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Malignant melanoma is widely acknowledged as the most lethal skin

malignancy. The metabolic reprogramming in melanoma leads to alterations

in glycolysis and oxidative phosphorylation (OXPHOS), forming a hypoxic,

glucose-deficient and acidic tumor microenvironment which inhibits the

function of immune cells, resulting in a low response rate to immunotherapy.

Therefore, improving the tumor microenvironment by regulating the

metabolism can be used to improve the efficacy of immunotherapy.

However, the tumor microenvironment (TME) and the metabolism of

malignant melanoma are highly heterogeneous. Therefore, understanding

and predicting how melanoma regulates metabolism is important to improve

the local immune microenvironment of the tumor, and metabolism regulators

are expected to increase treatment efficacy in combination with

immunotherapy. This article reviews the energy metabolism in melanoma

and its regulation and prediction, the integration of immunotherapy and

metabolism regulators, and provides a comprehensive overview of future

research focal points in this field and their potential application in

clinical treatment.
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1 Introduction

In 2020, 325,000 new cases of melanoma were reported

worldwide with 57, 000 deaths (1). Melanoma, a skin-derived

malignancy, is the highest mortality-associated skin disease and

one of the tumors with the fastest growing incidence (2).

Melanoma exhibits distinct biosynthesis and energy

metabolism that can accelerate its proliferation, promote

metastasis, and eventually leads to drug resistance and

ineffectiveness of treatment (2). Over the past decade, tumor

cells have been established to promote their growth by

reprogramming their energy metabolism (3). The Warburg

effect provided the initial clue that tumor cells depended more

on glycolytic reactions for energy production and reduced

mitochondrial oxidative phosphorylation than normal cells (4).

Glycolysis and oxidative phosphorylation have become a

research hotspot in tumor metabolism since then. Glycolysis is

a metabolic process whereby cells rapidly produce adenosine

triphosphate (ATP) (Figure 1), with one molecule of glucose

producing 2 ATP while three carbon atoms turn into lactate.

Mitochondrial oxidation is a slow ATP-producing reaction, with

one molecule of glucose producing 28 ATP (10 ATP from the

tricarboxylic acid cycle and 18 ATP from oxidative

phosphorylation). Therefore, glycolysis consumes more glucose

to produce equal ATP. Nonetheless, unused carbon can be used

for growth and proliferation through the cellular carbon

metabolic pathway to satisfy the strong proliferation demand.

Therefore, glycolysis (anaerobic glycolysis) is more suitable for

rapidly proliferating cells than mitochondrial oxidation (9).

However, contrasting studies suggest that glycolysis and

oxidative phosphorylation can be simultaneously upregulated

in melanoma based on the metabolic demands of the tumor.

These studies draw our attention to the metabolic heterogeneity

in melanoma. Due to the heterogeneity of tumor vascular and

intratumoral structures, the nutrient and oxygen contents in

different parts of the tumor may fluctuate, and the tumor cells

can flexibly change their metabolism according to their own

energy requirements and the nutrient supply of the tumor

microenvironment, which is called metabolic heterogeneity

(10, 11).. Therefore, the flux of glycolysis and mitochondrial

oxidative phosphorylation exhibit differential regulation in

melanoma and can reflect the state of the tumor cells to some

extent. Overall, understanding the growth status of melanoma

via its energy metabolism for application in targeted therapy

may be a potential solution for melanoma patients (12–14).

However, the high energy metabolic demand of melanoma

leads to local glucose deficiency and lactate accumulation in the

tumor microenvironment. This type of TME inhibits T cell

activation and recruits immunosuppressive cells, such as tumor-

associated macrophage (TAM), regulatory (Treg) cells and

myeloid-derived suppressor cells (MDSCs) (15), which models

the immunosuppressive tumor microenvironment, and is one of
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the reasons why immune checkpoint inhibitors are ineffective in

the treatment of melanoma (16, 17).

The interaction between the immune regulation and energy

metabolism of melanoma has triggered interest in a synergistic

approach involving immunotherapy and metabolic therapy.

Regulating the tumor immune microenvironment based on the

metabolic characteristics of melanoma may be a potential method

to improve immunotherapy’s efficacy and achieve synergistic

treatment goals (18). This article will review the metabolic

characteristics of melanoma and its regulation, present an

overview of the mechanism of local immunosuppression and

introduce the biomarkers reflecting the tumor metabolism to

provide new insights for targeted treatment through the

combination of energy metabolism regulators and immunotherapy.
2 Metabolic heterogeneity

Altered amino acid metabolism such as glutamic acid and

alanine would accelerate melanoma proliferation; up-regulated

fatty acid oxidation boosts melanoma to gain resistance to

therapy. Nonetheless, the alteration of glycolysis and oxidative

phosphorylation cover both. In melanoma, glucose metabolic

alterations are high plasticity, and highly associated with

metastasis. Hence, an insight into the mechanisms of glucose

metabolic dysregulation of melanoma is necessary (19, 20).
2.1 Signal pathways of metabolic
heterogeneity

Major drivers of melanomagenesis include the activation of

NRAS/BRAF or the loss of Phosphatase tensin homologue (PTEN)

or cyclin dependent kinase inhibitor 2A (CDKN2A) (21). Among

them, BRAF variations occur in 66% of melanomas (22), which can

lead to metabolic reprogramming (23).The most frequent BRAF

mutation is BRAFV600E, where the 600th valine position of the

BRAF mutation is replaced by glutamate (BRAFV600E), leading to

constitutive activation of its serine/threonine kinase activity (24). It

has been established that BRAFV600E mainly affects glycolytic flux.

PTEN, a tumor suppressor gene, synergistic altered of a metabolic

pathway with BRAFmutations (25). The protein encoded by PTEN

affects the PI3K/AKT/mTOR signaling pathway activation and

downstream metabolism-related pathway (26, 27). CDKN2A

regulates mitochondrial function to induce melanoma (28).

Additionally, Microphthalmia-associated transcription

factor (MITF) is also expressed in 10%–20% of human

melanomas, which induce pigmentation thereby product

melanin (29). MITF is upregulated by the PI3K pathway and

downregulated by the MAPK pathway (30, 31). Current

evidence suggests that MITF is closely related to mitochondrial

energy metabolism in melanoma (32–34).
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FIGURE 1 (Continued)

Regulatory pathways of energy metabolism in melanoma: MAPK/RAS pathway and PI3K pathway activate downstream MYC and HIF-1a. In
melanoma, the urokinase-type fibrinogen activator receptor (uPAR) is a major factor in the fibrinolytic system and induces a decrease in the
MAPK/p38 activity ratio, leading to tumor proliferation and consequently to tumorigenesis and even metastasis (5). uPAR coupled to the
integral protein-linked tyrosine kinase receptor IL-TKRs induces the PI3K/pAKT/mTOR/HIF-1a pathway (6), promoting the Warburg effect of
melanoma and increasing glycolysis (7). KMT2D is a histone H3 lysine 4 (H3K4) methyltransferase, and H3K4 methylation reprogramming has an
important role in BRAFV600E melanogenesis. KMT2D-deficient tumors have been reported to show substantial reprogramming of metabolism,
such as the IGF1R-PI3K-AKT pathway, which activates the downstream HIF- 1a and Myc, leading to the upregulation of glycolysis (8). uPAR and
the KMT2D pathway can activate the PI3K pathway. The MITF pathway is blocked by MAPK and can also be activated by mTOR and the SOX-10
transcription factor, suppressing HIF-1a expression. Importantly, the SOX-2 transcription factor can directly suppress HIF-1a. glucose
transporter 1 (GLUT-1); hexokinase 2 (HK-2); glucose 6-phosphate (G-6-P); glucose hexose isomerase (GPI); fructose 6-phosphate (F-6-P);
phosphofructokinase 1 (PFK-1); 1,6 fructose diphosphate (F-1,6-BP); aldolase (ALDOA); 3-phosphoglyceraldehyde (3-GAP); Dihydroxyacetone
phosphate (DHAP); Triose-phosphateisomerase (TPI); 3-phosphoglycerol dehydrogenase (GADPH); Coenzyme I (NAD+);1,3-
diphosphoglycerate phosphoglycerate kinase (PGK); 3-Phosphoglyceric acid (3-PGA); adenosine diphosphate (ADP); phosphoglycerol
isomerase 1 (PGAM-1); 2-phosphoglyceric acid (2-PGA); enolase (ENOL); Phosphoenolpyruvate (PEP); pyruvate kinase (PKM); lactate
dehydrogenase (LDH); monocarboxylate transporter protein 4 (MCT-4); tricarboxylic acid cycle (TCA); pyruvate dehydrogenase (PDH).
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2.1.1 Up-regulation of Glycolytic
The MAPK (RAF-MEK-ERK) signaling pathway is

frequently activated in melanoma (35), and it can

phosphorylate the downstream p90 ribosomal S6 kinase (RSK)

(36), which activates fructose-2,6-bisphosphatase 2 (PFKFB2),

an isoform of phosphofructokinase, increasing fructose-2,6-

bisphosphate synthesis (a glycolytic intermediate) (37).

Additionally, RSK phosphorylates fructose-2,6-bisphosphatase

1-4 (PFKFB1-4), an isoform of phosphofructokinase, to

upregulate phosphofructokinase 1 (PFK-1), a significant rate-

limiting enzyme of glycolysis, which ultimately increases

glycolytic flux (38, 39).The hypoxia-inducible factor (HIF1a)
is a regulator of glycolysis, and its production is promoted by the

activation of PI3K-PTEN/AKT and MAPK signaling pathways

(40–42). The MAPK signaling pathway can inhibit the MITF-

PGC1a axis, and the PI3K-PTEN/AKT signaling pathway

indirectly stimulates the mammalian target of rapamycin

(mTOR) protein. Both can increase downstream HIF-1a
activity (43). Moreover, increased HIF-1a activity promotes

the expression of enzymes involved in glycolysis, such as PFK,

aldolase (ALD), 1,3-diphosphoglycerate phosphoglycerate

kinase 1 (PGK1), enolase (ENOL) (44), as well as glucose

transporter 1 (GLUT-1,GLUT-1 is one of the GLUT family of

membrane transport proteins dedicated to intracellular glucose

uptake) (45), ultimately increasing glucose uptake and

glycolysis flux.

Additionally, HIF-1a can limit OXPHOS in mitochondria

by regulating the expression of PDK, an enzyme that

phosphorylates and inactivates pyruvate dehydrogenase

(PDH). It has been established that PDH converts pyruvate to

acetyl coenzyme A (14) and promotes mitochondrial oxidation.

In other words, the presence of HIF-1a in advanced melanoma

suggests that melanoma is less dependent on oxidative

phosphorylation and more on glycolysis for ATP production

during hypoxia (46, 47).
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Another crucial element influencing melanoma glycolysis is

c-Myc (40), which is a member of the MYC proto-oncogene

family (c-Myc, L-Myc, and N-Myc are collectively known as

MYC) that encodes the helix-loop-helix leucine zipper

(bHLHZip) transcription factor (48, 49). It has been shown

that the c-Myc protein is regulated by the PI3K and MAPK

pathways; c-myc induces the expression of almost all glycolytic

enzyme genes, including HK, GPI, PFK-1, 3-phosphoglycerol

dehydrogenase (GADPH) , 1 ,3-d iphosphog lycera te

phosphoglycerate kinase (PGK) and ENOL (50).

High levels of c-Myc inhibit MondoA, a key downstream

negative regulator of glucose uptake, and then indirectly increase

glucose uptake and enhance glycolytic flux by inducing thioredoxin-

interacting protein (TXNIP) and inhibiting GLUT1 expression (40).

Interestingly, c-Myc exerts different functionsdepending on

the state of the tumor microenvironment (TME) (51). Unlike

HIF1a, c-Myc mainly regulates oxygen-enriched tumor cells by

upregulating aerobic glycolysis and mitochondrial activity since

c-Myc directly promotes glycolysis and reduces pyruvate kinase

2(PKM2) activity (52), thereby limiting PKM2-mediated

phosphoenolpyruvate-pyruvate conversion (i.e., the last

irreversible step of glycolysis). These changes result in the

accumulation of upstream glycolytic intermediates, while the

increased carbon during glycolysis is used for mitochondrial

biosynthesis processes, such as manufacturing fatty acids, amino

acids and other substances required for proliferation (53–55).

Meanwhile, both c-Myc and HIF-1a promote the expression

of lactate dehydrogenase A (LDHA), which encodes the

production of the five isoforms of LDH when combined with

lactate dehydrogenase B (LDHB). Lactate dehydrogenase (LDH)

is a crucial enzyme in the utilization of lactate, and LDHA

encodes lactate dehydrogenase 3-5(LDH3-5), which completes

the Pasteur effect by catalyzing the conversion of pyruvate to

lactate (56). During the conversion of pyruvate to lactate, LDH

can reduce NADH to NAD+. The reduction product NAD+ is
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then used as an electron acceptor by the glycolytic enzyme

GAPDH, which leads to the conversion of NAD+ to NADH,

thus forming an intracellular NAD+ cycle (57, 58). Sustained

high levels of glycolysis consume a large amount of NAD+, and

the promotion of LDHA expression induced by c-Myc and HIF-

1a directly increases the LDH content, which can supplement

the NAD+ and ensure sustained glycolysis (Figure 1).

2.1.2 Alteration of oxidative phosphorylation
High serum lactate levels in patients with melanoma are

associated with increased glycolytic flux (59). However, many

glycolysis inhibitors (e.g., 2-deoxyglucose) do not yield

satisfactory inhibitory effects on tumor growth since glycolysis

is not the only energy metabolic pathway in melanoma, and

energy metabolism can be flexibly regulated based on the

tumor microenvironment.

In addition to glycolysis (60), OXPHOS flux has been

reported to be higher in metastatic melanoma cells cultured in

vitro compared to melanocytes. Besides, OXPHOS is reportedly

elevated in clinical stage IV melanoma (61). OXPHOS, the last

reaction in cellular respiration, produces the most ATP by

transporting electrons via proton complexes embedded in the

inner mitochondrial membrane. Oxygen is necessary for

OXPHOS, acting as the terminal electron acceptor in the

electron transport chain. OXPHOS produces 90% of the ATP

cells need in the presence of oxygen. Therefore, an increase in

oxidative phosphorylation is associated with increased

mitochondrial energy production (62), mitochondrial

biosynthesis, and cell proliferation (63–65).

Deletion of CDKN2A is a common feature in melanoma

(66), which leads to down-regulation of downstream p14ARF

expression. p14ARF inactivates melanocyte mitochondria by

interacting with B-cell lymphoma-extra large (BCL-XL),

translocating to dysfunctional mitochondria and inducing loss

of membrane potential (67). Whereas down-regulation of

p14ARF results in sustained activity of dysfunctional

mitochondria with higher metabolic plasticity (23).Melanoma

exhibits increased mitochondrial respiration, mainly related to

MITF expression. As a specific transcription factor in melanoma

cells, MITF is a key regulator and promoter of mitochondrial

respiration (65, 68). MITF promotes mitochondrial respiratory

gene transcription driven by downstream activation of

peroxisome proliferators activated receptor gamma co-

activator 1-alpha (PGC1a) (69, 70). PGC1a, a well-known

peroxisome proliferator-activated receptor g coactivator 1

(PGC-1) family member, is one of the first genes upregulated

for increased mitochondrial biogenesis and OXPHOS (65, 66).

PGC-1a levels and mitochondrial quality heterogeneity is

associated with transitions between proliferative and metastatic

phenotypes of melanoma cells (71). It has been shown that PGC-

1a increases the expression of antioxidant genes (72) and
Frontiers in Oncology 05
tolerance to the deleterious effects of mitochondrial oxidative

respiration, enabling melanoma cells to survive under oxidative

stress (65, 72, 73). In this respect, during electron transfer in the

mitochondrial respiratory complex, a small fraction of oxygen

undergoes incomplete reduction and becomes reactive oxygen

species (ROS) (74). At low ROS concentrations, genomic

instability is induced, and cell proliferation is stimulated, while

at high ROS concentrations, ROS result in oxidative stress

cytotoxicity (75). As mitochondria continuously produce ROS,

tumor cells exhibit the ability to detoxify ROS by expressing

PGC1a (72) to regulate mitochondrial ROS production (76) and

to increase intracellular ROS-consuming proteins, such as

SCARA3 (77).

What’s more, the inhibition of oxidative metabolism by

BRAF in melanoma is an independent process. For instance,

the reduction of cytochrome oxidase subunit expression via

HIF-1a (78, 79) does not affect the PI3K-mTOR pathway

promoting the transcription of MITF-PGC1a and OXPHOS-

related genes (Figure 1).

Thus, the response of PGC1a to MITF is the main

regulatory factor of mitochondrial respiration in melanoma.

The expression of MITF leads to the upregulation of PGC-1a
(80), which promotes mitochondrial oxidative respiration and

reduces its detrimental effects, which underlie melanoma’s

recurrence and metastasis (81).

2.1.3 The interaction of genetic and
metabolic heterogeneity

Tumor heterogeneity is the terminology used to indicate that

there are subclones of tumor cells with distinct molecular

variations in one patient. Like many other tumors, melanoma

is highly genetically heterogeneous (82), highlighting that

different melanoma cells have diverse and unstable genetic

backgrounds. It has been established that genetic heterogeneity

underlies metabolic heterogeneity (83). Genetic pathways can

regulate glycolysis as well as oxidative phosphorylation. In turn,

metabolic heterogeneity can affect genetic heterogeneity, and the

tumor microenvironment shaped by various metabolic patterns

can induce the corresponding gene expression.

The Sex-determining region Y-related high mobility group-

box (SOX) family is a typical example. The SOX gene family has

been reported to play an important role in melanoma

development and progression. SOX10 is essential for

melanocytes and highly expressed in melanoma (84); it

directly binds to the MITF promoter to upregulate MITF

expression and activates PGC-1a to promote mitochondrial

oxidative phosphorylation (85). Moreover, overexpression of

SOX4 in melanoma leads to phosphorylation of AKT and

activation of downstream HIF-1a and c-Myc to promote

glycolysis in tumor cells (86). Meanwhile, SOX4 promotes

OXPHOS by increasing the expression of MITF (87), which is
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not always antagonistic to glycolysis, allowing for a more flexible

metabolism of tumor cells (65).

It has been shown that melanoma cells with high glycolytic

flux accumulate lactate, resulting in an acidic environment that

enhances SOX2 expression. When SOX2 protein expression

exceeds HIF1a, SOX2 can directly bind to the HIF1a promoter

to reduce HIF1a activity, thereby inhibiting glycolysis and

promoting mitochondrial oxidative respiration via PGC-1a
(88). When SOX2 is silenced, the metabolic phenotype of the

cells switches back to a glycolytic-dominant mode. Thus, SOX2

expression prevents cell damage induced by excessive glycolytic

acidification of the tumor microenvironment (45, 89).

Overall, the interaction between the SOX family and

metabolic modalities reflects the metabolic flexibility of

melanoma (45, 90, 91). Glycolysis and mitochondrial

respiration, the two major energy production pathways in

tumor cells, are activated to varying extents based on genetic

backgrounds, reflecting the metabolic heterogeneity of melanoma

(73, 92–94).
2.2 Molecules reflecting
metabolic heterogeneity

2.2.1 MCT
Excessive lactate concentrations in melanoma lead to growth

arrest (95), and lactate efflux is an important mechanism for

maintaining cellular glycolysis levels and preventing oxidative

stress (96–98). Since lactate in tumor cells is transported by a

family of monocarboxylate transporters (MCT), HIF-mediated

upregulation of MCT is essential to prevent intracellular

acidification (99). Interestingly, monocarboxylate transporter 4

(MCT4) transfers lactate produced by glycolysis to TME, while

monocarboxylate transporter 1(MCT1) transports lactate from

TME to tumor cells.

Upregulated MCT4 expression has been associated with poor

prognosis (100). Elevated MCT4 promotes lactate export to

produce an immunosuppressive microenvironment (99, 101),

and the excretion of H+ ions help to unblock its inhibitory

effect on glycolytic enzymes (98, 102). Therefore, elevated

MCT4 expression indicates that cells adopt glycolysis-

based metabolism.

In metastatic melanoma, the expression of MCT1 is often

upregulated, and the lactate transported into melanoma cells

through MCT1 is converted into pyruvate for mitochondrial

oxidative respiration (53, 103). Therefore, lactate does not

accumulate or damage cells. Recent research reveals that

increased MCT1 expression indicates the vulnerability of

tumor cells to mitochondrial bioenergetics (98). However,

MCT1 expression in melanoma metastases is reportedly

correlated with the primary tumor size (100).
Frontiers in Oncology 06
2.2.2 LDH
The expression of LDHA and LDHB is determined by the

oxygen content of the tumor microenvironment, representing the

glycolysis and oxidative phosphorylation levels, respectively.

LDHA gene expression is increased under hypoxia; LDH3-5

catalyze pyruvate to lactate and promote glycolysis. LDHB

encodes lactate dehydrogenase 1-2 (LDH1-2), which catalyze the

conversion of lactate to pyruvate. The pyruvate supply providing

the substrate for mitochondrial respiration and promoting

oxidative phosphorylation (61). Therefore, LDHA and LDHB

expression reflects the energy metabolism mode in tumors.

2.2.3 PGC-1a
Melanoma cells expressing high or low levels of PGC-1

represent different phenotypic subgroups of energy metabolism

(76). High levels of PGC1a are associated with a poorer prognosis

in metastatic melanoma (65, 76) since melanoma with high PGC-

1a expression has a higher mitochondrial biosynthetic capacity

(71, 104). Therefore, high-PGC-1a-expressing melanoma

depends more on OXPHOS for ATP and can also survive under

oxidative stress conditions (65, 73, 94). A study found that low-

PGC-1a-expression melanoma exhibited downregulated

mitochondrial oxidative respiration (71) and was more

dependent on glycolytic metabolism, which reduced ATP

production but metabolized more glucose (105). Despite the

high sensitivity of low-PGC-1a-expression melanoma to ROS-

induced apoptosis, this cell subgroup exhibits a higher expression

of pro-metastatic genes, including integrins, transforming growth

factor b (TGFb) and Wnt (71, 76, 106).

In summary, melanoma cells with high levels of PGC-1a
produce ATP mainly through OXPHOS and have a stronger

ability to proliferate (71), while those with low levels of PGC-1a
are more dependent on glycolysis (76) and show greater

metastatic capacity. However, Grant et al. found that melanoma

brain metastases depended more on OXPHOS (11) (in contrast

with melanoma lung metastases and primary melanoma).

Although it may seem contradictory, it is widely thought that

the predominant metabolic mode of metastatic melanoma may

depend on the local tumor microenvironment (e.g., intracranial or

extracranial melanoma metastases).
2.3 Metabolic symbiosis: The result of
metabolic heterogeneity

Both glycolysis and OXPHOS are reportedly upregulated in

advanced melanoma. Tumor ce l l s in the hypoxic

microenvironment rely mainly on glycolysis, while the

remaining melanoma cells can take up the glycolytic product

lactate and convert it to pyruvate via LDH. This phenomenon

provides the substrate for mitochondrial oxidative respiration
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(61) and prevents lactate accumulation in hypoxic regions (91),

which is known as metabolic symbiosis (14, 101). Melanoma

cells in different regions have different metabolic patterns, and

melanoma cells with different metabolic patterns can feed each

other, providing sufficient metabolic substrates and a suitable

environmental pH (Figure 2) (107, 108).
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Various factors can contribute to the metabolic

heterogeneity of melanoma, including oncogenes, tumor stage,

intra-tumor vascular structure, and oxygen and glucose levels

(100, 109, 110). This spatial and temporal metabolic

heterogeneity promotes melanoma development, resulting in

poor patient prognosis.
FIGURE 2

Melanoma cells can adapt their metabolism to the tumor microenvironment conditions, such as pH and oxygen content. To meet the high
metabolic “demand” associated with melanoma dormancy, homeostasis and escape, the less oxygenated sites rely mainly on glycolysis, whereas
the more vascularized tumors are more contingent on OXPHOS for energy production (14, 61). Based on this metabolic feature, melanoma cells
can be divided into cells with enhanced glycolysis and inhibited OXPHOS under hypoxic conditions and other cells with adequate oxygen levels
more dependent on OXPHOS (14).
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3 Metabolic heterogeneity and
immune checkpoint blockade

An increasing body of evidence suggests that the activation

of the PI3K pathway and overexpression of MYC (111) and

HIF1a promote glycolysis and programmed cell death

protein-1 ligand (PD-L1) expression (112, 113). Therefore,

increased glycolytic flux indirectly implies increased PD-L1

expression, making melanoma relatively sensitive to

programmed cell death protein-1 (PD-1) or its ligand PD-L1

blockade (114). However, a sustained high glycolytic flux

causes an acidic and nutrient-limited immunosuppressive

microenvironment, which leads to poor immunotherapy

efficacy (115–117).
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Hypoxia in the tumor microenvironment can impair

immune cell functions, resulting from OXPHOS (113). In

addition, gene pathways inducing oxidative phosphorylation

do not overlap with those inducing PD-L1. Therefore,

melanoma with high oxidative phosphorylation flux exhibits

less PD-L1 expression and is less sensitive to immune

checkpoint blockade.

It is well established that the metabolism of melanoma can

result in an immunosuppressive tumor microenvironment.

Moreover, the metabolic heterogeneity of melanoma will

inevitably affect the metabolism of infiltrating immune cells at

the tumor site (Table 1). This leads to the heterogeneous

sensitivity the tumor to immune checkpoint inhibitors and is

the reason for the lack of response to immune checkpoint

therapy in some patients.
TABLE 1 Metabolism of immune cells in melanoma.

Immune cell Infiltration site in the
tumor

Oxygen-rich
areas Lactic acid enriched areas

NK

Mostly in the tumor cortex and at the lymph nodes (118)
glycolysis
(119, 120)

Oxidative metabolism
(118–120)

M2

Accumulation in tumor areas with low oxygen levels and high lactate
content (121, 122)

Oxidative metabolism (123) Oxidative metabolism (123)

DC

At the lymph nodes (124, 125)
Oxidative metabolism (126,

127)
Glycolysis (immature DC mostly)

(128)

Memory T cells

In perineural or lymph nodes (129) Oxidative metabolism (55) Oxidative metabolism (55)

Treg

intra-tumor (130)
Oxidative metabolism (55,

131)
Oxidative metabolism (55, 131)

(Continued)
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the metabolic heterogeneity of melanoma will inevitably

affect the metabolism of infiltrating immune cells at the tumor

site, which leads to heterogeneous sensitivity to immune

checkpoint inhibitors, accounting for the lack of response to

immune checkpoint therapy in some patients.
3.1 Glycolytic regions

Growing evidence suggests that melanoma cells in high

glycolysis regions require high glucose consumption, leading

to glucose deprivation in TME (119, 136, 137), which promotes

the AMPK pathway in T cells, thereby inhibiting mTORC1

activity (mTORC1 and mTORC2 are the two distinct complexes

of functional enzyme mTOR). As a result, T cell glycolysis is

restrained (138). However, T cells require glycolysis for

activation. Inhibition of glycolysis in T cells causes impaired T

cell energy production and macromolecular synthesis (137, 139),

leading to the failure to translate some mRNAs like interferon g
(IFN-g) mRNA. IFN-g is a pro-inflammatory cytokine produced

by T cells that enhances the immune surveillance capacity of

cytotoxic T lymphocytes (CTL) in TME (140). Therefore,

melanoma limits T-cells function by glucose depletion.

Moreover, acidity and lack of glucose in highly glycolytic

melanoma can upregulate PD-1 expression in T cells (141, 142).

In this respect, PD-1 can block the T-cell receptor (TCR)-

mediated signaling pathway or PI3K pathway (143, 144), thus

reducing glycolysis (45, 145) in T cells and inactivating them

(Figure 3) (150).

The decrease in CTL leads to an increase in the proportion of

Treg in tumor microenvironments (52, 151, 152). Intriguingly,

PD-1 does not restrain Treg metabolism (144, 153, 154) since

Treg expresses forkhead box P3 (Foxp3); Foxp3+ Tregs inhibit

glycolysis and promote OXPHOS (155, 156) (Figure 4), which

both reduces NAD+ consumption (inhibits glycolysis) and
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increases NAD+ production (promotes OXPHOS). Therefore,

Treg has more NAD+ for electron transfer, even when glycolysis

is restricted (157). Tregs can take up lactate through MCT1 and

convert it to pyruvate in the mitochondria for oxidative

phosphorylation in a low-glucose tumor microenvironment.

However, it should be borne in mind that PD-1 is not always

harmful to the immune system, given that PD-1 inhibits T cell

glycolysis, which facilitates the formation of resting amnesic T

cell populations (158). PD-1 stimulates T cells to reduce

mitochondrial cristae and increase respiratory chain complexes

(159). Accordingly, T cells have a substantial spare respiratory

capacity (i.e., additional mitochondrial capacity for energy

production in response to increased work or stress) (149, 160,

161). Glycolysis required in T cell activation can be replaced by

mitochondrial oxidation (162–164), which contributes to the

formation of memory T cells. Differentiation into memory T

cells could prolong T cell survival (7, 165, 166) and preserve the

potential for subsequent immunity. These changes may

contribute to the response of melanoma to immune

checkpoint blockade (ICB). However, PD-1 inhibits mTOR,

which inhibits downstream PGC-1a, leading to increased

mitochondrial oxidation and impairing the ability of T cells to

alleviate oxidative stress (144).

Both glucose-restricted TME and PD-1 impair the immune

effect of T cells. Although T cells may differentiate into memory

T cells through metabolic transformation, this tumor

environment can eventually inhibit cytotoxicity to tumor cells

and induce immune quiescence (154, 165, 167).

T cells in high-glycolytic-flux melanoma areas express

cytotoxic T lymphocyte-associated protein 4 (CTLA-4).

Current evidence suggests that CTLA-4 downregulates CD28

and blocks all TCR signaling (168), inhibits AKT via protein

phosphatase 2A (PP2A) (169), and downregulates T cell

glycolysis (121). Moreover, inhibition of glycolysis induced by

CTLA-4 does not promote mitochondrial oxidation, which
TABLE 1 Continued

Immune cell Infiltration site in the
tumor

Oxygen-rich
areas Lactic acid enriched areas

T effector cells

Accumulation in oxygen-enriched tumor areas (52, 126, 132–134) glycolysis (135)
Inhibited glycolysis

(135)

M1

In oxygen-rich environment
(122)

Glycolysis
(123)

Inhibited glycolysis/conversion to
M2
(123)
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avoids differentiation into memory T cells (143, 144). This

phenomenon leads to the desensitization of T cells to tumor

antigens and causes immune dysfunction (142).

In addition, lactic acid produced by glycolysis prevents the

maturation of dendritic cells (DC), increases immunosuppressive

cytokines such as IL-10 (121), and induces TAM polarization to an

M2 phenotype (122). M2 releases vascular endothelial growth factor

(VEGF) and indoleamine 2,3-dioxygenase (IDO), which promotes

Treg migration to the tumor and inhibits natural killer (NK) cell

function (122, 170, 171).
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3.2 Oxidative phosphorylation region

T cell infiltration is a prerequisite for response to

immunotherapy (172). Although CD8+ T cells in glycolytic

regions are significantly reduced (Figure 5) compared to oxidative

phosphorylation regions, the glycolysis-dominated melanoma does

not compete with tumor-infiltrating lymphocytes (TILs) for oxygen.

As a result, TILs are more fully metabolized and have higher cell

mass despite reduced numbers (113). In contrast, although

OXPHOS-dependent melanomas have more glucose, melanoma
FIGURE 3

Activation of T cells requires receiving TCR and CD28-mediated co-stimulation, subsequently activating the PI3K-Akt pathway (47). After the
PI3K-Akt pathway activates c-Myc, downstream Glut1 expression is stimulated to promote glycolysis (139) and T cell proliferation (146). It has
been shown that activated T cells drive the PI3K-Akt-Foxo1 regulatory circuit (147, 148). Foxo1 (Forkhead box P1) is a transcriptional repressor of
the T cell activation (147). Activation of AKT suppresses Foxo1 expression (149) and ultimately promotes T cell activation (47).
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cells with high oxidative phosphorylation flux consume more

oxygen, and the hypoxic microenvironment is more likely to

cause T cell dysfunction (113), accounting for the shorter overall

survival of patients with high oxidative phosphorylation flux than

those with high glycolytic flux after PD-1 monoclonal antibody

treatment. Therefore, targeting oxidative metabolism in melanoma

is key to improving immunotherapy effects (113, 173).

The above phenomenon may be caused by the following

reasons: (1) high oxidative phosphorylation flux induces hypoxia

TME, which increases the expression of PD-L1 in melanoma and

TAM (174). PD-L1 can recruit myeloid-derived suppressor cells

to the tumor hypoxic region (175), thus forming an

immunosuppressive microenvironmental barrier; (2) weak

tolerance of T cells to hypoxia, causing T cell impairment or

even failure; (3) decreased quantity and quality of T

cell infiltration.

However, direct inhibition of mitochondrial oxidative

phosphorylation leads to T-cell failure since TCR and CD28

co-stimulation promotes mitochondrial OXPHOS (176) and the

activated mitochondria biosynthesize (177) as well as regulate T

cell growth and proliferation (141, 163, 177, 178). Therefore, co-

stimulation is required to avoid T-cell failure.
4 Immune checkpoint therapy with
metabolic regulator

Since immune checkpoints are the primary cause of the

progressive dysfunction of immune cells in TME (179), Jim

Allison introduced the concept of ICB for cancer therapy in 1996

(180). In 2010, the CTLA-4 blocking antibody (Ipilimumab)
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became the first ICB treatment for metastatic melanoma (181).

PD-1 is another T-cell immune checkpoint, and PD-1 or PD-L1

blocking antibodies were found to enhance control of a variety of

tumors. Subsequently, PD-1 blocking antibodies (pembrolizumab

and nivolumab) were approved for metastatic melanoma in 2014

(182). Given the effect of melanoma metabolism on immune cells,

the combination of metabolic regulators and ICB therapy may be a

promising approach (Table 2).

It has been established that clinically used checkpoint

blocking antibodies against CTLA-4, PD-1 and PD-L1 can

partially restore T cell function (137). For example, anti-PD-

L1 antibodies downregulated Akt/mTOR pathway, significantly

inhibiting the glycolysis of melanoma (113) and correcting

glucose restriction induced by tumors. Anti-PD-1 antibodies

can directly promote the glycolysis and activation of T cells,

while the blockade of CTLA-4 not only restores the glycolytic of

T cells but also inhibits the function of Treg and increases the

glucose content in the microenvironment (187).

Although glycolysis is an ideal target for melanoma

treatment (188), immune checkpoint blockade exhibits

limited ability to transform the metabolic mode of tumors

(184). Drugs targeting metabolism can inhibit tumor activity

and improve the ability of T cells (94) to provide an anti-

tumor immune microenvironment and improve the response

of patients to checkpoint therapy (113, 184). For instance,

PKM2, a tumor-specific glycolytic enzyme (189), is often

overexpressed in melanoma tissues (190). Since PKM2 also

interacts with cytokines regulating mitochondrial fusion, it

can regulate glycolysis and oxidative phosphorylation to

promote the growth of tumors (191). Pharmacological

targeting of PKM2 by expressing PKM2 as a tetramer or
FIGURE 4

Conceptual model of how Foxp3+ Treg can escape the suppressive effects of low glucose, high L-lactate environments. Copyright © 2016
Elsevier Inc.
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silencing its mRNA leads to inhibition of the metabolism of

melanoma cells and reduced expression of PD-L1 (186). The

addition of immunotherapy agents is widely thought to yield a

synergistic effect.
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Despite the metabolic heterogeneity induced by individual

differences in melanoma patients (such as genetics, tumor

vascularization, tumor stage or other factors), the dominant

metabolic mode in the tumor tissue can be predicted by specific
FIGURE 5

Hypoxia is present in the control group (elevated glycolysis, elevated oxidative phosphorylation) and the shSlc2a1 group (reduced glycolysis,
elevated oxidative phosphorylation), while T cell accumulation in melanoma is low. The shNdufs4 group (glycolysis only) is less hypoxic, and the
T-cell status is significantly improved. Copyright © 2019, American Society for Clinical Investigation.
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biomarkers, such as LDH (53, 103), MCT (100), PGC-1a (65,

76), etc. Importantly, therapeutic efficacy can be significantly

improved by combining metabolic regulators with

immunotherapy based on such biomarkers.
4.1 Immune checkpoint therapy with
glycolysis inhibitors

It has been reported that the anti-CTLA-4monoclonal antibody

is not effective in melanoma with high glycolytic flux. However, in

melanomawith glycolytic deficiency, blockade of CTLA-4 promotes

infiltration and metabolic adaptation of immune cells, increases

peripheral Tregs and induces its production of IFN-g, ultimately

improving the immune effect. Therefore, inhibiting tumor glycolysis

in melanoma with high glycolytic flux is necessary to promote the

anti-CTLA-4 effect (192–194).

Interestingly, lactic acid in melanoma is an immunosuppressive

metabolite (195). It is widely thought that since Treg expresses more

PD-1 than CTL, an anti-PD-1 monoclonal antibody in the

environment with high lactic acid concentration will preferentially

increase the flux of Treg glycolysis and enhance the

immunosuppressive effect of Treg cells (16, 184). Therefore,

inhibiting lactate secretion in melanoma with high glycolytic flux

can improve the efficacy of immune checkpoint therapy.

Overwhelming evidence suggests that the monocarboxylic

acid transporters represent a promising therapeutic target (196,

197). MCT1/2 inhibitors targeting lactate transporters are

currently under investigation in clinical trials (NCT01791595).

In vitro studies substantiated that diclofenac enhanced the

killing of melanoma cells by T cells induced by anti-PD-1 and

anti-CTLA-4 monoclonal antibodies (184). Diclofenac is a

monocarboxylic acid salt that can directly inhibit MCT
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function and has recently been used as an effective inhibitor of

MCT1 and MCT4. It was found that diclofenac could inhibit

glycolysis in melanoma by reducing lactate transport. Although

it could inhibit glycolysis in T cells (7), the secretion of IFN-g in
T cells was not blocked, possibly because T cells changed their

energy metabolism mode to mitochondrial oxidation (184, 198).

LDH is an important marker in patients with advanced

melanoma. Among malignant melanoma patients receiving PD-

1 blockade therapy, patients with high LDHA expression show

more significant ICB resistance and shorter progression-free

survival (PFS) (117). Inhibition of LDH induced by oxalate

and dichloroacetic acid can inhibit the growth of melanoma

(96), and inhibition of LDHA improves the efficacy of anti-PD-1

treatment since the downregulation of tumor LDHA inhibits

lactate production and saves glucose, and then improves the

tumor microenvironment, resulting in increased T cell

infiltration. The downregulation of LDHA limits the function

of Tregs and contributes to a sustainable anti-tumor response

during anti-CTLA-4 treatment (183). Therefore, LDH inhibition

can improve the func t i on o f T ce l l s unde r the

immunosuppressive tumor microenvironment, making LDH

an ideal target for the treatment of melanoma (52).

Inhibition of glycolysis may inhibit the activity of T cells.

Since T cells cannot absorb and utilize lactate, inhibiting

glycolysis enables targeting melanoma cells based on the

metabolic difference between tumor and T cells.
4.2 Immune checkpoint therapy with
OXPHOS regulator

In melanoma cells with oxidative phosphorylation as the

dominant metabolic mode, the highly immunosuppressive
TABLE 2 Combinations of energy metabolism modulators with immunotherapy.

energy metabolism modulator immunotherapy Phase NCT

Metformin Nivoluvab/Pembrolizumab Phase II NCT04114136

Metformin Pembrolizumab(KEYTRUDA ®) Phase I/II NCT03311308

GSK2636771(Selective PI3K-Beta Inhibitor) Pembrolizumab Phase I/II NCT03131908

GSK2636771(Selective PI3K-Beta Inhibitor) Trastuzumab/Pertuzumab/Nivolumab Phase I/II NCT02465060

LDH inhibitor anti PD-1 Basic research (183)

IACS-010759 (OXPHOS Inhibitor) Anti CTLA4 and/or anti PD1 To be proven (11, 184)

diclofenac anti PD-1 Basic research (184)

Phenformin anti PD-1 Basic research (185)

Shikonin(PKM2 Inhibitor) Anti PD-L1 To be proven (186)

DNP (ETC uncoupling agent) Anti PD-L1 Basic research (162)
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microenvironment and the ability of mitochondria to utilize

lactate caused by hypoxia account for the poor efficacy of

immunotherapy in this type of melanoma patients

The OXPHOS inhibitor metformin can reportedly alleviate

the hypoxic microenvironment, which is highly harmful to the

function of effector CD8+ T cells (199), and then reactivate the

exhausted CD8+ T cells in melanoma (200). Moreover,

pharmacological inhibition against OXPHOS cannot impair

the function of effector T cells (57). Metformin alone can

make the tumor regress, and metformin combined with PD-1

monoclonal antibody exhibit synergistic effects during the

treatment of melanoma (185, 199, 201).

It has been established that the expression of PD-1 leads to

an increase in the oxidative respiratory flux of T cells, while the

ROS produced by cell respiration promotes T cell apoptosis (7,

57). Current evidence suggests that anti-PD-1/PD-L1 therapy

decreases the mitochondrial respiratory flux of some T cells and

inhibits the mitochondrial function of T cells, although it

reduces the generation of ROS (202). Intriguingly, electron

transport chain (ETC) uncoupling agents can increase the

production of mitochondrial ROS and enhance mitochondrial

activity through the feedback mechanisms of mild

mitochondrial damage (203). The joint use of ETC uncoupling

agents and PD-1 antibodies can activate mTOR and AMPK

pathways. Although these two pathways are antagonistic, they

yield a synergistic anti-tumor effect (162). Moreover, mTOR

activity can determine whether T cells transform into cells with

effector or memory phenotypes after TCR stimulation and cell

division (204, 205). Furthermore, low mTORC1 expression cells

showed higher mitochondrial content, higher SRC (standby

respiratory capacity) and more anti-apoptotic molecules, while

the high mTORC1 expression showed increased glycolysis and

expression of effector molecules. The AMPK pathway can act as

a regulator of mTOR signaling, inhibiting glycolysis and

promoting oxidative metabolism. Direct blockade of glycolysis

allows T cells to preferentially migrate to lymphoid tissues and

infiltrate tumors (119, 154, 157, 206). Compared with PD-1

blockade alone, the joint use of PD-1 blockade and mTOR or

AMPK activation can synergistically contribute to longer patient

survival (7, 162, 207). This method harnesses the effect of PD-1

monoclonal antibodies to simultaneously enhance the function

of effector and memory T cells in the tumor and increase anti-

tumor activity. In T cells with activated mTOR and AMPK,

PGC-1a is also activated as a downstream factor, indicating that

the activation of PGC-1a may also play an anti-tumor

role (162).

Interestingly, Zhang et al. altered the metabolic mode of

CD8+ T cells from glycolysis to mitochondrial oxidation

through activating peroxisome proliferator-activated receptors

a (PPAR- a) and promoting fatty acid oxidation metabolism in
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low glucose and the hypoxic tumor microenvironment in mice

melanoma model (162). It not only delays the depletion of T cells

but also maintains its anti-tumor function and promotes the

formation of memory CD8+ T cells (208). In addition, OXPHOS

induction of TIL can improve the efficacy of PD-1 blockade

therapy in mice mode (162, 209). Etomoxir can block ROS

produced by the fatty acid oxidation pathway while retaining

ROS from other internal sources, thus maintaining ROS

physiological levels to activate T cells and reducing

apoptosis (210).

In conclusion, increasing glycolytic or OXPHOS brings

different advantages for T cells. Increasing glycolysis to

promote immune effects is a better choice when glucose or

glutamine is abundant in the tumor microenvironment. In the

absence of glucose, it is more suitable to increase OXPHOS to

maintain the number of immune cells.
5 Discussion

Energy metabolism in melanoma is influenced by melanoma

gene mutations, oxygen, lactate, and degree of vascularization.

The TME in advanced melanoma contains both hypoxic and

normoxia regions, which simultaneously elevated both glycolysis

and OXPHOS. This heterogenous metabolic pattern not only

suppresses immune function but also leading to poor

immunotherapy efficacy. Importantly, the main metabolic

pattern of melanoma can be predicted by relevant proteins.

Clinical data are available on metabolism-related protein levels

as biomarkers to determine the metabolic status of tumors, such

as LDH, MCT1/4, PGC-1a, etc. Therefore, harnessing metabolic

modulators to improve the tumor microenvironment based on

the predicted results of metabolic modality will improve the

efficacy of immunotherapy.

However, the pathways affecting heterogeneous metabolism

in melanoma have been largely understudied, and metabolic

heterogeneity in the tumor microenvironment cannot be

accurately quantified. Moreover, much uncertainty surrounds

screening biomarkers associated with tumor metabolic

heterogeneity, such as the location of metastases and

individual patient differences. More studies with large sample

sizes are warranted in the future to validate metabolism-related

biomarkers and explore the mechanisms of biomarker effects on

melanoma cells.
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