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Advances in the understanding
and treatment of Cutaneous
T-cell Lymphoma

Farrah S. Bakr and Sean J. Whittaker*

St. John’s Institute of Dermatology, School of Basic and Biomedical Sciences, Kings College
London, London, United Kingdom
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of non-

Hodgkin’s lymphomas (NHL) characterised by the clonal proliferation of

malignant, skin homing T-cells. Recent advances have been made in

understanding the molecular pathogenesis of CTCL. Multiple deep

sequencing studies have revealed a complex genomic landscape with large

numbers of novel single nucleotide variants (SNVs) and copy number variations

(CNVs). Commonly perturbed genes include those involved in T-cell receptor

signalling, T-cell proliferation, differentiation and survival, epigenetic regulators

as well as genes involved in genome maintenance and DNA repair. In addition,

studies in CTCL have identified a dominant UV mutational signature in contrast

to systemic T-cell lymphomas and this likely contributes to the high tumour

mutational burden. As current treatment options for advanced stages of CTCL

are associated with short-lived responses, targeting these deregulated

pathways could provide novel therapeutic approaches for patients. In this

review article we summarise the key pathways disrupted in CTCL and discuss

the potential therapeutic implications of these findings.

KEYWORDS

cutaneous T cell lymphoma (CTCL), dermatology, pathway targeted interventions,
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Introduction

Cutaneous T-cell lymphomas are a heterogeneous group of Non-Hodgkin’s

lymphomas of which Mycosis Fungoides (MF) is responsible for almost 50% of all

primary cutaneous lymphomas (1). They display wide variation in relation to their

clinical, histopathological, immunophenotypic and underlying biologic features (1, 2).

CTCLs are amongst a wider group of mature T-cell malignancies of which the more

common subtypes are Peripheral T-cell lymphoma, Not Otherwise Specified (PTCL nos)

and systemic anaplastic large cell lymphoma (ALCL). A rare HTLV-1 driven subtype of

T-cell lymphoma known as Adult T-Cell Leukaemia/Lymphoma (ATLL) shares several

phenotypic and genetic features with Sé zary syndrome (SS) (3). Though MF/SS are the
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focus of this review, we will compare and contrast genomic

abnormalities of MF/SS with other CTCL variants and systemic

T-cell lymphomas and highlight potential novel therapeutic strategies.
Genomic landscape of Mycosis
fungoides and Sézary syndrome

In recent years, multiple high-throughput next-generation

sequencing (NGS) studies have identified a complex genomic

landscape in MF/SS, including high rates of somatic non-

synonymous variants (SNVs) and copy number variants

(CNVs) (4–13). The majority of studies have utilised whole

exome sequencing (WES) of peripheral blood samples enriched

for CD4+ leukemic T-cells from SS patients (4–9, 12, 13). Fewer

samples from advanced stage MF have been analysed (n=56) by

WES or whole genome sequencing (WGS) platforms (4, 5, 7, 10–

12). An independent analysis of genomic data published prior to

2017 encompassing 220 CTCL cases (186 SS; 25 MF; 9 CTCL

NOS) has highlighted at least 55 putative driver genes affecting

multiple signalling pathways (13). Interestingly, there is

significant overlap between MF and SS in the pathways

affected. Commonly perturbed genes include those involved in

TCR signalling pathways (PLCG1; CARD11; CD28; RLTPR) and

those that selectively up-regulate the NFkB pathway (13). Other

disrupted pathways include the DNA damage response (TP53;

POT1; ATM; BRAC1-2), chromatin modification (ARID1A;

TRRAP; DNMT3A; TET2) and JAK STAT signalling (STAT5B;

JAK3). Critically the aforementioned gene variants have been

functionally validated confirming their driver gene status (4–8,

12–14). A summary of the pathways and their associated gene

mutations is provided in Table 1.

There is limited data available on chromosomal

rearrangements in view of the small WGS datasets from

advanced MF samples. However, complex patterns of

chromosomal rearrangements and translocations with no

recurrent balanced translocations have been frequently

identified with specific gains (17q, 8q) and losses (10q, 17p) (24).
T-cell signalling and differentiation

Mutations in PLCG1 and CARD11 are two of the most

frequently observed in MF/SS. They appear to be mutually

exclusive and occur in almost 30% of SS cases (13). These gain

of function mutations increase downstream T-cell signalling

specifically through enhanced NFkB, NFAT and AP1

transcriptional activity (12, 14). These transcription factors

regulate the expression of genes involved in cell proliferation,

survival and differentiation. Crucially, there is evidence that

many of these variants induce constitutive activation of

downstream T-cell signalling without T-cell stimulation (12,

14). Furthermore, CTLA4-CD28 and ICOS-CD28 gene fusions
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enhance CD28 dependent T-cell signalling, and RLTPR variants

activate the NFkB pathway thereby increasing downstream TCR

signalling (7, 13). The high prevalence of these of NFkB pathway

gene variants in CTCL supported by functional data indicates

that there is a critical selection pressure for activation of the

NFkB pathway in the transformation of mature T-cells.

PLCG1 mutations have also been detected in other mature

T-cell malignancies, notably HTLV-1 associated ATLL (25),

PTCL(NOS) (26), hepato-splenic T-cell lymphomas (27) and

AITL (28) with the PLCG1 p.S345F and R48W variants being

two of the most frequently reported. In addition, mutations of

the JAK-STAT, CD28, VAV1, DNMT3A and TET2 genes are also

reported in other mature T-cell malignancies (4–9, 25–28).

Enhanced T-cell activation via the T-cell receptor and NFkB

pathway, leads to downstream activation of multiple pathways

including the Janus tyrosine kinase (JAK) Signal transducers and

activators of transcription (STAT) pathway. These proteins have

a multitude of functions including TĤ cell proliferation and

differentiation, as well as gene regulation and epigenetic

modification. Unlike the STAT proteins, gain of function

mutations in the JAK proteins are infrequently observed.

However, copy number gains of both STAT3 and STAT5B are

common and associated with constitutive expression of these

key transcription factors (29, 30).
Epigenetic modification

Epigenetic changes include DNA and histone modifications

which affect gene transcription and regulate cell differentiation.

Furthermore, epigenetic modification is critical for sustaining

the transcriptional memory for T-cells allowing rapid

transcription of inducible genes upon activation (31, 32).

Global hypomethylation is a consistent feature of malignancy

and contributes to genomic instability but DNA methylation of

gene promoters can lead to gene silencing. Crucially these

changes are observed in MF/SS with evidence for

hypomethylation of 7.8% of CpG sites in SS, and

hypermethylation of 3.2% of CpG sites, specifically in the

proximal region of promoters (33). There is extensive evidence

that promoter hypermethylation leads to the silencing of specific

tumour suppressor genes in MF/SS including those involved in

cell cycle regulation (CDKN2A/2B) (34), DNA repair (MLH1

and MGMT) (35), apoptosis (FAS) (36) and JAK-STAT

signalling (SHP-1) (37). Methylation of cytosine residues to 5-

methylcytosine is mediated by DNA methyltransferases

(DNMTs) and gain of function mutations of DNMT3A have

been frequently identified in haematologic malignancies

including MF/SS (4, 5, 8, 9). A second type of DNA

methylation involves 5-hydroxymethylation of cytosine which

is mediated by ten-eleven translocation 1-3 enzymes (TET1-3)

but, in contrast to 5-methylcytosine, this is associated with

enhanced gene expression (38). Loss of function TET2
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TABLE 1 Major aberrant pathways and associated emerging systemic therapies for advanced MF/SS.

Pathway Gene Systemic agent
class

Agent
name

Mechanism of action References

TCR
Signalling

PLCG1 PLCG1 inhibitor In development Inhibition of PLCG1 leading to decreased TCR signalling –

CD28

CARD11

PRKCB/Q PKCq inhibitor Sotrastaurin Inhibition of STAT3, leading to decreased cell proliferation and apoptosis in pre-
clinical studies.

Garcia-Diaz
(15)RLTPR

PTPRN2

JAK-STAT
pathway

JAK1-3 JAK inhibitor Ruxolitinib JAK1/2 inhibitor. Dysregulated JAK-STAT pathway in CTCL leads to T-cell
activation. Phase II trial showed 23% ORR.

Moskowitz
(16)STAT3-5

DNA
Damage
Repair

ATM ATR inhibitor VE-821/2
ETP-46464
AZD6738

Synthetic lethality in view of HR defects. Decreased cell viability in SS cells and
increased sensitivity to phototherapy in CTCL cell lines in pre-clinical studies.

Biskup (17)
Pinzaru (3)BRCA1/2

RAD50/
51C

Chk2

POT1

Chromatin
Modification

TET2 HDAC inhibitor Resminostat
Vorinostat
Romidepsin

HDACi modify acetylation sites in proteins leading to dysregulated gene
transcription, cell cycle arrest and apoptosis. Resminostat phase II trial ongoing
(RESMAIN NCT02953301). Vorinostat and Romidepsin are FDA and EMA
approved.

Olsen (18)
Whittaker
(19)

ARID1A/B

DNMT3A

SMARCB1

SETDB2

TRRAP

CREBBP

NCOR1

BCOR

CTCF

KMT2C-D

Cell cycle CDKN2A – – – –

TP53

NFkB
pathway

TNFRSF1B Proteasome inhibitor Bortezomib Inhibits the degradation of the nuclear factor kappa B (NFkB) inhibitor IkBa. Phase
II trial showed 67% ORR.

Zinzani
(20)NFKB2

PRKCB

TNFAIP3

IRF4

CSNK1A1

T-cell
migration

CCR4 CCR4 antibody Mogalizumab Increased CCR4 expression seen in CTCL. Phase III trial (MAVORIC) of CCR4
inhibitor leads to increased PFS and OR vs. Vorinostat in SS.

Kim (21)

MAPK
pathway

NF1 – – – –

RAS

BRAF

MAP2KI

MAPK1

PI3K
pathway

VAV1 Phosphatidylinositol
3-kinase (P13K)
inhibitor

Duvelisib PI3K-d and PI3K-g active in leucocytes and important for modulating immune
response and tumour microenvironment. Phase I trial showed 32% ORR.

Horwitz
(22)ARHGEF3

RHOA

PD-1
pathway

PRKCB Anti-PD1/PD-L1
inhibitors

Pembrolizumab
Nivolumab

Increased PD-1 expression in CTCL. Inhibition enhances cytotoxic T-cell killing.
Phase II trial showed 38% ORR.

Khodadoust
(23)PD-L1

PD-L2
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A summary of the main pathways harbouring putative driver gene mutations or copy number changes in MF/SS. Novel systemic therapies targeting these pathways currently under
investigation are also highlighted. FDA, US Food and Drug Administration; EMA, European Medicines Agency.
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mutations are well documented in SS (5, 7–9, 30). In SS, there is

also mutational selection pressure for genes involved in other

epigenetic modifications including IDH encoding isocitrate

dehydrogenases which inhibit TET proteins, ARID1A/1B

which affect chromatin modelling and MLL genes which

mediate histone methyltransferases (4, 8, 9, 30). Large

epigenomic studies in MF/SS have shown that the methylation

pattern of leukemic T-cells in SS can be similar to that of

regulatory T-cells and that there is almost universal activation

of NFkB (39). Recent data suggest that hypermethylation of the

hTERT promoter in MF/SS may be associated with telomerase

activation (40).

MicroRNA (miRs), one of a group of non-coding RNA

transcripts, are key post-transcriptional regulators of mRNA

and are known to affect both the stability and translation of

mRNA. In MF/SS, miR dysregulation has been observed with

aberrant expression linked to abnormal DNA methylation of

miR promoters as well as copy number changes (41).In addition,

constitutive activation of STAT3/5 has been shown to enhance

miR-155 and miR-21 expression leading to increased apoptosis

resistance and Th2 proliferation (41).
DNA damage response pathways and
telomere instability

The DNA damage response (DDR) consists of numerous

complex and inter-dependent signalling pathways which either

maintain cell viability by repair of DNA or direct the damaged

cell to undergo senescence or programmed cell death. Inevitably

this complex process is closely linked with pathways regulating

the cell cycle, chromatin remodelling and apoptosis (42).

Previous cytogenetic and array CGH studies in MF/SS

identified complex structural and numerical chromosomal

abnormalities (24). More recent WGS and WES studies have

confirmed a high degree of genomic instability with over 60 gene

aberrations reported across all 5 DDR pathways (5, 8–10). One

study of 101 SS samples identified SNVs and/or CNVs affecting

genes involved in DNA repair and telomere maintenance in over

50% of cases. Notably, SNVs and CNVs affecting genes involved

in homologous recombination such as RAD51C, BRAC2 and

POLD1, are also detected in MF/SS (9). TP53 is the most

commonly mutated gene in CTCL with loss of function SNVs

and deletions which lead to a significant detrimental effect on the

DNA damage response and telomere stability.

Telomere dysregulation is a recognised feature of MF/SS

where shortened telomeres have been observed (43, 44).

Furthermore, mutations in POT1, encoding a telomere binding

protein are also frequently detected in MF/SS and ATLL (4, 5, 8–

11, 25, 30, 45) and studies suggest that these loss of function

variants likely contribute to telomere dysfunction by abolishing

telomere binding and inducing DNA damage at telomeres in the

form of telomere induced foci (TIFs) (3, 46–51). Cell cycle
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dysregulation is a major contributor to tumorigenesis in MF/

SS. Mutation or deletions have been reported in several cell cycle

checkpoint and tumour suppressor genes including CDKN1,

CDKN2A, CDKN2B, ATM, ATR, TP53, RB1 and PTEN (4, 5,

8–10). Loss of function ATM mutations have been reported in

several T-cell lymphomas (25, 26, 52–60) including MF/SS (9–

11) and ATR mutations are also observed in MF/SS and NK T-

cell lymphoma (5, 8, 10, 11, 61). In view of the key role of these

kinases in the DDR and in cell cycle regulation, pathway

disruption either by gene mutation or as a result of telomere

dysfunction is likely to contribute to the genomic instability seen

in MF/SS.
CTCL evolution

As the vast majority of studies have been conducted in

samples from advanced stages of MF or leukaemic SS samples,

until recently there has been little insight into the driver events

in early-stage disease. In solid malignancies, the use of

mathematical modelling of WGS/WES data has deepened

understanding of the evolution of genomic events and the

impact of intra-tumour heterogeneity on therapeutic response

(62). The use of paired plaques and tumours from MF patients

has demonstrated that sub-clonal evolution is a feature of MF

and is linked to disease progression, however, as yet these

preliminary studies have failed to identify a common series of

genomic events in early stages of disease (11).
CTCL causation

A series of mutational signatures have been identified which

are linked to a combination of intrinsic and extrinsic mutagens,

and have been associated with specific malignancies (63, 64).

The presence of these mutational signatures in clonally

expanded cell populations is determined by assessing the six

substitution types and their 5’ and 3’ nucleotide context giving

96 different trinucleotide mutation types. A recent meta-analysis

of whole exome sequencing (WES) data from 403 patients across

several T-cell NHL subtypes, including 6 MF/SS studies has

revealed that the UV signature (signature 7) was exclusively

present in MF/SS. It accounted for the mutational burden in 52%

of MF and 23% of SS cases (65). In addition, these C>T/CC>TT

mutations at dipyrimidine sites had a significant bias towards the

untranscribed strand which is a feature of transcription-coupled

nucleotide excision repair associated with UV-induced

mutations (66). Crucially, the presence of this signature (7.5-

88% of the overall SNVs) in CD4+ cells isolated from the blood

of SS patients suggests that these malignant T-cells either

circulate freely from the skin to the blood compartment or

develop from skin resident memory T-cells. A significant

proportion of patients analysed (41%) were treatment naïve
frontiersin.org
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and the detection of a mutational signature is dependent on the

presence of a clonal population suggesting that the malignant T-

cell in MF/SS accumulates UV associated mutations before

transformation and clonal expansion.

Similar to other malignancies linked to exogenous mutagens

(e.g. non-melanoma and melanoma skin cancers and smoking-

associated lung cancers), MF/SS exhibit a very high mutational

load, and are unique amongst other types of T-cell lymphoma

which carry a much lower mutational burden. These data

confirm the significant contribution of environmental UV

exposure to the mutational burden in MF and SS and UV is a

likely causal factor in the transformation of T-cells that are either

circulating through or resident in skin.
Other CTCL variants

Primary cutaneous CD30+
lymphoproliferative disorders
(pcALCL/LYP)

Primary cutaneous CD30+ anaplastic large cell lymphoma

(pcALCL) has similar genomic alterations to its systemic

counterpart albeit at much lower frequency. Most fail to

express anaplastic lymphoma kinase (ALK), but have an

excellent prognosis (67). In a small proportion of patients

mutations of JAK1 and/or STAT3 and NPM1-TYK2 gene

fusions been reported in pcCD30+ALCL (68).

Chromosomal rearrangements involving the DUSP22-IRF4

(MUM1) locus on 6p25.3 have also been identified in both

pcCD30+ ALCL (25%) and less commonly (5%) in

lymphomatoid papulosis (LYP) (69), but MUM1 expression is

not specific for this rearrangement.

Subcutaneous panniculitis-like T-cell
lymphoma (SPTCL)

The majority of cases harbour one of two homozygous loss of

function germline HAVCR2 variants (pTyr82Cys and p.Ile97Met)

observed in Polynesian/East Asian and European origin respectively

(70).HAVCR2 encodes T-cell immunoglobulin mucin 3 (TIM-3) is

expressed by CD8+ T-cells and NK cells and regulates peripheral

tolerance, innate immunity and inflammatory responses. Somatic

variants have also been detected in genes involved in epigenetic

modification (TET2, ARID1B), the PI3K/AKT/mTOR and JAK-

STAT pathways (71).

Primary cutaneous gd T-cell lymphomas
Similar to MF/SS, mutations in the JAK/STAT, MAPK, MYC

and chromatin modification pathways have been detected, but

interestingly, TCR-CD28 signalling pathway mutations have also

been reported (72). In addition, panniculitic Vd2 T-cell

lymphomas do not show germline mutations of HAVCR2 as

seen in a majority of ab SPTCL patients (72).
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Prognostic biomarkers

The prognosis for patients with MF/SS is variable even

amongst patients with the same stage of disease. This has been

partly addressed by the proposal of clinical prognostic models

such as the CLIPi (73, 74) which is currently the subject of a

multi-centre prospective study. In view of the genomic

heterogeneity observed in MF/SS, it is likely that a more

accurate prognostic model will require analysis of genetic

clusters which may include a combination of gene mutations

including SNVs and CNVs. There is some evidence that specific

genomic clusters can be defined in SS (75), however, there has

been no clinical correlation with patient outcomes to date.

Furthermore, the paucity of genomic data in MF highlights the

need for further NGS studies, particularly in early stage disease.
Therapeutic implications

In view of the genomic heterogeneity in MF/SS reflecting the

underlying high rate of UV signature mutations, a single targeted

treatment option is unlikely to be effective. However, a deeper

understanding of the genomic landscape could provide insight into

potential therapeutic approaches especially in early stage disease

(76). Stratification of individual patients according to mutational

profile/deregulated pathway could allow the use of existing

treatments such as Ipilimumab (CD28-CTLA4 fusion),

Ruxolitinib and Tofacitinib (JAK mutations or JAK2 fusions as

detected in rare aggressive cytotoxic CTCL variants) (77, 78) and

Bortezomib (NFkB pathway) (79). Patients with abnormalities of

epigenetic regulation such asDNMT3A and TET2 could be selected

for treatment with demethylating agents such as 5-Azactidine and/

or HDACi, whilst those with RHOAmutations could be eligible for

PI3K inhibitors (Duvelisib). However, an alternative is to consider a

tumour agnostic approach and the genomic landscape of MF/SS

including marked genomic instability suggest that targeting the

DDR pathway might be a productive strategy. A summary of

emerging treatments targeting the various dysregulated pathways

in MF/SS is provided in Table 1.
Restoration of Th1/Th2 immune profile

In view of the immune dysregulation profile seen in

advanced MF/SS with a diminished Th1 immune response

(IFN-gamma, IL-12) and skewing towards a Th2 immune

profile (increased IL-4, IL-5 and/or IL-13) (80), interferons

(IFN-alpha and IFN-gamma) were amongst the first

immunotherapies to be used. IFN-alpha has been shown to

stimulate antitumour cytotoxicity by activating CD8+ T-cells

and NK cells and restores the Th1/Th2 balance by reducing IL-4

and IL-5 production by malignant T-cells (81, 82). IFN-gamma

acts similarly to IFN-alpha by activating CD8+ and NK cells and
frontiersin.org
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increasing Th1 cytokine profile (80). IFN-alpha is EMA

approved and effective in early stage patients who are

refractory to skin-directed therapies (83), in which case it can

be combined with phototherapy (84). Several clinical trials have

highlighted the potential use of recombinant IL-12 as a novel

immunotherapy with encouraging results (85–87).
Targeted therapies

There are currently several trials underway targeting

checkpoint molecules (88, 89). Mogamulizumab, an anti-CCR4

monoclonal antibody has recently been approved by FDA and

EMA following a phase III clinical trial which showed increased

progression free survival (PFS) compared with the HDAC

inhibitor, Vorinostat (21). Recently, it has emerged that

Mogamulizumab also contributes to efficient immune

restoration involving CD8+ as well as stem and memory CD4+

cells (90).

Pembrolizumab and Nivolumab inhibit the PD-1 receptor

which enhances cytotoxic T-cell killing and have shown clinical

responses in phase I and II trials (23, 91, 92). Whilst the high

muta t iona l burden of MF/SS would sugges t tha t

immunotherapies should be successful, the modest responses

from these phase II trials (93) highlight the challenges of using a

PD-1 inhibitor on a T-cell lymphoma which can express PD-1.

Specifically there are two scenarios: PD-1 expression might

reflect underlying gain of function mutations which would

benefit from inhibition and there is emerging data suggesting

that PD-1 mutations can be detected in some MF/SS patients

(94), or PD-1 inhibition might reverse the tumour cell

exhaustion leading to activation and proliferation of malignant

T-cells. Whilst this second scenario has not yet been seen in MF/

SS patients receiving PD-1 inhibitors, a phase II trial of
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Nivomumab in ATLL was discontinued because of rapid

disease progression (95).

Targeting of CD47 with intralesional or intravenous TTI-

621 has been used in patients with relapsed or refractory MF/SS

in recent phase I trials with encouraging results (96, 97). Recent

reports have shown that the CD39-CD73-adenosine pathway

generates an immunosuppressive tumour microenvironment in

SS and this provides a potential option to use emerging novel

therapeutic approaches to target this pathway possibly in

combination with checkpoint inhibitors or Mogamulizumab

(98, 99).
DNA damage repair pathway

Perhaps the most interesting option would be tumour

agnostic therapies targeting the DNA damage response (DDR)

pathways which show considerable promise in various solid

malignancies often as maintenance therapies after platinum-

based chemo regimens (42). The DDR pathways are a vast

network of over 450 proteins. These therapeutic approaches

build on the success of PARP inhibitors inducing synthetic

lethality in homologous recombination (HR) deficient

malignancies (due to BRCA1 or BRCA2 loss). In view of the

somatic mutations or deletions of HR genes (including ATM,

BRCA1, BRCA2, Chk2, RAD50, RAD51C), these could be

repositioned for use in MF/SS patients (Figure 1). Several ATR

inhibitors are in early clinical development for use in both solid

and haematological malignancies (100, 101). There is increasing

evidence that ATR inhibition may be a potential therapeutic

target in MF/SS. Small molecule inhibitors of ATR and Chk1

(VE-821/2 and Chir-124) have been shown to sensitise MF/SS

cell lines to phototherapy by inducing apoptosis (17). In

addition, cells overexpressing POT1 mutants (p.F62V and
FIGURE 1

ATM and ATR DDR pathways. The ATM and ATR pathways respond to different types of DNA damage with separate sensors (purple), mediators
(blue) and transducers (red). Synthetic lethality can be exploited for cells with aberrant DDR pathways. Cells harbouring LOF mutations in one
pathway have increased reliance on the other pathway for DNA damage repair. Inhibition of the intact pathway prevents p53-mediated DNA
repair, cell cycle arrest and apoptosis. This results in accumulation of unrepaired DNA damage, mitotic catastrophe triggering p53-independent
cell death. Pharmacological agents targeting components of the ATM/ATR pathways currently in clinical development are highlighted.
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p.K90E) treated with an ATR inhibitor (ETP-46464) resulted in

significant abrogation of TIFs (3). ATM inhibition has also been

shown to overcome HDAC inhibitor resistance in both B and T-

cell derived lymphomas including MF/SS, providing a rationale

for combination therapy (102). Acting immediately downstream

of ATR, targeting of Chk1 is effective in MYC-driven tumours

including B-cell lymphomas owing to MYC-induced replication

stress (103). Amplification of the MYC oncogene is one of the

most commonly observed aberrations in MF/SS (4) which could

increase replication stress in these cells and hence increase their

sensitivity to ATR and/or Chk1 inhibitors. Furthermore, Chk1

inhibitors synergise with a number of therapeutic agents to

induce cell death in MF/SS including the proteasome inhibitor,

Ixazomib (104) and phototherapy (17).
Conclusions

Despite the wide range of treatment options currently

available for MF/SS, therapeutic responses are invariably in the

region of 30% and usually short lived (105), highlighting the

need for a better understanding of the pathogenic mechanisms

which would enable the development of more targeted therapies.

A deeper understanding of dysregulated pathways and

immunology in recent years has facilitated the development of

several novel drugs currently in clinical trials. In addition to

modulating pathways such as the JAK-STAT and NFĸB

pathways and immune checkpoints, targeting genomic

instability and the DDR present an exciting novel treatment

approach for T-cell malignancies such as MF/SS.
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analysis of mycosis fungoides and sézary syndrome identifies recurrent alterations
in TNFR2. Nat Genet (2015) 47:1056–60. doi: 10.1038/ng.3370

8. Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, et al. Genomic
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15. Garcıá-Dıáz N., Casar B., Alonso-Alonso R., Quevedo L., Rodrıǵuez M.,
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53. Stoppa-Lyonnet D, Soulier J, Laugé A, Dastot H, Garand R, Sigaux F, et al.
Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood (1998) 91
(10):3920–6. doi: 10.1182/blood.v91.10.3920

54. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A, et al.
Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med
(1997) 3(10):1155–9. doi: 10.1038/nm1097-1155
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