD-1 LDH, PD-1 Suppressing the Warburg effect and immunosuppression (34)

Silibinin EGFR-MYC-TXNIP Inhibiting glycolysis to retard biosynthetic demands (165)

Marizomib& STF-31 PGC-1a, GLUT1 Suppressing OXPHOS and Warburg effect (166)

Chidamide miR-33a-5p-LDHA Inhibiting glycolysis to retard biosynthetic demands (167)

Kudingcha ROS Suppressing the Warburg effect and glutamine metabolism (168)

Everolimus PI3K/AKT/mTOR Suppressing the Warburg effect and glutamine metabolism (169)

AICAR AMPK Down-regulating Warburg and up-regulating OXPHOS (170)

SU212 AMPK Down-regulating Warburg and up-regulating OXPHOS (171)

(Continued)
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compounds target upstream regulators of glycolysis. For example,

Cardamonin and Honokiol restricted glycolysis in MDA-MB-231

cells through the HIF-1a pathway (174, 175). Betulinic Acid

inhibits glycolytic flux via GRP78/b-catenin/c-Myc or CAV-1/

NF-kB/c-Myc signaling pathways (176, 177). Furthermore, some

compounds target the critical regulators of the Warburg

phenotype. Examples include GNE-140 and FX-11, which

down-regulate glycolysis by blocking lactate dehydrogenase

(LDH) (34). Elemene (b-elemene) suppresses breast cancer

metastasis by obstructing pyruvate kinase M2 (PKM2)

dimerization and nuclear translocation.

In addition, based on understanding the effect of ECM

remodeling on TNBC invasive behavior, targeting ECM is

becoming an emerging fulcrum for TNBC treatment protocols.

For example, the TME-tunable BAGM therapeutic nanoplatform

activates a cyclic cascade that degrades the dense ECM and

converts matrix collagen into a loose state to exert antitumor

effects (178). LOX inhibitor chemically linked lipid-based

nanoparticles loaded with chemotherapeutic epirubicin have

been demonstrated to prolong survival in patients with TNBC

(179). This is probably because LOX inhibitors ablate the dense

ECM and enhance chemotherapy drug permeability (62).

Moreover, it has been demonstrated that inhibiting tumor

development by targeting ECM to impact tumor cell

metabolism is achievable (69, 180); the exact application of this

technique to TNBC requires additional investigation.

The Warburg phenotype also functions as a strategy for

eliminating transformed cells. RasV12-, Src-, or Erbb2-

transformed cells are in a relatively rigid microenvironment

formed by compacted epithelial cells, which are frequently

apically extruded from epithelial tissues in search of more

survival space, after which the epithelial defense against cancer

(EDAC) induces epithelial protein lost in neoplasm (EPLIN)-

mediated metabolic transformation (OXPHOS to glycolysis) to

remove dissociative transformed cells (41, 181). This mechanism

must be tested further to determine if it can be used to prevent the

development of TNBC.

Worthy of note is that glycolysis suppression possibly triggers

the up-regulation of compensatory metabolic pathways, such as

OXPHOS (21), and drugs that simultaneously target both

glycolysis and OXPHOS pathways, marizomib, and gracillin,

have been successful in the mouse model (166, 182). It is

necessary to clarify that while the inhibitory effect of targeted

aerobic glycolysis on TNBC is undeniable, metabolic plasticity

poses a new and pressing challenge for this therapeutic option
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(183). Perhaps targeting the metabolic switch is the key to tackling

metabolic plasticity in the future (184).
5 Conclusion and perspective

Hypoxia is the source of the Warburg phenotype, whereas

mutations and epigenetic modifications are the primary causes of

its constitutive expression. The Warburg effect regulates TNBC

invasion, including proliferation, metastasis, recurrence,

treatment resistance, and immune evasion. Consequently,

targeting the Warburg effect seems to be a promising method

for treating refractory TNBC. Numerous in vitro investigations

have also demonstrated the efficacy of this treatment protocol.

Nevertheless, because of metabolic plasticity, the outcome of using

a single glycolytic inhibitor is frequently disappointing (21, 183).

Consequently, future research may focus less on a single glycolytic

inhibitor delivery strategy and more on the following topics: a. A

stratified approach to the management of TNBC patients based on

metabolomics. b. Continuous innovation for auxiliary diagnostic

technology of glycolytic-dependent TNBC. The simultaneous

characterization of the Warburg effect using PET, MRI, and

hyperpolarized 13C-MRSI is a notable advancement in this field

(185). c. Targeting hypoxia. A hypoxic environment induces HIF

to catalyze the Warburg phenotype, hence inhibiting HIF holds

the promise of blocking glycolytic dysregulation at the root. d.

Targeting ECM. The ECM regulates the expression of the

Warburg effect , and the compacted ECM impacts

chemotherapeutic drugs’ penetration; thus, the ECM-targeting

protocol is significant for TNBC. e. Targeting multiple metabolic

pathways. Since a single application of glycolysis inhibitors

activates compensatory energy metabolic pathways,

simultaneous inhibition of multiple metabolic pathways

hopefully promotes apoptosis in cancer cells; Marizomib and

gracillin, compounds that target both glycolysis and OXPHOS,

have been successfully tested in mice. f. To develop new strategies

to overcome the chemoresistance of TNBC by inhibiting the

Warburg effect. g. Combined therapies. Chemoresistance of

TNBC is the greatest barrier to chemotherapy treatments, and

the Warburg effect certainly exacerbates this resistance.

Theoretically, combining chemotherapeutic medicines and

glycolytic inhibitors could increase the effectiveness. In addition,

compacted ECM impedes drug delivery; hence ECM remodeling

inhibitors paired with tumor cytotoxic medicines have the

potential to boost TNBC patient survival.
TABLE 2 Continued

Compounds Signaling pathways Therapeutic strategies References

Biguanide MC001 AMPK/mTOR Down-regulating Warburg and OXPHOS (172)

2-Deoxy-D-Glucose HK Suppressing the Warburg effect (173)
frontiersin.org

https://doi.org/10.3389/fonc.2022.1060495
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.1060495
Author contributions

ML provided direction and guidance throughout the

preparation of this manuscript. QS provided guidance

throughout the revision of this manuscript. SJL collected and

prepared the related literature and drafted the manuscript. YXL

designed the imagines and tables. MY corrected the language ML

and QS reviewed and made significant revisions to the

manuscript. All authors contributed to the article and approved

the submitted version article and approved the submitted version.

Funding

This work was financially supported by the National Natural

Science Foundation of China (82274423).
Frontiers in Oncology 11
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: Globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: Cancer J Clin (2021) 71(3):209–
49. doi: 10.3322/caac.21660

2. Biancolella M, Testa B, Baghernajad Salehi L, D'Apice MR, Novelli G.
Genetics and genomics of breast cancer: Update and translational perspectives.
Semin Cancer Biol (2021) 72:27–35. doi: 10.1016/j.semcancer.2020.03.013

3. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer.
Lancet (London England) (2021) 397(10286):1750–69. doi: 10.1016/s0140-6736
(20)32381-3

4. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast
cancer: Disease entity or title of convenience? Nat Rev Clin Oncol (2010) 7(12):683–
92. doi: 10.1038/nrclinonc.2010.154

5. Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer
Biol (2021) 72:136–45. doi: 10.1016/j.semcancer.2020.06.005

6. Yau C, Osdoit M, van der Noordaa M, Shad S, Wei J, de Croze D, et al.
Residual cancer burden after neoadjuvant chemotherapy and long-term survival
outcomes in breast cancer: A multicentre pooled analysis of 5161 patients. Lancet
Oncol (2022) 23(1):149–60. doi: 10.1016/s1470-2045(21)00589-1

7. Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications
of triple-negative breast cancer: Improving patient selection for treatment. Cancer
Discovery (2019) 9(2):176–98. doi: 10.1158/2159-8290.Cd-18-1177

8. Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, et al. Triple-negative breast
cancer has worse overall survival and cause-specific survival than non-Triple-
Negative breast cancer. Breast Cancer Res Treat (2017) 161(2):279–87.
doi: 10.1007/s10549-016-4059-6

9. Smolarz B, Nowak AZ, Romanowicz H. Breast cancer-epidemiology,
classification, pathogenesis and treatment (Review of literature). Cancers (2022)
14(10):2569. doi: 10.3390/cancers14102569

10. Li Y, Zhan Z, Yin X, Fu S, Deng X. Targeted therapeutic strategies for triple-
negative breast cancer. Front Oncol (2021) 11:731535. doi: 10.3389/fonc.2021.731535

11. Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising
targets in triple negative breast cancer. Pharmacol Ther (2019) 199:30–57.
doi: 10.1016/j.pharmthera.2019.02.006

12. Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of
triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin
Oncol (2022) 19(2):91–113. doi: 10.1038/s41571-021-00565-2

13. Kanwal B. Untangling triple-negative breast cancer molecular peculiarity
and chemo-resistance: Trailing towards marker-based targeted therapies. Cureus
(2021) 13(7):e16636. doi: 10.7759/cureus.16636

14. Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, Siewertsz van Reesema
LL, et al. Perspectives on triple-negative breast cancer: Current treatment strategies,
unmet needs, and potential targets for future therapies. Cancers (2020) 12(9):2392.
doi: 10.3390/cancers12092392
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Lara-Torres CO, Gerson-Cwilich R, Zentella-Dehesa A, et al. Biological
landscape of triple negative breast cancers expressing ctla-4. Front Oncol (2020)
10:1206. doi: 10.3389/fonc.2020.01206

125. Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y,
et al. Ctla-4 blockade drives loss of T(Reg) stability in glycolysis-low tumours.
Nature (2021) 591(7851):652–8. doi: 10.1038/s41586-021-03326-4

126. Brooks GA. The tortuous path of lactate shuttle discovery: From cinders
and boards to the Lab and icu. J sport Health Sci (2020) 9(5):446–60. doi: 10.1016/
j.jshs.2020.02.006

127. Brown TP, Ganapathy V. Lactate/Gpr81 signaling and proton motive force
in cancer: Role in angiogenesis, immune escape, nutrition, and warburg
phenomenon. Pharmacol Ther (2020) 206 :107451. doi : 10.1016/
j.pharmthera.2019.107451

128. Zhang W, Wang G, Xu ZG, Tu H, Hu F, Dai J, et al. Lactate is a natural
suppressor of rlr signaling by targeting mavs. Cell (2019) 178(1):176–89.e15.
doi: 10.1016/j.cell.2019.05.003

129. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai SWT, et al. Warburg effect is a
cancer immune evasion mechanism against macrophage immunosurveillance.
Front Immunol (2020) 11:621757. doi: 10.3389/fimmu.2020.621757

130. Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, et al. Aerobic glycolysis
controls myeloid-derived suppressor cells and tumor immunity Via a specific
cebpb isoform in triple-negative breast cancer. Cell Metab (2018) 28(1):87–103.e6.
doi: 10.1016/j.cmet.2018.04.022

131. Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, et al. Zeb1-induced
metabolic reprogramming of glycolysis is essential for macrophage polarization in
breast cancer. Cell Death Dis (2022) 13(3):206. doi: 10.1038/s41419-022-04632-z

132. Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al.
Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature
(2019) 566(7745):553–7. doi: 10.1038/s41586-019-0915-y

133. Guo B. Oliver TG. partners in crime: Neutrophil-ctc collusion in
metastasis. Trends Immunol (2019) 40(7):556–9. doi: 10.1016/j.it.2019.04.009

134. Wu SY, Wang H, Shao ZM, Jiang YZ. Triple-negative breast cancer: New
treatment strategies in the era of precision medicine. Sci China Life Sci (2021) 64
(3):372–88. doi: 10.1007/s11427-020-1714-8

135. Zhu Y, Hu Y, Tang C, Guan X, Zhang W. Platinum-based systematic
therapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer (2022)
1877(1):188678. doi: 10.1016/j.bbcan.2022.188678

136. Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: A
review of mechanisms and novel therapeutic strategies to overcome drug
resistance. Front Oncol (2022) 12:856974. doi: 10.3389/fonc.2022.856974

137. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al.
Chemoresistance evolution in triple-negative breast cancer delineated by single-
cell sequencing. Cell (2018) 173(4):879–93.e13. doi: 10.1016/j.cell.2018.03.041

138. Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer
therapeutic resistance: Where is the achilles' heel? Cancer Lett (2021) 497:100–11.
doi: 10.1016/j.canlet.2020.10.016
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