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Background: Lung cancer is the leading malignant disease and cause of

cancer-related death worldwide. Most patients with lung cancer had

insignificant early symptoms so that most of them were diagnosed at an

advanced stage. In addition to factors such as smoking, pollution, lung

microbiome and its metabolites play vital roles in the development of lung

cancer. However, the interaction between lung microbiota and carcinogenesis

is lack of systematically characterized and controversial. Therefore, the

purpose of this study was to excavate the features of the lung microbiota

and metabolites in patients and verify potential biomarkers for lung cancer

diagnosis.

Methods: Lung tissue flushing solutions and bronchoalveolar lavage fluid

samples came from patients with lung cancer and non-lung cancer. The

composition and variations of the microbiota and metabolites in samples

were explored using muti-omics technologies including 16S rRNA amplicon

sequencing, metagenomics and metabolomics.

Results: The metabolomics analysis indicated that 40 different metabolites,

such as 9,10-DHOME, sphingosine, and cysteinyl-valine, were statistically

significant between two groups (VIP > 1 and P < 0.05). These metabolites

were significantly enriched into 11 signal pathways including sphingolipid,

autophagy and apoptosis signaling pathway (P < 0.05). The analysis of lung

microbiota showed that significant changes reflected the decrease of microbial

diversity, changes of distribution of microbial taxa, and variability of the

correlation networks of lung microbiota in lung cancer patients. In particular,
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we found that oral commensal microbiota and multiple probiotics might be

connected with the occurrence and progression of lung cancer. Moreover, our

study found 3 metabolites and 9 species with significantly differences, which

might be regarded as the potential clinical diagnostic markers associated with

lung cancer.

Conclusions: Lung microbiota and metabolites might play important roles in

the pathogenesis of lung cancer, and the altered metabolites and microbiota

might have the potential to be clinical diagnostic markers and therapeutic

targets associated with lung cancer.
KEYWORDS
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Introduction

Lung cancer (LC) is the main cause of death from cancer

worldwide, and its incidence has continued to rise in recent

years. Each year, more than 2.2 million people are diagnosed

with the disease and 1.79 million die from it (1). The incidence is

still rising in China, compared with declines in some western

countries, which constitutes a major public health problem and

causes a huge social burden (2). In contrast to small cell lung

cancer (SCLC), which has been declining in many countries,

non-small cell lung cancer (NSCLC) has accounted for the

largest proportion of LC (80%-90%) currently (3). For now,

common diagnostic methods contain x-ray film, positron

emission computed tomography (PET), computed tomography

(CT), and computer aided detection and diagnosis (CAD) (4).

However, these common techniques, which are conveniently

used by medical staff, lack specificity and accuracy. Biomarkers

were found to have the potential to assist in the early diagnosis of

LC. The most widely used and reliable biomarkers are protein

biomarkers found in blood and bronchoalveolar lavage fluid (5).

Combining biomarkers, imaging omics and artificial intelligence

to constitute an integrated model for LC screening and diagnosis

might be the progression orientation for ameliorating LC

prediction in the future.

The crucial risk factors of LC contain tobacco smoking,

environmental and occupational pollution exposure, chronic

lung disease, and lifestyle factors (6). Emerging studies have

indicated the lung microbiota and metabolites could affect

pulmonary health and diseases of the lungs. Lungs were

considered as a sterile environment for a long time due to the

limit of the culture-based techniques. However, the use of 16S

ribosomal RNA (rRNA) amplicon sequencing has led to the

increase of the interest in the lung microbiota (7). Numerous

studies have shown that the lung microbiota might play a crucial
02
part in the pathogenesis of pulmonary diseases. Liu et al. showed

that the lung microbial composition and community structures

of smokers with LC were distinct from that of emphysema-only

patients: the abundance of Proteobacteria in the lungs of patients

with LC was significantly lower and the abundances of

Streptococcus and Prevotella were higher compared to patients

with emphysema only (8). Tsay et al. found that Streptococcus

and Veillonella were up-regulated in the lower airways of LC

patients, which was related to the promotion of ERK and PI3K

signal pathways (9). Moreover, studies had demonstrated a

lower alpha diversity of lung microbiota in LC patients

compared with that in patients with non-lung cancer (10). In

general, compared with the studies on the gut, there were fewer

studies on the correlation between lung microbiota and

pulmonary homeostasis and diseases.

Recently, the relationships between the progression of

chronic inflammatory diseases and the variations of microbiota

have been gradually discovered, and the lung diseases involved

include cystic fibrosis, asthma and chronic obstructive

pulmonary disease (COPD) (11). The relationship between

smoking, airflow obstruction, and LC was well recognized.

Previously study showed that COPD was an important

element in LC risk in smokers and smokers with COPD had a

3- to 10-fold increased risk of developing LC compared to

smokers without emphysema or significant airway obstruction

(12). Prolonged exposure to environmental pollutants could

stimulate inflammatory factors, promote the formation of the

environment suitable for the survival of pathogenic bacteria, and

lead to the dysbiosis of lung microbiota; the dysbiosis could

further induce inflammation and tissue damage, ultimately

leading to accelerated decline in lung function (13). However,

current researches had focused on the association of the lung

microbiota with chronic inflammatory disease of the lungs, there

have been fewer studies on LC.
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In recent years, several studies have generated interest in the

relationships between metabolites of the lung microbiota and

lung health. Microbial components can contribute to the

progression of the pulmonary diseases by producing

metabolites with oncogenic potential. Gao et al. showed that

the metabolites produced by Pseudomonas aeruginosa might be

related to the pathogenesis of cystic fibrosis (14). In addition, the

lung microbiota and metabolites contribute to the maintenance

of the balance of the host lung immune system, which is an

important contributor to defend against infection. Steed et al.

found that desaminotyrosine (DAT), which was a metabolite

associated with microbiota, helped the host defend against

influenza by positively stimulating type I IFN (15). However,

the current LC related metabolomics studies mostly targeted

metabolites such as plasma proteins, which might not

characterize the metabolism of lung microenvironment clearly.

Despite recent emerging studies on the correlation between

lung microbiota and metabolites associated with LC, the

mechanisms still need to be further clarified. In addition, few

studies have considered both lung microbiota and metabolites to

explore their possible associations and their roles in the

pathogenesis of LC. Therefore, in our study, the differences in

lung microbiota and metabolites between LC patients and

patients with non-lung cancer were explored by 16S rRNA

amplicon sequencing and metagenomics. Moreover, we used

the samples of lung tissue flushing solutions, which could

characterize the metabolic changes of lung microenvironment

more clearly, for the analysis of metabolomics to explore their

effects on the development of LC. The results indicated that lung

microbiota and metabolites might play key roles in the

development of LC, and the altered metabolites and

microbiota might have the potential to be clinical diagnostic

markers and therapeutic targets associated with LC.
Materials and methods

Participants

From 2020 to 2021, patients with LC were recruited in the

Zibo Municipal Hospital. The exclusion criteria included the

uses of antibiotics, corticoids, probiotics, prebiotics or

immunosuppressive drugs in the past 3 months; hypertension;

diabetes; previous airway surgery; preoperative radiotherapy and

chemotherapy; and atomization treatment. Non-lung cancer

patients were set as the control group of the metabolomics,

and the exclusion criteria were the same as those in the LC

group. This study was approved by Ethics Committee of Zibo

Municipal Hospital (No. 20201102), and each subject signed a

voluntary informed consent before the study. The clinical

information was summarized in Supplementary Tables S1–S3.
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Sample collection

Nine LC patients with unilateral tumors were selected from

patients examined by bronchoscopy for the tests of 16S rRNA

amplicon sequencing and metagenomics. All patients underwent

rout ine examinat ions before operat ion , inc luding

electrocardiogram, pulmonary function, blood routine. Sterile

saline samples of bilateral lungs were obtained by bronchoscopy

in patients with LC. Paired samples of bronchoalveolar lavage

fluid (BALF) included the one from the cancerous lobe and the

other from the contralateral noncancerous lobe. Thirty LC

patients with lung tumors and thirteen patients with non-lung

cancer who underwent lobectomy were selected for the test of

metabolomics. A whole tumor of 1 cm3 and healthy tissue

located 5 cm from tumor in the same pulmonary region were

extracted for each patient. The removed tumors and tissues were

immediately flushed with sterile normal saline and collected in

sampling tubes.

All samples were immediately stored at -80 °C until DNA

extraction was performed.
Non-targeted metabolomics profiling

Metabolites were extracted from the lung tissue flushing

solutions and tested with a liquid chromatography-tandem mass

spectrometry (LC-MS/MS). The metabolomics analysis was

performed by UHPLC -Q Exactive HF-X system with a

ACQUITY UPLC HSS T3 column (Waters, Milford, USA).

The temperature of the column was set to 40°C and the

injection volume was 2L. The flow rate of helium carrier gas

was 0.4 mL/min, and the MS scanning range was m/z 70 - 1050.

Progenesis QI (Waters Corporation, Milford, USA) was used to

preprocess the MS raw data, and the obtained data matrix

included retention time (RT), mass/charge ratio (M/Z) and

peak intensity.

Principal component analysis (PCA) and orthogonal partial

least squares-discriminant analysis (OPLS-DA) were used to

explore whether all samples can be significantly clustered in

different groups. The variable importance in projection (VIP)

values of OPLS-DA and the P-values (Wilcoxon rank-sum test)

were calculated to check the metabolites with statistically

significant differences between two groups (16). Metabolites

with P-values below 0.05 and VIP values above 1.00 were

identified as differentially expressed metabolites. Metabolic

pathway analysis was carried out to recognize the enriched

pathways based on the altered metabolites. Altered metabolites

were annotated through the KEGG database (https://www.kegg.

jp/kegg/pathway.html) and the Python package SciPy was used

for the pathway enrichment analysis. P-value were corrected by

false discovery rate (FDR) with FDR ≤ 0.01 as the threshold.
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16S rRNA amplicon sequencing

Microbial DNA was obtained from BALF samples using the

FastDNA Spin Kit (MP Biomedicals, Shanghai, China) and tested

for DNA purity using Nanodrop microspectrophotometer

(Nanodrop 2000, Thermo Fisher Scientific, America). Finally,

DNA integrity was determined using agarose gel electrophoresis.

PCR was performed to amplification of the V3-V4 hypervariable

regions of the bacterial 16S rDNA gene according to universal

primers (338F: 5’- ACTCCTACGGGAGGCAGCAG- 3’, 806R: 5’-

GGACTACHVGGGTWTCTAAT- 3’) that contained barcode

(data available at Sequence Read Archive: PRJNA858534). PCR

products were purified using the AxyPrep DNAGlue recovery kit,

and the quantification and qualification of PCR products were

detected on 2% agarose gels. Miseq libraries were constructed

using NEXTFLEX DNA rapid Sequencing Kit and sequenced

using Illumina’s Miseq PE300 high-throughput sequencing

platform. Raw data were demultiplexed, quality-filtered by fastp

(https://github.com/OpenGene/fastp), and merged using FLASH

(http://www.cbcb.umd.edu/software/flash). UPARSE (version 7.1

http://drive5.com/uparse/) software was used to perform OTU

clustering on all sequences with 97% similarity as standard.

The three diversity indices (Shannon, Chao, ace) of the

samples were calculated and averaged to assess the level of

alpha diversity in different groups which were obtained by

Mothur and visualized by R. The b-diversity was analyzed by

weighted UniFrac phylogenetic distance matrices, visualized in

non-metric multidimensional scaling analysis (NMDS) plots

and determined by Partial Least Squares Discriminant

Analysis (PLS-DA) for statistical significance. The effect of the

abundance of the species on the discrepancy between groups was

estimated using linear discriminant analysis (LDA) and formed

a table (LDA 2.0, P < 0.05). Wilcoxon rank-sum test was carried

out to compare species differences between groups (P < 0.05).

Correlation networks were used to show changes in

interactions between microbial communities. Degree (DC),

closeness (CC), and betweenness centrality (BC) were used to

describe the characteristics of multiple networks.
Metagenomics analysis

Microbial DNA was obtained from BALF samples using the

FastDNA Spin Kit (MP Biomedicals, Shanghai, China) and tested

for DNA purity using Nanodrop microspectrophotometer

(Nanodrop 2000, Thermo Fisher Scientific, America). Finally,

DNA integrity was determined using agarose gel electrophoresis.

DNA was fragmented to an average size of approximately 400 bp

using Covaris M220 (Gene Company Limited, China) for paired-

end library construction. DNA libraries were subsequently

constructed and assessed using the NEXTFLEX Rapid DNA-Seq

kit (Bioo Scientific, USA). The metagenomics sequencing was
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carried out on Illumina NovaSeq/Hiseq Xten (Illumina, USA, data

available at Sequence Read Archive: PRJNA858501). The raw

sequence reads were trimmed, and the clean reads were assembled

via MEGAHIT. Gene prediction was performed using MetaGene

(http://metagene.cb.k.u-tokyo.ac.jp/), and CD-HIT software

(version 4.6.1 http://www.bioinformatics.org/cd-hit/) was used

for predicting gene sequence clustering. Redundant gene sets

were constructed using the longest sequence of each group

clustered in DNA as representative. DIAMOND (https://github.

com/bbuchfink/diamond) was employed to compare the

sequences of non-redundant gene sets with Eggnog database

(http://eggnog.embl.de/) to obtain the Clusters of Orthologous

Groups (COG) functions corresponding to genes, and the relative

abundance of the COG was calculated using the sum of gene

abundances corresponding to COG.

Linear regression analysis was carried out to estimate the

consistency between species and function. Significantly

differences of COG categories between groups were detected

by Wilcoxon rank-sum test (P < 0.01).
Biomarker identification

Biomarker identification was performed by MetaboAnalyst

(https://www.metaboanalyst.ca/) (17). Based on the differential

metabolites and microbiota obtained by the above analysis, the

Receiver Operating Characteristic curve (ROC) analysis was

used to obtain curve and calculate the area under the curve

(AUC). In addition, we combined the obtained biomarkers to

further explore the predictive ability of the model.
Results

Metabolomics profiles change in
LC patients

The samples of lung tissue flushing solutions were used for

the analysis of metabolomics. Based on the processing of the raw

data, the area under the curve was used to quantify peaks. In

positive (ESI+) modes, 8,650 positive peaks were detected, 428

metabolites were identified, and 125 metabolites were annotated

compared with KEGG database. In negative (ESI-) modes, 5,580

negative peaks were detected, 178 metabolites were identified,

and 55 metabolites were annotated compared with KEGG

database. The data was normalized and relative standard

deviation (RSD) was used to evaluate the exclusion of data with

poor stability during the experiment. Results indicated that

favorable stability was tested from samples in the positive and

negative modes (Supplementary Figures S1A, B). PCA analysis

revealed that QC samples were clearly differentiated, indicating

the metabolomics datasets had satisfying stability and
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repeatability (Supplementary Figures S1C, D). OPLS-DA analysis

showed that the separation of metabolites in the samples of the

two groups was obvious (Figure 1A). Metabolite features that

distinguished LC patients from controls were selected based on a

log2 fold change cutoff at 1, and VIP scores determined by OPLS-

DA (VIP > 1, P < 0.05, Supplementary Table S4). We obtained 40

metabolites with significant differences in relative abundance

between LC patients and controls (Figures 1B, C), which

included 4 organic oxygen compounds, 4 fatty acyls, 3

organoheterocyclic compounds, 3 prenol lipids, 10

glycerophospholipids, 4 benzene and substituted derivatives, 2

carboxylic acids and derivatives, 1 benzenoid, 2 lipids and lipid-

like molecules, 2 organic acids and derivatives, 1 purine

nucleoside, and 4 other compounds (Supplementary Figure

S1E). Overall, 14 and 26 metabolites were significantly up-

regulated and down-regulated in LC patients, respectively.
Frontiers in Oncology 05
Several fatty acyls such as 9,10-DHOME, Erucic acid and N-

Isobutyl-2,4,8,10,12-tetradecapentaenamide presented at higher

levels in LC patients, and some glycerophospholipids such as PC

(14:0/16:0) and PE (14:1(9Z)/14:1(9Z)) were down-regulated in

LC patients.

KEGG pathway enrichment analysis was performed to

explore the metabolic pathways associated with differential

metabolites in LC patients and controls. 130 metabolic

pathways were identified, among which 24 metabolic pathways

had significant differences, including ABC transporters, protein

digestion and absorption, central carbon metabolism in cancer

(P < 0.01, Supplementary Figure S1F). The significantly different

metabolites were enriched into a total of 15 signal pathways, of

which 11 signaling pathways were observably changed in LC

patients, comprising autophagy, apoptosis, necroptosis and

sphingolipid signaling pathway (P < 0.05, Figure 1D).
A C

DB

FIGURE 1

Metabolic profiles in LC patients and controls. (A) OPLS-DA showed that LC patients and controls were separated into two distinct clusters. (B)
Volcano plot of metabolites of LC patients compared to controls. The y-axis represented p-value converted to negative log 10 scale and the x-
axis represented log2 fold change. (C) Variable Importance in Projection (VIP) plot generated from the OPLS-DA analysis showed the most
discriminative metabolites in descending order of importance. (D) KEGG pathway enrichment analysis of significantly different metabolites
showed that there were 11 pathways had significant changes.
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Altered composition of the lung
microbiota in LC patients

BALF samples were used for 16S rRNA amplicon sequencing

to explore the changes of lung microbiota in LC patients and a

total of 16 samples passed quality control and were included in

the study. According to Usearch statistics, in the raw data of 16S

rDNA sequencing using primers 338F and 806R, the total

reading of each sample was 888,409 pairs. The original data

were filtered by QIIME software and then spliced by FLASH

software to generate tags sequence. A total of 16 qualified

samples were obtained by BALF sample sequencing, with an

average length of 425 bases. Finally, Uparse software was used to
Frontiers in Oncology 06
cluster the spliced sequences into OTUs according to 97%

similarity, and the total number of OTUs obtained was 1,711.

Species cumulative curve and rarefaction curve at the OTU

level indicated that the vast majority of microbial diversity was

obtained in all samples (Supplementary Figures S2A, B). Venn

diagram was used to show the variation in OTUs between the

two groups (Supplementary Figure S2C). Overall, 453 OTUs

were shared between groups and there were more unique OTUs

in controls (973) than in the LC patients (285). The results of

PLS-DA model analysis reflecting the clustering of the two

groups showed that the separation between LC patients and

controls was obvious (Figure 2A). The alpha diversities of two

groups did not show a significant difference (Supplementary
A

B D

E F

C

FIGURE 2

Lung microbiota composition profiles in LC patients and controls. (A) PLS-DA score plot of LC patients and controls showed clear distinction.
(B) Non-metric multidimensional scaling analysis (NMDS) of the weighted UniFrac phylogenetic distance matrices demonstrated that the LC
patients and controls showed two distinct clusters. (C) Relative abundance of major phyla and genera across BALF samples. (D) Differential taxa
at the genus level identified by linear discriminant analysis (LDA) effect size (LEfSe) analysis (LDA > 2.0, P < 0.05). (E) Differential taxa at the
species level identified by the Wilcoxon rank test (P < 0.05). (F) COG functional analysis of the microbiota between LC patients and controls.
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Figure S2D). NMDS analysis on the basis of Bray-Curtis

similarity distance indicated that the two groups were apart

from each other on the ordination (stress<0.2, Figure 2B). A

taxonomic analysis of sequences revealed that the most prevalent

phylum in the lung microbial community was Proteobacteria

and variations of microbial composition at the genus level

between individuals could be seen (Figure 2C, Supplementary

Table S5).

We relied on LEfSe analysis to identify the major taxa that

influenced the differences between the two groups and two-sided

Welch’s t-test. LEfSe analysis recognized 26 genera which had

discrepant abundances between the two groups (LDA > 2.0, P <

0.05). In LC patients, an enrichment in Chloroflexi taxa was

observed and Lactobacillus, Massilia, Lactococcus, Oscillospirales,

Christensenellaceae were significantly more abundant in controls

(Figure 2D). Additionally, the results of the two-sided Welch’s t-

test showed that Lactobacillus delbrueckii subsp. bulgaricus,

Massilia timonae, Lactobacillus reuteri were more abundant in

controls by species taxa (P < 0.05, Figure 2E).

Taken together, we identified some microbiota and

metabolites that were different between two groups and their

changes may be correlated. Therefore, a heat map showed the

association between 20 differential genera and 40 differential

metabolites closely related with the progression of LC

(Supplementary Figure S2E).

Then, we used metagenomics analysis to predict gene

functions of the lung microbiota and a total of 12 samples met

the criteria after quality inspection. Based on the construction of

non-redundant gene sets, we obtained 12, 671 genes with a total

sequence length of 6, 216,664 (bp) and an average sequence

length of 490.62. 179 different COG functional categories were

identified (P < 0.05, Supplementary Table S6), and there were 5

functional categories had significant differences (P < 0.01,

Figure 2F), including K+-transporting ATPase, DNA

polymerase III, PAS domain, membrane-associated protease

RseP and predicted flavoprotein YhiN. Linear regression

analysis of the relationship between the similarity in the

functional attributes of the community and community

composition indicated that there is a prominent correlation

between the two parts (R2 > 0.8, P < 0.01, Supplementary

Figure S2F).
Microbial interaction networks in non-
lung cancer and lung cancer patients

To identify the interactions of the lung microbiota in

patients with or without lung cancer, we constructed the

correlation networks of genus taxa. The networks showed

different bacterial interactions in the two groups, especially the

network of LC patients was more complex than that of the
Frontiers in Oncology 07
controls. Given the distinct microbial composition between two

groups, we compared the topology of the networks in each

group. The number of mean degree and transitivity were higher

in the LC patients (mean degree, 4.9; transitivity, 0.64) compared

with the controls (mean degree, 3.6; transitivity, 0.58), suggesting

that LC patients-enriched genera had a stronger correlation with

each other than controls. The results indicated that patients-

enriched species affected the host by interacting and exerting

similar effects. Furthermore, degree centrality (DC), closeness

centrality (CC) and betweenness centrality (BC) were used to

screen the influential microbiota in each network (DC > 0.1, CC

> 0.2, BC > 0.1). In LC patients, the roles of Campylobacter,

Atopobium, Haemophilus and Streptococcus were several

network-hubs and they were important to the lung microbial

community alteration of the LC patients (Figure 3A). Results in

controls showed that Bacillus, Fusobacterium, Alloprevotella,

Klebsiel la and Kroppenstedtia contributed to more

importance (Figure 3B).

We constructed a correlation network combining the

significantly different genera, which were obtained by 16S

rRNA amplicon sequencing. Lactobacillus, Brevundimonas,

Massilia, Christensenellaceae R-7 group were positively

correlated with each other, which were enriched in controls,

and they were negatively correlated with Veillonella, Atopobium,

Haemophilus, Fusobacterium, which were enriched in LC

patients (Figure 3C). Based on the measurement indexes

characterizing the properties of the networks (DC > 0.1, CC >

0.2, BC > 0.1), Brevundimonas, Bacillus, Veillonella, Klebsiella

and Pseudomonas were identified.
Identifying biomarkers in LC patients

Due to the function of evaluating the predictive ability of

models, ROC curve has been in widespread use. ROC curve was

used to assess representative differential features for the

diagnosis of LC in this study. As indicated by the results, the

AUC of Cysteinyl-Valine, 3-Chlorobenzoic acid and 3,4-

Dihydroxyphenyl ethanol were 0.8692, 0.859 and 0.8103

(Supplementary Table S7) , which might be useful in

identifying patients with LC (Figures 4A, B). In order to

improve the accuracy of biomarkers, the three metabolites

were combined for ROC analysis, which showed more

strikingly capability of the diagnosis for LC (AUC:0.91,

Figure 4C). LEfSe analysis based on 16S rRNA amplicon

sequencing revealed 14 significantly different species (LDA >

2.0, P < 0.01), from which nine species were screened by LASSO

(Supplementary Figure S3, Supplementary Table S8). ROC

analysis on the basis of the combination of the 9 species,

demonstrating that LC could be assessed by representative

differential lung microbiota (Figure 4D).
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Discussion

LC tumor microenvironment is colonized by microbiota,

which can interact with the host, and new studies have indicated

that this might be a potential factor affecting LC. Generally

speaking, the normal tissue microenvironment protects the

lungs, while the tumor microenvironment promotes cancer

progression. Therefore, we used the samples which could

characterize the changes of lung microenvironment to explore

the effects of the lung microbiota and metabolites on the

progression of LC. This study suggested that the altered

microbiota and metabolites between the patients with or

without lung cancer might play pivotal roles in LC pathogenesis.

In the metabolomics analysis of flushing fluid samples,

multiple fatty acyls were significantly upregulated in LC

patients and glycerophospholipids accounted for the largest

proportion in controls, which indicated that lipid metabolism

changed in LC patients. Increasing evidences suggested that lipid

metabolism could be assisted in determining tumor metastasis,
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improving therapeutic efficacy and developing new therapeutic

targets (18). Lipids are components of cell membranes that are

involved not only in energy storage but also as messengers in

signaling. In addition, the disorder of lipid metabolism in cancer

cells will affect cell proliferation and differentiation and other

processes (19). As the main components of pulmonary

surfactant, which is a complex of phospholipids (85%

phosphatidylcholine) and surfactant proteins, lipids have been

shown to play essential roles in the pathogenesis of LC (20, 21).

Pulmonary surfactant was synthesized and secreted by alveolar

type II cell, a type of lung stem cell and it could transform into

monoclonal lung tumor during active KRAS mutation in

previous studies (22). Various studies have shown that the

destruction of pulmonary surfactant and the changes of

alveolar type II cell homeostasis were connected with the

pathogenesis of LC (23).

In particular, we found that metabolites of sphingosine

enriched in sphingolipid signaling pathway, significantly

decreased in LC patients. Sphingolipids are bioactive
A B

C

FIGURE 3

Correlation networks of genus associated with LC. (A) The correlation network between genera in LC patients (n=20). (B) The correlation
network between genera in controls (n=20). (C) The correlation network based on the significantly different genera found by 16S rRNA
amplicon sequencing (n=18, P < 0.05). The color of the nodes represented different groups, with nodes of the same color belonging to the
same group. The yellow nodes represented LC group, and the blue nodes represented controls. The size of the nodes indicated the mean
abundance of the genera in samples within the group. Edges between nodes represented the correlation between the abundance of two
genera. Red lines represented positive correlations, while green lines represented negative correlations. The widths of the edges were
proportional to the correlation strength, and wide line indicated stronger correlation.
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membrane lipids that act as first or second messengers (24, 25).

In particular, the first sphingolipid detected was sphingosine,

which could regulate various physiological processes such as cell

cycle, apoptosis (26). Sphingosine, as a regulator that inhibits cell

proliferation, can affect cell growth and apoptosis (27).

Particularly, sphingosine is an important substance that helps

protect the respiratory tract against bacterial pathogens (28).

Sphingosine has been found to inhibit multiple pathogens,

including Staphylococcus aureus, Acinetobacter baumannii,

Haemophilus influenzae, Escherichia coli, Fusobacterium

nucleatum, Streptococcus sanguinis (29). As the heat map

showed, the bactericidal effect of sphingosine could have

something to do with the downregulation of Haemophilus and

Streptococcus in controls of our study.

Moreover, the pathway of ABC transporters, protein

digestion and absorption and central carbon metabolism in

patients were changed. Decreased level of ABC transporters

was found in LC patients, containing betaine, L-Arginine and

taurine. Betaine is widely regarded as an anti-oxidant and it has
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beneficial actions in several human diseases, such as obesity,

diabetes and cancer (30). Tang et al. reported that choline-

betaine pathway was conducive to hyperosmotic stress and lethal

stress resistance in Pseudomonas protegens SN15-2 (31), and this

could have something to do with the enrichment of

Pseudomonas in controls of our study. Arginine is present in

the precursors of various organic compounds such as nitric

oxide (NO), ornithine and myosine, which have huge impacts on

immune cell biology, especially macrophage, dendritic cell and T

cell immunobiology (32, 33). Kim et al. reported that arginine-

induced changes in gut microbiota enhanced host lung

immunity to nontuberculous mycobacterial infection, and that

indicated that arginine might plays a protective role in lungs

(34). Taurine, as conditionally essential amino acid of human,

has multiple physiological functions, including the regulation of

neural conduction, participating in endocrine activities,

immunity enhancement, and strengthening the antioxidant

capacity of cytomembrane (35). Taurine was found to inhibit

the proliferation of lung cancer cells, significantly boosted the
A B

DC

FIGURE 4

ROC curve analysis of the candidate biomarkers for LC. (A) Individual ROC curves and peak areas for Cysteinyl-Valine, 3-Chlorobenzoic acid
and 3,4-Dihydroxyphenyl ethanol. (B) The differences in the abundance of three metabolic biomarkers between two groups. (C) ROC analysis
based on the combination of three metabolites. (D) ROC analysis for the combination of 9 species screened by LASSO.
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apoptosis rate, and reduced the expression of migration factors

matrix metallopeptidase 9 (MMP-9) and vascular endothelial

growth factor (VEGF) (36, 37). Previous studies have shown that

taurine ABC transporter protein has been identified in

Lactobacillus, and this could have something to do with the

enrichment of Lactobacillus in controls of our study (38). The

upregulation of betaine, arginine and taurine in controls might

contribute to the immunity enhancement and the boost of the

antioxidant capacity of cells. The pathway of protein digestion

and absorption and central carbon metabolism in cancer

contained a variety of amino acids such as L-Tryptophan with

decreased relative abundance in LC patients. Tryptophan is an

essential amino acid and plays essential roles in various

physiological processes. Down-regulated tryptophan

concentration have been detected in patients with colorectal

cancer, malignant melanoma and LC, and studies showed that

tryptophan metabolites could drive the motility and migration of

cancer cells (39). In addition, the pathway of Linoleic acid

metabolism involved in metabolites of 9, 10-DHOME was up-

regulated in LC. The level of 9, 10-DHOME, which was the

epoxide hydrolase metabolite of the leukotoxin 9,10-EpOME,

was found to be increased in disease. 9, 10-DHOME activates the

NF-kB and AP-1 transcription factors of endotheliocyte to

mediate inflammatory responses (40). Moreover, many studies

showed that DiHOMEs might be part of the inflammatory

response to environmental insults in lungs (41).

In this research, we explored the microbial changes in BALF

samples using 16S rRNA amplicon sequencing. Results showed

that the microbiota constitution in LC patients was different

from that of controls and the microbiota differed in terms of

beta-diversity. The microbial dysbiosis of LC patients was

represented by decreasing microbial diversity, and increasing

Streptococcus, Prevotella, Veillonella and Haemophilus, which

were in accordance with the existing results (9, 42). Elevated

abundance of Streptococcus, Prevotella and Veillonella were

found in tumor tissues from LC patients previously, and the

changes of these genera were related to the up-regulation of ERK

and PI3K signaling pathways in LC patients (9). We also found

that Fusobacterium was up-regulated in LC patients. The

promotion effect of Fusobacterium on tumor cells is mainly

achieved by inhibiting host immunity and inducing

proinflammatory microenvironment (43). The available studies

demonstrated that Fusobacterium acts as an inducer in various

cancers, such as breast, colon and oral cancer (44–46). Several

studies on the mechanism of Fusobacterium in promoting tumor

development had provided different results. High levels of

Fusobacterium promoted the activity of NF-kB and various

pro-inflammatory factors, and the FadA virulence factor in

Fusobacterium affected cell growth by regulating the b-catenin
signaling pathway (47, 48).

LEfSe analysis showed that potential probiotics, including

La c t o b a c i l l u s , La c t o c o c c u s , O s c i l l o s p i r a l e s a nd

Christensenellaceae, were down-regulated in LC patients.
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Probiotics were found to have the ability to achieve anticancer

effects by promoting apoptosis of cancer cells and improving

resistance to oxidative stress (49, 50). Multiple common

microorganisms in the human gut have probiotic effects such

as Bifidobacterium, Lactobacillus, Lactococcus. In particular,

many lactic acid bacteria (LAB) have essential conducive

impacts on the host such as anti-oxidation and anti-

inflammation (51). The antioxidant capacity of LAB is based

on the high catalase and a, a-diphenyl-b-picrylhydrazyl
(DPPH) free radical scavenging activity, the anti-inflammatory

property is achieved by the promotion of anti-inflammatory

cytokines (IL-10) as well as the decrease of proinflammatory

cytokines (IL-6) (43). Oscillospirales was believed to produce

short-chain fatty acids, and the level of it was also found to be

decreased in disease (52). The Christensenellaceae has been

found in human bodies, which plays an important role in

human health (53).

The correlation networks showed that multiple oral bacteria

were enriched in the lungs, and there was a strong correlation

between them such as Veillonella, TM7x, Capnocytophaga,

Parvimonas, Granulicatella. There has been an increasing

interest in detecting the connection between oral microbiota

and the occurrence of respiratory tract infections. Associations

between oral microbiota and several respiratory infections have

been reported previously (54). A previous study found that oral

commensal microbiota was enriched in the lower airway of LC

patients, and the connections between the lower airway

microbiota and host immunity in healthy subjects have also

been explored (9). Previous studies confirmed that

distinguishing oral commensal microbiotas were detected to

have changes during the development of cancers such as

pancreatic cancer, breast cancer or LC (55–57). However, none

of them clearly elucidated the relationships between oral

commensal microbiota and the pathogenesis of multiple cancers.

However, our results still have some shortcomings, and did

not consider the tumor stage, the histological subtype and

clinical validation. Many studies have found differences in the

characteristics of microbiota between different tumor stages and

histological subtypes in other cancers (58, 59). In the subsequent

studies, we will expand sample size, and evaluate the potential

marker in a larger cohort. We hope to verify the diagnostic value

of the biomarkers and explore the molecular mechanisms by

which lung microbiota and metabolites affect LC. Moreover, the

relationship between lung microbiota and metabolites in

different tumor stages and histological subtypes will

be considered.
Conclusions

In this study, the differences in lung microbiota and

metabolites between LC patients and patients with non-lung

cancer were explored by 16S rRNA amplicon sequencing,
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metagenomics and metabolomics. The results suggested that

lung microbiota and metabolites might play critical roles in the

progression of LC. The composition of the lung metabolites was

significantly different between the LC patients and controls,

which indicated that lipid metabolism, especially sphingolipid

signaling pathway, changed in LC patients. The microbiota in

LC patients were different from those in controls, with multiple

probiotics were down-regulated in LC patients. Moreover, we

found that oral commensal microbiota might be related to the

development and progression of LC. Finally, we found 3

metabolites and 9 species, which have significantly differences,

and they might have the potential to be clinical diagnostic

markers and therapeutic targets associated with LC.
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