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improves the detection
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Background: Early gastric cancer (EGC) has a high survival rate, but it is difficult

to diagnosis. Recently, artificial intelligence (AI) based on deep convolutional

neural network (DCNN) has made significant progress in the field of

gastroenterology. The purpose of this study was to establish a DCNN assist

system to improve the detection of EGC.

Methods: 3400 EGC and 8600 benign images were collected to train the

DCNN to detect EGC. Subsequently, its diagnostic ability was compared to that

of endoscopists using an independent internal test set (ITS, including 1289

images) and an external test set (ETS, including 542 images) come from three

digestive center.

Results: The diagnostic time of DCNN and endoscopists were 0.028s, 8.05 ±

0.21s, 7.69 ± 0.25s in ITS, and 0.028s, 7.98 ± 0.19s, 7.50 ± 0.23s in ETS,

respectively. In ITS, the diagnostic sensitivity and accuracy of DCNN are

88.08%(95% confidence interval,95%CI,85.24%-90.44%), 88.60% (95%

CI,86.74%-90.22%), respectively. In ETS, the diagnostic sensitivity and accuracy

are 92.08% (95%CI, 87.91%- 94.94%),92.07%(95%CI, 89.46%-94.08%),

respectively. DCNN outperformed all endoscopists in ETS, and had a

significantly higher sensitivity than the junior endoscopists(JE)(by18.54% (95%

CI, 15.64%-21.84%) in ITS, also higher than JE (by21.67%,95%CI, 16.90%-27.32%)

and senior endoscopists (SE) (by2.08%, 95%CI, 0.75%-4.92%)in ETS. The

accuracy of DCNN model was higher (by10.47%,95%CI, 8.91%-12.27%) than

that of JE in ITS, and also higher (by14.58%,95%CI, 11.84%-17.81%; by

1.94%,95%CI,1.25%-2.96%, respectively) than JE and SE in ETS.
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Conclusion: The DCNN can detected more EGC images in a shorter time than

the endoscopists. It will become an effective tool to assist in the detection of

EGC in the near future.
KEYWORDS

deep convolutional neural network, early gastric cancer, diagnosis rate, sensitivity,
accuracy, false positive, false negative
Introduction

According to the 2020 Global Cancer Statistics, Gastric

cancer is the third most lethal and the fifth most common

malignancy from a global perspective, and Asia remains the

region with a high incidence of cancer, with a cancer incidence

rate of 49.3% and a mortality rate of 58.3%, with 719524 new

cases of gastric cancer (1). The survival rate of patients with stage

IA was 91%, Whereas the patients with stage IV less than 17%

(2) Therefore, the early detection of gastric cancer is particularly

important. However, the diagnosis of early gastric cancer (EGC)

is difficult and often be ignored, especially in countries with large

populations, such as China: the detection rate of EGC in China is

only 10%, much lower than that in South Korea (50%) and Japan

(70%) (3, 4), the diagnosis rate of EGC has great room for

improvement. However, the large number of patients,

insufficient diagnostic knowledge and experience of physicians,

lack of advanced endoscopic equipment, and shortage of

endoscopists have seriously affected the improvement of the

diagnostic level of EGC in China. These problems are

particularly prominent in primary medical institutions (5).

Some studies have reported a false negative rate of 4.6-25.8%

in the detection of gastric cancer by esophagogastroduodenoscopy

(EGD) (6–14), 71.4% of gastric cancer patients were initially

diagnosed with gastritis, ulcers or “suspicious lesions”, with the

majority (73%) of errors made by endoscopists (9), technical

factors and subjective cognition have significant influence on the

screening of EGC (15). The detection of EGC requires not only

well-trained endoscopists but also comprehensive knowledge (16),

secondly, it is also necessary for endoscopists to avoid the

influence of subjective factors, which limit the detection of EGC

(17). Therefore, it is very important to develop a tool that has good

detection ability and will not be affected by subjective factors to

assist endoscopists in the detection of EGC. In recent years,

artificial intelligence (AI) based on deep convolutional neural

deep learning (DCNN) has come into being, and DCNN has

made remarkable progress in various fields, including medicine.

In the field of digestive endoscopy, it has been applied to the

detection of colonic polyps (18) and the diagnosis of auxiliary

capsule endoscopy (19). Based on the above reasons, we

constructed an auxiliary diagnosis system for EGC base on
02
DCNN, and tested the diagnostic efficiency of DCNN, aiming to

improve the diagnostic efficiency of EGC.
Methods

Training dataset preparation

The DCNN was trained using EGD images obtained from

the digestive center of Lanzhou University Second Hospital, total

12000 images were selected from the database from January,

2013 to December 2019, including 3400 images of EGC, 8600

images of benign lesions and normal images. All the lesions

included in the study were confirmed by biopsy or surgical

pathology and the lesion scope was clear, the patient and lesion

characteristics of EGC in training set was shown in

Supplementary Material 1. Postoperative pathological

diagnosis included high-grade intraepithelial neoplasia and

carcinoma confined to mucosa or submucosa. The equipment

for endoscopic images was standard GIF-GIF-260/H290Z,

Olympus Medical Systems, Co., Ltd., Tokyo, Japan) and a

standard endoscopic video system (EVIS LUCERA ELITE CV-

290/CLV-290SL; Olympus Medical Systems), and all images

were white light endoscopes without magnification. Images

containing poor inflation, halo, blur, defocus or mucus, and

post-biopsy bleeding were excluded from the training dataset.
DCNN training

According to the outcome of pathology, the EGD images

were labeled as EGC and other benign lesions, computer

engineers will be annotated images for unified clipping, color

space transformation, denoising, image morphology operations

and normalization of a series of processing, eliminate human

and environmental interference, better display image features,

enhance the robustness of the algorithm. Algorithm engineers

used the DCNN module to test multiple computer models such

as DLA34 and Swim Transformer Tiny, and put the training set

into the model for training. Through observation and

comparison, the 18-layer convolutional neural network model
frontiersin.org
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with the optimal accuracy and speed was determined. Input

resolution: 512 × 512, batch-size: 32, initial learning rate: 1.25e-

4, optimization: Adam
DCNN testing

We used standard EGC images independent of the training

set to verify the accuracy of DCNN (From January 2020 to

October 2020). Our test set was divided into internal test set (ITS)

and external test set (ETS). The images of the ETS were from
Frontiers in Oncology 03
Wuwei Cancer Hospital and Minxian People’s Hospital. The test

set excluded postoperative gastric images, magnification, staining

endoscopy, mucus and halo images. The patient and lesion

characteristics of EGC in ITS and ETS set was shown in

Table 1. The ITS contains 1289 images (604 EGC) and the ETS

contains 542 images (240 EGC). Non-cancer images include

ulcers, polyps and chronic gastritis. We identified each lesion

area by comparing endoscopic images with the extent of the

lesion in the excised specimen, and manually annotated all gastric

cancer lesions in the test data set by two experienced endoscopists

(L.W and P.W) using a true red rectangular border.
TABLE 1 Patient and lesion characteristics of EGC in Internal test set and External test set.

Patient characteristics Internal test set (n=134) External test set (n=48)

Age (years), Mean (range) 60 (27–79) 65 (35-84)

Sex, Number (%)

Male 92 (68.66) 38 (79.17)

Female 42 (31.34) 10 (20.83)

Size of lesion (mm), Median (range) 15 (4-48.5) 17.4 (6-40.2)

Tumor location, Number (%)

Cardias Fundus of the stomach, 18 (13.43) 3 (6.25)

Number (%)

Body 58 (43.28) 13 (27.08)

Angle 28 (20.90) 12 (25)

Antrum 30 (22.39) 20 (41.67)

Macroscopic type, Number (%)

0-1 8 (5.97) 1 (2.08)

O-IIa 33 (24.63) 9 (18.75)

O-IIb 7 (5.22) 2 (4.17)

O-IIc 9 (6.72) 0 (0)

0-IIa+O-IIc 47 (35.07) 22 (45.83)

0-Hc+O-IIa 18 (13.43) 10 (20.83)

0-IIb+O-Hc 12 (8.96) 3 (6.25)

O-III 0 (0) 1 (2%)

Differentiation status, Number (%)

Differentiated 124 (92.54) 41 (85.42)

Undifferentiated 2 (1.49) 1 (2.08)

Mixed 8 (5.97) 6 (12.5)

Depth of tumor, Number (%)

Tla 128 (95.52) 44 (91.67)

Tlb 6 (8.96) 4 (8.33)

Tla, mucosa; Tlb, submucosa.
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Comparison between the performance
of DCNN and endoscopists

Eight endoscopists were selected from two hospitals and

divided into the primary group and the expert group. Junior

endoscopists (JE) with 2 years of operation experience and less

than 1000 cases of EGD operation experience, respectively.

Senior endoscopists(SE) have more than 10 years of

endoscopic diagnosis and treatment experience, and each of

them independently completed at least 80 cases of EGC ESD

treatment; the images of the test set are arranged in a random

order. Endoscopists individually read the images from the test

set and recorded the time required to read the images. At the

same time, DCNN recognizes the test set images and records

the results.
Frontiers in Oncology 04
Outcome measures and data statistics

The DCNN showed a 0–100% continuous variable number,

which represented a probability score for gastric cancer in each

image. Definition of correct answer, for EGC: the correct

marking is the red rectangle (according to the results of the

ESD postoperative pathology), the yellow rectangle is the DCNN

marking and the blue rectangle is the endoscopists marking.

When the yellow and red marking overlap is more than 50%, or

blue and red marking overlap is greater than 50% is correct

(Figure 1A); Non-cancerous lesions: The yellow rectangle box is

not displayed and the word “cancer” is not displayed.95%

confidence intervals (95% CI) using the modified Wald

method: Agresti and Coull (The American Statistician. 52:119-

126, 1998) Two-tailed unpaired Student’s T-test (chi-square test)
FIGURE 1

Show the concept of correctly identifies and diagram of DCNN producing false positives. (A) Show 0-IIa lesion in the anterior wall of gastric antrum,
the red rectangle is the correct marking, the yellow box is the DCNN marking, and the blue rectangle is the endoscopist’s marking. Only when the
overlap reaches 50% or more, the diagnosis is correct. The yellow logo shows “Cancer 62%”, indicating that DCNN predicts that the probability of
EGC for this lesion is 62%. (B) Show an image of falsely diagnosing inflammation as EGC. (C) Show an image of DCNN diagnosed the normal
mucosa in the reflective area as EGC. (D) Show an image of DCNN diagnosed the bleeding mucosa in the reflective area as EGC.
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was used, with a significance level of 0.05. The accuracy,

sensitivity, specificity, positive and negative predictive values

(PPV and NPV, respectively) were compared. Interobserver

used Cohen’s Kappa coefficient (Kappa value) to assess intra-

observer consistency for endoscopists. SPSS 26 (IBM, Chicago,

IL, USA) was used to complete all calculations.
Ethics

The study was approved by the Ethics Committee of the

Lanzhou University Second Hospital (No.2022A-004).
Results

Characteristics of patients and lesions in
the test data set

The characteristics of patients and lesions in the test data set

are summarized in Table 1, 95.52%patients were mucosal cancer

(T1a), 4.48% patients were submucosal cancer(T1b) in ITS, and

91.67%patients were mucosal cancer (T1a), 8.33% patients were

submucosal cancer(T1b) in ETS. In terms of histopathological

types, 124 (92.54%) patients were differentiated gastric cancer,

10(7.46%) patients were undifferentiated gastric cancer in ITS.

Differentiated cancers accounted for 41 (85.42%), and

undifferentiated and mixed cancers accounted for 7 (14.58%).
Frontiers in Oncology 05
The cancer diameter ranged from 4mm to 48.5mm, with a

median size of 15mm in ITS, and 6-40.2mm in ETS. The most

commonMacroscopic type was 0-IIa+IIc, accounting for 35.07%

in ITS and 45.83% in ETS, respectively.
Performance of DCNN model and
endoscopists for ITS and ETS

DCNN performance
The performances of DCNN model and endoscopist are

summarized in Table 2. The sensitivity, specificity, accuracy,

PPV and NPV of DCNN model in ITS was 88.08%,95%

confidence interval (95% CI), (85.24%-90.44%); 89.05%(95%

CI, 86.48%-91.19%), 88.60%(95%CI,86.74%-90.22%), 87.64%

(95%CI,84.78%-90.04%),89.44%(95%CI,86.90%-91.54%),

respectively.And 92.08% (95% CI,87.91%- 94.94%),92.05%(95%

CI,88.40%-94.65%), 92.07%(95%CI,89.46%-94.08%), 90.2%

(95%CI, 85.79%-93.38%), 93.60(95%CI,90.17%-95.92%) in

ETS. The performance of DCNN model in ETS is obviously

higher than that in ITS. The average time for DCNN model

analysis of each image in ITS and ETS was 0.028s.

Endoscopists performance
The endoscopist’s diagnostic performances are summarized

in Table 2. The diagnostic time of each image was 8.05 ± 0.21s

and 7.69 ± 0.25s for the JE group and SE group in ITS, and there

was no significant difference in the diagnostic time between the
TABLE 2 The performances of DCNN and endoscopist in internal test set and external test set.

Competitors Sensitivity, % Specificity, % Accuracy, % PPV, % NPV, % DT(s)

(95%CI) (95%CI) (95%CI) (95%CI) (95% Cl)

Internal test set

DCNN 88.08 89.05 88.60 87.64 89.44 0.028s

(85.24-90.44) (86.48-91.19) (86.74-90.22) (84.78-90.04) (86.90-91.54)

JE group 69.54a 85.69 78.12s 81.08 76.13 8.05±0.21a

(66.88-72.07) (83.74-87.45) (75.78-80.30) (78.58-83.35) (73.94-78.20)

SE group 89.57a 90.00 89,73a 88.76 90.73 7.69±0.25a

(87.71-91.17) (88.29-91.48) (86.79-92.08) (86.86-90.42) (89.07-92.16)

External test set

DCNN model 92.08 92.05 92.07 90.2 93.60 0.028s

87.91-94.94 88.40-94.65 89.46-94.08 85.79-93.38 90.17-95.92

JE group 70.42a 82.95 77.40a 76.64 77.92 7.98±0.19a

66.18-74.33 79.73-85.74 74.81-79.79 72.47-80.36 74.54-80.96

SE group 90b 90.23 90.13c 87.98 91.91 7.50±0.23a

86.97-92.39 87.59-92.36 88.20-91.77 84.79-90.58 89.41-93.86

a: P<0.01; b: P=0.02; c: P > 0.05. JE(juniorendoscopists); SE(seniorendoscopists); PPV (positive predictive value); NPV(negative predictive value); DT(diagnostic time).
fro
ntiersin.org

https://doi.org/10.3389/fonc.2022.1021625
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Feng et al. 10.3389/fonc.2022.1021625
two, respectively. In ITS,the sensitivity, specificity, accuracy,

PPV and NPV of JE group were as follows: 69.54%(95%

CI,66.88%-72.07%) 85.69%(95%CI, 83.74%-87.45%) 78.12%

(95%CI, 75.78%-80.30%),81.08%(95%CI, 78.58%-83.35%)

76.13%(95%CI, 73.94%-78.20%); SE group has a better

p e r f o rman c e , 8 9 . 5 7 ( 9 5%C I , 8 7 . 7 1% - 9 1 . 1 7% ) o f

sensitivity,90.00%(95%CI, 88.29%-91.48%)of specificity,89.73%

(95%CI,86.79%-92.08%) for accuracy,88.76% (95%CI, 86.86%-

90.42%)for PPV and 90.73%(95%CI, 89.07%-92.16%) for NPV.

The sensitivity and accuracy of the SE group were significantly

higher than those of the JE group(P<0.01), The sensitivity of SE

group was higher (by20.03%95%CI, 17.03%-23.42%,P<0.01)

than JE group, and the accuracy of SE group was higher

(by11.61%,95%CI, 10%-13.51%,P<0.01) than JE group. In the

ETS, the diagnostic time for each image in the JE and SE groups

was 7.98 ± 0.19s and 7.50 ± 0.23s, respectively, and there was no

significant difference in diagnostic time between the two group,

the performance of SE group was significantly higher than that

of JE group, the sensitivity of SE group was higher

(by19.58%,95%CI, 15.04%-25.09%,P<0.01) than that of JE

group, and the accuracy of SE group was higher

(by12.73%,95%CI, 10.17%-15.81%, P<0.01) than that of JE

group. In terms of the ITS and the ETS, the diagnostic efficacy

of endoscopists in the ETS was higher than that in the ITS.

In terms of diagnostic consistency, in the ITS, the DCNN

model and endoscopist’s pairwise Kappa values ranged from

0.765 to 0.913, while the endoscopist’s diagnostic Kappa values

ranged from 0.735 to 0.959. The diagnostic consistency was

reasonable. The mean value of Kappa between DCNN model

and endoscopist was 0.8794, JE-1 was 0.8424, JE-2 was 0.871, SE-

1 was 0.8868, and SE-2 was 0.878. In the ETS, the Kappa values

of DCNN model and endoscopists ranged from 0.676 to 0.981,

while the diagnostic Kappa values of endoscopist ranged from

0.682 to 0.950. The mean value of Kappa between DCNN model

and endoscopist’s was 0.8638, JE-3 was 0.8106, JE-4 was 0.8418,

SE-3 was 0.8832, and SE-4 was 0.8686.

Comparison of DCNN and
endoscopist performance

The receiver operating characteristic (ROC) curve of DCNN

model and endoscopist’s diagnostic effectiveness is shown in

Figure 2. In ITS, the area under ROC curve (AUC) of the DCNN

model, JE group and SE group were 0.8857 (95%CI,0.8655-

0.9058),0.7710 (95%CI,0.7443-0.7978) and 0.8890(95%

CI,0.8690-0.9091),respectively. In ETS, AUC of the DCNN

model, JE group and SE group were 0.9207 (95%CI,0.9020-

0.9394), 0.7668(95%CI,0.7372-0.7964) and 0.9012 (95%

CI,0.8805-0.9218), respectively. DCNN model was significantly

faster than all endoscopists in test sets. The sensitivity of the

DCNN model was 18.54% (95%CI, 15.64%-21.84%,P<0.01)

higher than that of the JE group and 0.33%(95%CI, 0.06%-

1.05%, P>0.05) lower than that of the SE group in the ITS. In the

ETS, it was 21.67% (95%CI, 16.90%-27.32%, P<0.01) higher than
Frontiers in Oncology 06
that in the JE group and 2.08%(95%CI, 0.75%-4.92%, P>0.05)

higher than that in the SE group. In terms of accuracy, DCNN

model was 10.47%(95%CI, 8.91-12.27%,P<0.05) higher than that

of JE group, and 1.16% (95%CI, 0.69%-1.93%,P > 0.05) lower

than that of SE group in the ITS; In the ETS, it was 14.58%(95%

CI, 11.84%-17.81%, P<0.01) higher than JE group and 1.94%

(95%CI,1.25%-2.96%,P > 0.05)higher than SE group.
Cause of false positives and
false negatives

In order to further analyze the causes of false positives and

false negatives produced by DCNN model and endoscopists, we

summarized it in Tables 3, 4. The first cause for false positive of

DCNN model is Gastritis (redness, atrophy, intestinal

metaplasia)(44% and 62.5%,respectively),which were also the

most reasons for endoscopists(59.29% and 68.52%).Mucus

(10.67%) was the secondary cause of in the ITS, while ulcer

(12.5%) was the secondary cause in the ETS, which we found

that the surface appearance of ulcers were very similar to that of

gastric cancer. The third false-positive factor was folding and

foam (9.33% in the ITS) and blood (8.33% in the ETS). For

endoscopists, ulcer was the second reason (11.43% and 18.52%).

However, compared with the DCNN model, endoscopists rarely

mistake mucus, foam, and folding for EGC.

Table 4 summarizes the causes of false negatives, the first

reason for the false negative in DCNN model was that the

diameter of the lesions was less than 10mm (38.88% and 21.05%,

respectively). And the 32 images were from 14 patients

respectively, DCNN model could identify some of the images

in these cases, however the long shooting distance combined

with the small diameter of the lesions was the biggest reason for

the error recognition of DCNN model. The second factor was

visual angle (25% in the ITS), distance and ulcers (15.79% in the

ETS, respectively). Different shooting angles resulted in

incomplete identification of multiple images of the same
FIGURE 2

ROC curve of DCNN model and endoscopists in internal test
sets and external test sets.
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lesion, some lesions in these unrecognized images were relatively

flat (type 0-IIb), some of the light increased as the shooting angle

changed. The third factor of false negative was distant (16.67% in

ITS), tangential l ine and inflammation-like(10.53%,

respectively). For endoscopists, the biggest factor of false

negative is inflammation-like (32.74% and 56.84%). Examples

of false positive and false negative by DCNN model was shown

in Figures 1B–D, 3A–D.
Frontiers in Oncology 07
Discussion

In the world, only Japan and South Korea have relatively

high diagnosis rate of EGC, while European and American

countries have not carried out large-scale endoscopic screening

of EGC. China has a large population, and the incidence of

gastric cancer accounts for 1/4 of the world, but the diagnosis

rate of EGC is only 10% (3, 4), it is far behind Japan and South
TABLE 4 Details of false negative images by DCNN model and endoscopists.

Internal test set External test set

Cause DCNN, n (%) Endoscopists, total n (%) DCNN, n (%) Endoscopists, totaln (%)

Total number 72 562 19 190

Small (< 10mm) 28 (38.88) 112 (19.93) 4 (21.05) 16 (8.42)

visual angle 18 (25) 50 (8.90) 1 (5.3) 2 (1.05)

Distant 12 (16.67) 90 (16.01) 3 (15.79) 12 (6.32)

Tangential Line 5 (6.94) 12 (2.14) 2 (10.53) 4 (2.1)

Ulcer 4 (5.56) 91 (16.19) 3 (15.79) 28 (14.74)

Adenoma-like 2 (2.78) 16 (2.85) 1 (5.3) 4 (2.1)

Inflammation-like 2 (2.78) 184 (32.74) 2 (10.53) 108 (56.84)

Blood 1 (1.39) 2 (0.36) 1 (5.3) 6 (3.16)

Scar-like 0 (0) 5 (0.89) 0 (0) 5 (2.63)

Others 0 (0) 0 (0) 2 (10.53) 5 (2.63)
TABLE 3 Details of DCNN model and false positive images of endoscopists.

Internal test set External test set

Cause DCNN, n (%) Endoscopists, Total n DCNN,n Endoscopists, Total n

(%) (%) (%)

Total number 75 280 24 162

Gastritis (redness, atrophy, intestinal metaplasia) 33 (44) 166 (59.29) 15 (62.5) 111 (68.52)

Mucus 8 (10.67) 2 (0.71) 1 (4.17) 4 (2.47)

Fold 7 (9.33) 11 (3.93) 0 (0) 7 (4.32)

Foam 7 (9.33) 4 (1.43) 1 (4.17) 0 (0)

Halation 5 (6.67) 5 (1.79) 0 (0) 0 (0)

Blood 4 (5.33) 8 (2.86) 2 (8.33) 4 (2.47)

blood vessel 4 (5.33) 0 (0) 0 (0) 0 (0)

Ulcer 3 (4) 32 (11.43) 3 (12.5) 30 (18.52)

Xanthoma 2 (2.67) 11(3.93) 1 (4.17) 3 (1.85)

Normal anatomical structure (cardia, pylorus, angulus) 1 (1.33) 0 (0) 0 (0) 0 (0)

Hyperplastic polyp 1 (1.33) 30(10.71) 0 (0) 2 (1.23)

Scar 0 (0) 11(3.93) 1 (4.17) 1 (0.62)
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Korea. The difficulty in treatment of EGC lies in early detection.

EGD is the only effective tool to identify EGC. Although

standardized training of EGD can improve the diagnosis rate,

However, the time of training curve is long, and the scope of

standardized training is limited (20, 21), in addition, there is a

serious shortage of specialized endoscopists in China, the overall

level of diagnosis rate in EGC is low, and it is difficult to improve

the diagnosis rate of EGC in a short period of time. Therefore,

how to quickly shorten endoscopists training time and improve

the level of diagnosis rate of EGC is an urgently problem for us

to solve.

Although various image enhancement techniques have been

developed and applied, white light imaging(WLI) is the first step

in standard EGD (16), The use of image enhancement

technology is considered only after suspicious lesion under

WLI. It has been reported that the sensitivity of WLI for EGC

is 33%-75% (22), On the other hand, diagnosis depends on the

experience and subjective awareness of the EGD operator (17).
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Therefore, through the training of images, we developed the

DCNN system to assist the diagnosis of EGC in WLI. The

sensitivity of DCNN model is 88.08% and 92.08%, which was

significantly higher than that of all endoscopists, and its

recognition time was significantly shorter than that of

all endoscopists.

We found that ulcers (11.43% and 18.52%) were an

important cause of false positives produced by endoscopists, as

well as a cause of missed diagnosis (16.19% and 14.74%), which

means that endoscopists have difficulty in distinguishing ulcers

from EGC. Ulcers were included as negative controls in our

DCNN model training. Therefore, compared with endoscopists,

the proportion of false positives in DCNN model due to ulcers

was lower than that of endoscopists (4%-12.5% vs.11.43%-

18.52%). This means that our DCNN model can help

endoscopists reduce the incidence of such errors. Of course,

our DCNN model also has a certain false negative rate. Among

them, 38.88% and 21.05% are lesions smaller than 10mm.
FIGURE 3

Diagram of DCNN producing false negatives. (A) Show an image that the lesions were too small to be recognized by DCNN. (B) Show an image
of the lesions were too far to be recognized by DCNN. (C, D) Shows images taken from different shooting angles of the same lesion. (C) was
effectively recognized as EGC by DCNN, while (D) was not recognized by DCNN.
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Considering that it is difficult for even experienced endoscopists

to diagnose small lesions, the development time of intratumoral

cancer is 2-3 years, we speculate that this limitation can be

confirmed by annual upper gastrointestinal endoscopy and

biopsy (23), and for the update iteration of DCNN, we will

also increase the training of small lesions. 25% and 5.3% false

negatives are difficult to identify because of different angles of

view. However, DCNN can identify at least two images of a

patient from different angles, therefore, we speculate that the

retention of suspicious lesions from multiple locations and

angles can make up for this defect of DCNN. The lesion

distance is the third major reason leading to false negative of

DCNN. Although the morphology of these lesions is prominent,

but the images were taken as a far distance, and the color, texture

and other features of the lesions were not obvious, therefore it is

easy to be ignored by the DCNN. Another rare reason for false

negatives in DCNN is that lesions are similar to inflammatory

changes, but they are the most common cause for endoscopists.

This finding suggests that endoscopists may misdiagnose

inflammation, but DCNN does not miss lesions (2.78% vs.

32.74% in ITS, 10.53% vs.56.84% in ETS).

The most common causes of false positives are mucosal

redness, atrophy, and intestinal degeneration. Even experienced

endoscopists can hardly distinguish these lesions by a single WLI

without magnifying endoscopy. 29.33% and 8.34% of false

positives are due to mucus, foam and folding. DCNN is more

likely to be affected by the above factors, while endoscopists are

less affected by these factors, which means that DCNN may be

more affected by the background in the stomach in the actual

application process. However, as demonstrated by Mori et al.

(24) these limitations can be reduced by mucosal irrigation, the

use of antifoaming agents and adequate gas injection, as well as

the application of a large number of images for training in the

real process of EGD.

For specificity and PPV, Although SE performed better on

specificity and PPV in ITS, the DCNNmodel was higher than that

of JE, our image of training set goes through carefully selected,

excluded those poor quality of the image images, containing

mucus, bubble, folding and dizzy light images, We believe that

if we strengthen the training of false positive images, these

problems will be solved (25). DCNN is more sensitive and can

identify more EGCs than experienced endoscopists, especially for

JE. In addition, the sensitivity and PPV of expert endoscopists are

significantly higher than those of JE, so DCNN may be more

helpful to those endoscopists with limited experience.

We reviewed the relevant literature and found that some AI

have a sensitivity of up to 90% (26–28). However, the control

groups in these studies only included normal or chronic gastritis,

not ulcerative lesions that endoscopists are more likely to

confuse. and there studies focused on the sensitivity of

detecting gastric cancer as a whole, including advanced gastric

cancer, and were not compared with endoscopists. Moreover,

most studies did not analyze the causes of false positive and false
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negative for endoscopists and DCNN, so as to carry out targeted

strengthening training. The sensitivity found in this study

appears to be lower in ITS than those studies for the following

reasons: first, only EGC images were included in this study, and

intermediate and advanced gastric cancer were not included.

Second, sensitivity was calculated per lesion, not per image in

those studies, that is, if at least one image of gastric cancer is

recognized in multiple images of the same lesion, the diagnosis is

considered correct. Third, in these studies, the concept of correct

diagnosis is that if the image area identified by DCNN overlaps

slightly with that of EGC, it is considered correct. However, in

our study, only the image range identified by DCNN overlapped

by more than 50% with the image range marked by endoscopist

was considered correct, while occasionally marked or not

marked enough, we considered it incorrect. Recently, A

multicenter study reported (29) that DCNN assisted diagnosis

of upper gastrointestinal tumors, including gastric cancer shows

diagnostic accuracy of DCNN was up to 90%, and the sensitivity

was comparable with that of expert endoscopists. However, in

this study, the rate of advanced gastric cancer was relatively

higher, while the early gastric cancer was only 18.6%. Our

research aims to find more EGC that endoscopists are prone

to misdiagnose.

In terms of stability evaluation, SE group with higher

diagnostic accuracy has better diagnostic consistency than JE

group. According to the general guidelines of ICC standard (30),

there are considerable differences in the diagnosis consistency

among endoscopists, which is not clearly related to professional

knowledge and experience. Due to the subjective interpretation

of the characteristics of EGC and the different learning curve in

the diagnosis of EGC, objective diagnosis is very necessary (9).

The DCNN system achieves perfect observer protocol (Kappa

1.0) without interference of subjective judgment. The EGC

detection system based on the DCNN has sufficient and

consistent diagnostic performance, eliminating some

diagnostic subjectivity. Moreover, the DCNN system is very

helpful for JE, this is consistent with the research of Ikenoyama

et al. (31) DCNN may be a powerful tool to assist endoscopists,

especially JE in detecting EGC. The shorter screening time and

fatigue free DCNN may enable rapid surveillance of EGC. More

importantly, the diagnosis of EGC by DCNN can be fully

automated and online, which may facilitate the development

of telemedicine and thereby alleviate the problem of a shortage

of endoscopists.

Yet, the study has several limitations, first of all, our DCNN

only trained WLI images, it can provides the first step of EGC

detection, which is also the most important step, but it did not

trained narrow-band images (NBI) and the magnifying

endoscopy (ME). However. in past research report, endoscopic

image enhancement is rarely used, unless there is a suspicious

lesion found in the WLI (32). In addition, a multicenter study

showed no significant difference in the diagnostic efficacy of

nonamplified NBI and WLI in EGC (33). Moreover, in reality,
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unless use the NBI routinely in esophageal observation, It is

generally not used in endoscopic examination unless suspicious

lesions are found under WLI (32). Secondly, we only use

Olympus 260 or 290 series gastroscope system, without other

brands of endoscopes such as Fuji Endoscope, this may reduce

the efficiency of DCNN. Third, in the control group of gastric

cancer detection dataset, we eliminated most of the images

containing mucus and halo, and the diagnostic sensitivity of

DCNN may be lower in the real world. Fourth, static images are

used in the training and testing sets of this study, and video

images can improve the performance and present the real scene,

we plan to use video as a validation set in the future, which will

be used as another separate study. Fifth, in this study, DCNN

model missed diagnosis of small lesions, increasing the number

of training of small lesions and flat lesions, as well as the number

of negative control images will help improve the diagnostic

efficiency of the model.

In conclusion, we constructed an assist EGC detection

system based on DCNN and compared the diagnostic ability

of DCNN and endoscopists. It has excellent diagnostic

sensitivity, fast diagnostic characteristics, achieved a perfect

observer protocol. It can help endoscopists (especially JE) to

find more EGC. We believe that DCNN will contribute to the

overall improvement of the diagnosis rate of EGC, and serve as

an assisting work to help improve the diagnosis rate of EGC.
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