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Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease.

Therefore, more reliable biomarkers are required to better predict the

prognosis of DLBCL. Cuproptosis is a novel identified form of programmed

cell death (PCD) that is different from oxidative stress-related cell death (e.g.,

apoptosis, ferroptosis, and necroptosis) by Tsvetkov and colleagues in a recent

study released in Science. Cuproptosis is copper-dependent PCD that is closely

tied to mitochondrial metabolism. However, the prognostic value of

cuproptosis-related genes (CRGs) in DLBCL remains to be further elucidated.

In the present study, we systematically evaluated the molecular changes of

CRGs in DLBCL and found them to be associated with prognosis. Subsequently,

based on the expression profiles of CRGs, we characterized the heterogeneity

of DLBCL by identifying two distinct subtypes using consensus clustering. Two

isoforms exhibited different survival, biological functions, chemotherapeutic

drug sensitivity, and immune microenvironment. After identifying differentially

expressed genes (DEGs) between CRG clusters, we built a prognostic model

with the Least absolute shrinkage and selection operator (LASSO) Cox

regression analysis and validated its prognostic value by Cox regression

analysis, Kaplan-Meier curves, and receiver operating characteristic (ROC)

curves. In addition, the risk score can predict clinical characteristics, levels of

immune cell infiltration, and prognosis. Furthermore, a nomogram

incorporating clinical features and risk score was generated to optimize risk

stratification and quantify risk assessment. Compared to the International

Prognostic Index (IPI), the nomogram has demonstrated more accuracy in

survival prediction. Furthermore, we validated the prognostic gene expression

levels through external experiments. In conclusion, cuproptosis-related gene

signature can serve as a potential prognostic predictor in DLBCL patients and

may provide new insights into cancer therapeutic targets.

KEYWORDS

diffuse large B-cell lymphoma, cuproptosis, subtypes, prognostic gene signature,
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common

non-Hodgkin’s lymphoma (NHL) in adults and represents a highly

heterogeneous group of tumors in terms of morphology,

phenotype, molecular features, clinical course, and response to

therapy (1, 2). Based on gene expression profile, DLBCL can be

classified from the cell of origin (COO) into at least two subtypes,

germinal center B-cell-like (GCB) and activated B-cell-like (ABC),

while 10-20% of cases remain unclassified (3). R-CHOP (rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone) is

currently the first-line treatment for patients with DLBCL and

contributes to a significant improvement in prognosis (4, 5).

However, many patients of DLBCL do not respond to treatment

and usually have a poor prognosis, especially in patients with the

ABC subtype (6, 7). Tumor heterogeneity and the inevitable

acquisition of drug resistance make DLBCL still incurable.

Therefore, there is an urgent need to identify novel and reliable

biomarkers that can aid in clinical risk stratification and the

guidance of precision therapy.

Copper is an enzyme cofactor involved in a variety of biological

functions in humans and other mammals, including cellular

respiration, regulation of energy production and other redox

reactions, neurotransmitter biosynthesis, and connective tissue

formation (8). Moreover, copper is a key regulator of cellular

signal transduction pathways, regulating or triggering multiple

biological pathways in response to external stimuli (9). Therefore,

the maintenance of copper homeostasis plays a crucial role in the

biological activities of the organism. Many associations have been

observed between cancer and copper. Several studies have reported

elevated copper levels in serum and tumor tissue of patients with

various malignancies, including lymphomas, compared to normal
Abbreviations: DLBCL, diffuse large B-cell lymphoma; PCD, programmed

cell death; CRGs, cuproptosis-related genes; OS, overall survival; DEGs,

differentially expressed genes; LASSO, least absolute shrinkage and

selection operator; ROC, receiver operating characteristic; IPI, International

Prognostic Index; NHL, non-Hodgkin’s lymphoma; GCB, germinal center B-

cell-like; ABC, activated B-cell-like; TCA, tricarboxylic acid; GEO, Gene

Expression Omnibus; TCGA, The Cancer Genome Atlas; FFPE, formalin-

fixed paraffin-embedded; GDC, Genomic Data Commons; SNV, single

nucleotide variant; CNV, copy number variation; GSCA, Gene Set Cancer

Analysis; PCA, principal component analysis; ssGSEA, single-sample gene set

enrichment analysis; GSVA, gene set variation analysis; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment

Analysis; CCLE, Cancer Cell Line Encyclopedia; time-ROC curve, time-

dependent receiver operating characteristic curve; AUC, area under the

curve; GO, Gene Ontology; FP, forward primer; RP, reverse primer; qRT-

PCR, quantitative real-time PCR; TME, tumor microenvironment; DSS,

disease-specific survival; STRING, Search Tool for the Retrieval of

Interacting Genes; Tregs, regulatory T cells; ECOG, Eastern Cooperative

Oncology Group; LDH, lactate dehydrogenase; ES, extranodal sites; COO, cell

of origin; BCR, B-cell receptor; OxPhos, oxidative phosphorylation.
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tissue (10–16). Copper accumulation has been associated with the

promotion of proliferation and growth, angiogenesis, metastasis, and

drug resistance (17–22). In lymphoma, serum copper level is an

independent prognostic factor, closely related to tumor activity (23–

25). Copper compounds are considered to be effective inducers of

apoptosis in lymphoma cells (26–28). In addition, targeting

mitochondria with the copper chelator drug ATN-224 may serve

as an important therapeutic strategy for apoptosis-resistant DLBCL

(29). A completely new form of cell death has recently been

proposed that differs from all other known programmed cell death

mechanisms, including apoptosis, ferroptosis, pyroptosis, and

necroptosis (30). Characterized by protein lipoylation in the

tricarboxylic acid (TCA) cycle, it causes acute proteotoxic stress

through lipid-acylated protein aggregation and subsequent loss of

iron-sulfur cluster protein, ultimately leading to cell death.

Additionally, they identified seven genes (FDX1, LIAS, LIPT1,

DLD, DLAT, PDHA1, and PDHB) that sensitized the cells to

cuproptosis by genome-wide CRISPR-Cas9 loss-of-function screen,

while three genes (MTF1, GLS, and CDKN2A) with resistance to

cuproptosis. Copper importer (SLC31A1) and copper exporter

(ATP7B) have also been found to promote and inhibit

cuproptosis, respectively, by regulating intracellular copper

concentrations (30). As we know, cuproptosis mainly targets

mitochondrial respiration and the TCA cycle. In another study,

the consistent cluster classification scheme identified three isoforms

of DLBCL by molecular analysis, the BCR/proliferative cluster

(BCR-DLBCL), OxPhos cluster (OxPhos-DLBCL), and host

response cluster. Among them, the OxPhos-DLBCL was

significantly enriched in genes regulating oxidative

phosphorylation (OxPhos), mitochondrial membrane potential,

and electron transport chain (31). A subsequent study unearthed

that the OxPhos-DLBCL was insensitive to conventional drugs

targeting the BCR signaling axis. With enhanced mitochondrial

energy transduction, the OxPhos cluster exhibited an increased

admixture of nutrient carbon in the TCA cycle (32). Furthermore,

another study used immunohistochemical markers of glycolysis and

mitochondrial OxPhos metabolism to explore the metabolic

phenotype of human DLBCL tumors. Compared to non-tumor

lymphoid tissue, the OxPhos phenotype was highly expressed in

tumor lymphocytes in DLBCL samples, while stromal cells strongly

expressed the glycolytic phenotype. They hypothesized that tumor

cells meet their own TCA cycle substrate requirements by mediating

stromal cell metabolic reorganization (33). Not surprisingly, the

oxidative phosphorylation inhibitor Gboxin analog was found to

have a strong proliferation inhibitory and cell cycle blocking effect on

DLBCLwith specific selectivity for it (34). Several recent studies have

revealed the potential role of CRGs in the prognosis of cancers, such

as kidney cancer (35–42), hepatocellular carcinoma (43–47), lung

cancer (48–53), head and neck squamous cell carcinoma (53–60),

glioma (61–66), breast cancer (67–70), endometrial carcinoma (71,

72), melanoma (73–75), pancreatic cancer (76, 77), colorectal cancer

(78–81) and so on. However, no reports describe any effects of the

cuproptosis regulatory mechanism on DLBCL.
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This study divided 400 DLBCL samples into two subtypes

based on the 12 cuproptosis-related genes (CRGs) mentioned

above. The differences in survival, drug sensitivity, and immune

cell infiltration between subtypes were also integrated.

Subsequently, we constructed a prognostic model to stratify

patients at risk. Furthermore, we developed a nomogram

integrating clinical features and risk scores to quantify risk

assessment and predict the overall survival (OS) of DLBCL

patients. The results showed that the nomogram was an effective

prognostic indicator. Finally, we performed an experimental

verification on our clinical samples.
2 Materials and methods

2.1 Data acquisition

Gene expression and the relevant prognostic and

clinicopathological data of DLBCL were downloaded from the

public database Gene Expression Omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/). Microarray expression profiles

of DLBCL patients were obtained from GSE10846, GSE31312,

and GSE87371 datasets using Affymetrix Human Genome U133

Plus 2.0 platform. Transcriptional data for 48 DLBCL samples

from TCGA were retrieved from UCSC Xena (https://

xenabrowser.net/datapages/). All the microarray data included

were normalized and log2 transformed. Probe IDs were mapped

to gene symbols according to the corresponding annotation files,

expression measurements for all probes associated with the same

gene were averaged and the maximum value was finally taken.

The pathology image data (formalin-fixed paraffin-embedded

(FFPE) slide) were downloaded from the Genomic Data

Commons (GDC; https://portal.gdc.cancer.gov/). After

excluding samples with missing survival information or

survival time of less than one month, the GSE10846,

GSE31312, and GSE87371 included 400, 466, and 216 tumor

specimens of DLBCL respectively. GSE10846 was used as the

training dataset for constructing the subtype and prognostic

model, while GSE31312 and TCGA-DLBCL were the validation

sets for subtype identification and GSE87371 was the validation

for the prognostic model. 12 CRGs (FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, SLC31A1, and

ATP7B) were obtained from the article by Tsvetkov et al. (30).
2.2 Clinical samples

The FFPE lymphoma tissue samples were collected from 7

patients with incipient untreated DLBCL in the First Affiliated

Hospital of Wenzhou Medical University, and normal lymphoid

tissues in the control group were taken from a healthy volunteer.

The histological diagnosis was established according to the World
Frontiers in Oncology 03
Health Organization (WHO) classification (82). The study was

approved by the Review Board of the First Affiliated Hospital of

WenzhouMedical University with informed consent obtained from

all subjects in accordance with the Declaration of Helsinki. The

clinical data of the patients are listed in Supplementary Table 1.
2.3 Gene interaction network and the
effects of genetic alterations

The correlation network of 12 CRGs was derived from the

“corrr” R package. To determine the somatic mutations of 12

CRGs, the single nucleotide variant (SNV) data of these 12 CRGs

in all cancers, as well as the copy number variation (CNV) data

in DLBCL, were mined in Gene Set Cancer Analysis (GSCA)

(http://bioinfo.life.hust.edu.cn/GSCA/) (83). We also used

GSCA to analyze the relationships between survival and gene

expression, CNV, gene methylation, and the relationship

between expression and pathway activity in DLBCL.
2.4 Consensus clustering analysis
of CRGs

Consistent unsupervised clustering analysis was performed

using the R package “ConsensusClusterPlus” (84) to classify

patients based on CRG expression. Consensus clustering is based

on resampling to verify the rationality of clustering, whose main

purpose is to assess the stability of the clustering. The maximum

number of classifications (maxK) was set to 6. The K-Means

clustering algorithm was chosen and euclidean calculated the

distances. 80% of the samples were resampled 1000 times by this

procedure to ensure the stability and reproducibility of the

classification. The optimal number of clusters k was determined

by combining the graphs of each clustering result and the

proportion of ambiguous clustering (PAC) method (85).

GSE31312 and TCGA-DLBCL were also used for unsupervised

clustering analysis to verify the accuracy of clustering. Principal

component analysis (PCA) was generated by “scatterplot3d”

packages to further determine the validity of the clustering.

Furthermore, the differences in survival among different subtypes

were assessed using Kaplan-Meier curves derived from the

“survival” and “survminer” R packages. Heatmap created by the

“pheatmap” software package displayed the clinical characteristics

and survival differences of the different clusters.
2.5 Evaluation of tumor
microenvironment and biological
function in the cuproptosis subtypes

The infiltration fractions of 22 human immune cell subsets

of every DLBCL sample were calculated by the CIBERSORT
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algorithm (86). Furthermore, we also used the single-sample

gene set enrichment analysis (ssGSEA) algorithm (87) to

validate the difference in immune cell infiltration between the

subtypes in TCGA-DLBCL. Additionally, through TCGA

Pathology Slides, we were able to confirm the above analysis.

To investigate the differences of CRGs subtypes in biological

processes, gene set variation analysis (GSVA) was performed

with the Kyoto Encyclopedia of Genes and Genomes (KEGG)

gene set (c2. cp. kegg. v7.2) obtained from Gene Set Enrichment

Analysis (GSEA) database (http://www.gsea-msigdb.org/gsea/

msigdb). Furthermore, we used the R software package

“pRRophetic” (88) to evaluate the chemotherapeutic sensitivity

between different subgroups.
2.6 Construction and validation of the
prognostic signature based on the DEGs
between the CRG clusters

Identification of DEGs between different subtypes using the

R package “limma” (|logFC|>2, adjusted P <0.01) (89). Then

prognosis-related DEGs were obtained by Cox regression

analysis (P<0.001). Based on prognostic DEGs associated with

cuproptosis, the Least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was used to minimize the risk

of overfitting with the “glmnet” R package (90, 91). After 1000-

fold cross-validation of the maximum likelihood estimate of

penalty, a cuproptosis-related prognostic model was finally

constructed. According to the median risk score, patients in

the training and validation datasets were divided into low-risk

and high-risk groups respectively, then subjected to Kaplan-

Meier survival analysis. The prognostic value of the model was

confirmed by univariate and multivariate Cox regression.

Further validation of the model was performed with the gene

expression data in lymphoma from the Cancer Cell Line

Encyclopedia database (CCLE, https://portals.broadinstitute.

org/ccle). Time-dependent receiver operating characteristic

curve (time-ROC curve) analysis was conducted using the

“timeROC” R package (92) to obtain the area under the curve

(AUC) value and evaluate the predictive power of the signature.

The “ggrisk” package integrated the ranking dot map, scatter

map, and heatmap to show the difference in survival and gene

expression between high- and low-risk groups.
2.7 Comprehensive analysis of CRGs-
related prognostic model

The co-expression matrix of CRGs and genes in the prognostic

model was established using the “ggcorrplot” package in R. For the

DEGs between risk groups identified by the “limma” package, we

conducted Gene Ontology (GO) enrichment analysis using the

“clusterProfiler” package (93, 94). Spearman correlation analysis
Frontiers in Oncology 04
was used to test the correlation between tumor microenvironment

(TME) and risk score.
2.8 Construction and evaluation of a
combined nomogram

A predictive nomogram integrating the clinical

characteristics and risk score was developed using the “rms”

package according to the outcome of the independent prognosis

analysis. Calibration plots of the nomogram were used to

measure the consistency of predicted survival events and

actual observed results at 1-, 2- and 3 years. Time-ROC curves

for 1-, 2- and 3-year survival were performed for the assessment

of accuracy in DLBCL prognosis.
2.9 RNA extraction and reverse
transcription

RNA was extracted from the FFPE samples using the

Paraffin-Embedded Tissue RNA Extraction Kit (AIDISHENG,

Yancheng, China) according to the manufacturer’s instructions.

Reverse transcription was performed with the cDNA synthesis

kit (Vazyme, Nanjing, China) to generate cDNAs.
2.10 Quantitative real-time PCR

Taq Pro Universal SYBR qPCR Master Mix (Vazyme,

Nanjing, China) was then used for quantitative PCR. b-
ACTIN was used as an internal control, and each sample was

repeated in triplicate. The relative fold-change in expression

with respect to a control group was calculated by the 2-DDCt
method. The PCR cycle conditions were 95 °C for 30 s, followed

by 40 cycles of 95 °C (10 s) and 60 °C (30 s). Three biological

replicates were performed. The PCR primers used were

as follows:
TUBB4A forward primer (FP): 5′‐GAGTTCCCAGACC
GCATCA‐3′;

TUBB4A reverse primer (RP): 5′‐CGGAAACAGATGTC
GTAGAGTG‐3′;

SLC38A5 FP: 5′‐AACAGCAATGGAGAGTGAAGC‐3′;
SLC38A5 RP: 5′‐ACCTCAGGGTGGCAGACAA‐3′;
TEX9 FP: 5′‐TTTATGAGACAGCAGCGAACA‐3′;
TEX9 RP: 5′‐GAACCTCTGTGGCACTTTGAC‐3′;
S100B FP: 5′‐GGAAGGGAGGGAGACAAGCA‐3′;
S100B RP: 5′‐CTGGAAGTCACATTCGCCGT‐3′;
ACTIN FP: 5′‐TCAAGATCATTGCTCCTCCTGAG‐3′;
ACTIN RP: 5′‐ACATCTGCTGGAAGGTGGACA‐3′;
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2.11 Statistical analyses

All statistical analyses were performed with R version 4.1.1,

GraphPad Prism 9.0.0, and SPSS software version 26.0. Student’s

t-test or one-way analysis of variance was used to analyze

differences between groups in variables with a normal

distribution. Wilcoxon test was used to analyze the differences

between groups of skewed distribution variables. And we used

the Kaplan-Meier method for survival analysis and the log-rank

test to analyze the differences in overall survival. P < 0.05 was

considered statistically significant.
3 Results

3.1 Genetic alterations and interactions
of CRGs in DLBCL

The detailed clinical characteristics of patients from the three

GEO datasets are summarized in Table 1. The interaction of

these 12 genes was shown in Figure 1A. Among the 12 CRGs, 10

of them were mutated in 98.23% (941/958) of tumor samples in

pan-cancer analysis with the TCGA database (Figure 1B). The

missense mutation was the most common mutation variant.

CDKN2A was the most frequent mutated CRG (42%), followed

by ATP7B, MTF1, GLS, and DLD (22%, 13%, 9% and 9%

respectively). Next, we investigated somatic copy number

changes in these CRGs of DLBCL and found widespread copy

number alterations in all 12 CRGs (Figure 1C). Among them, the

copy number variations (CNVs) of FDX1, DLAT, DLD,

SLC31A1, PDHB, GLS, and ATP7B were mainly amplifications,

while the CNVs of CDKN2A, MTF1, PDHA1, LIAS, and LIPT1

were mainly deletions (Figure 1C). Furthermore, we explored

the relationships between CNV, gene expression, gene

methylation, and survival in the TCGA DLBCL dataset. The

difference in survival between CNV and wide type was shown in

Supplementary Figure 1A. The CNVs ofMTF1, GLS, LIPT1, and

LIAS were closely related to the survival of DLBCL patients

(P<0.05). Meanwhile, the results showed that the expression of

ATP7B, GLS, MTF1, and LIPT1 were negatively correlated with

the overall survival (OS) of DLBCL (P<0.05), and the first three

genes were previously identified as negative regulators of

cuproptosis (30). In addition to these 4 genes, the other 8

CRGs were posit ively correlated with OS (P<0.05)

(Supplementary Figure 1B). We then explored the correlation

between the expression of 12 genes and pathway activity.

SLC31A1 may have a potential activating effect on apoptosis

(FDR=0.0114) and a possible inhibiting effect on DNA damage

(FDR=0.0105) response (Figure 1D). CDKN2A may potentially

inhibit the TSC/mTOR pathway (FDR=0.0260) (Figure 1D). As

for methylation, hypermethylation of SLC31A1, DLAT, DLD,

ATP7B, GLS, and FDX1 was associated with shorter disease-
Frontiers in Oncology 05
specific survival (DSS) (P<0.05) (Supplementary Figure 1C). In

addition, we explored the relationship between the proteins

encoded by CRGs based on the Search Tool for the Retrieval

of Interacting Genes (STRING) network (95) (Figure 1E).
3.2 Identification and assessment of the
CRG subtypes

To further understand the expression characteristics of CRGs in

DLBCL, we used a consistent clustering algorithm to classify

patients with DLBCL according to the expression profiles of 12

CRGs (Figure 2A). Our results indicated that k=2 appeared to be

the best choice for dividing the entire cohort into A subtype (n=194)

and B subtype (n=206) (Figure 2A). PCA revealed significant

differences in the cuproptosis transcription profiles between the

two subtypes (Figure 2B). Additionally, we used GSE31312 and

TCGA-DLBCL to verify the repeatability of the clustering.

Unsupervised clustering of this cohort also clearly identified 2

distinct subtypes (Supplementary Figure 2). The Kaplan-Meier

curve showed that patients with subtype A had worse survival

compared to those with subtype B (P<0.001; HR=1.881 [1.328,

2.664], P<0.001) (Figure 2C). Heatmap revealed differences in

CRGs expression between subtypes as well as clinical features

(Figure 2D). GLS, MTF1, and ATP7B were highly expressed in

subtype A and were previously found to inhibit cuproptosis (30). In

contrast, PDHB, FDX1, DLD, DLAT, LIPT1, LIAS, and SLC31A1

were highly expressed in subtype B.
3.3 Characteristics of TME cell infiltration
and biological function in the
cuproptosis subtypes

To investigate TME differences in CRGs-related subtypes,

the enrichment fraction of 22 kinds of immune cells in both two

clusters was evaluated using the CIBERSORT algorithm (86).

Significant differences in the infiltration of most immune cells

between the two subtypes were observed (Figure 3A). The

infiltration levels of naive B cells, memory B cells, resting

CD4+ memory T cells, regulatory T cells (Tregs), follicular

helper T cells, and activated natural killer (NK) cells were

higher in subtype A, while CD8+ T cells, activated CD4+

memory T cells, gamma delta T cells, M1 macrophages,

plasma cells had significantly lower infiltration in subtype A

compared to those in subtype B. In addition, we also carried out

the ssGSEA algorithm in TCGA-DLBCL to further validate the

differences in TME cell infiltration between the cuproptosis

subtypes (Figure 4A). In conclusion, a higher level of immune

infiltration was observed in subtype B. TCGA Pathology Slides

further confirmed the difference (Figure 4B) (P-value < 0.05 was

considered statistically significant).
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To better understand the survival differences between the

two subtypes, GSVA enrichment analysis of the KEGG pathway

was conducted on these two clusters to assess the functional and

biological differences. The results showed that the subtype A was
Frontiers in Oncology 06
mainly enriched in cell signal transduction pathways and

immune-related pathways, such as the Notch signaling

pathway, MAPK signaling pathway, VEGF signaling pathway,

ERBB signaling pathway, primary immunodeficiency, and Fc
TABLE 1 The clinical characteristics of the training and validation cohorts.

Characteristics

Training cohort Validation cohort Validation cohort

GSE10846 GSE31312 GSE87371

n=400 n=466 n=216

Gender

Female 167(41.75%) 196(42.06%) 101(46.76%)

Male 216(54.00%) 270(57.94%) 115(53.24%)

Unknown 17(4.25%) – –

Age

≤60 years 185(46.25%) 200(42.92%) 113(52.31%)

>60 years 215(53.75%) 266(57.08%) 103(47.69%)

Stage

I- II 186(46.50%) – 71(32.87%)

III-IV 208(52.00%) – 145(67.13%)

Unknown 6(1.50%) – –

COO

GCB 181(45.25%) – 82(37.96%)

Non-GCB 219(54.75%) – 134(62.04%)

ECOG PS

0-1 291(72.75%) 372(79.83%) –

2-4 86(21.50%) 94(20.17%) –

Unknown 23(5.75%) – –

LDH

Normal 167(41.75%) 148(31.76%) –

>ULN 175(43.75%) 275(59.01%) –

Unknown 58(14.50%) 43(9.23%) –

ES

<2 342(85.50%) 364(78.11%) –

≥2 29(7.25%) 102(21.89%) –

Unknown 29(7.25%) – –

Survival status

OS years (median) 2.45 2.95 3.06

Censored(%) 151(37.75) 167(35.84) 45(20.83)

COO, cell of origin; GCB, germinal center B-cell-like subtype; ECOG PS, The Eastern Cooperative Oncology Group performance score; LDH, lactate dehydrogenase; ULN, the upper
limit of normal; ES, extranodal sites; OS, overall survival.
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epsilon RI signaling pathway. B subtype was mainly enriched in

the p53 signaling pathway and metabolism-related pathways,

including the metabolism of sugar, protein, fat, and

nucleotide (Figure 3B).

We then evaluated the therapeutic responsiveness of

chemotherapeutic agents between the two subgroups, subtype

A exhibited a resistance tendency to bleomycin, cisplatin,

doxorubicin, etoposide, vincristine, vinorelbine and elesclomol,

a kind of copper ionophore, while B was more resistant to

paclitaxel and methotrexate (Figure 3C; Supplementary

Figure 3) (P-value < 0.05 was considered statistically significant).
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3.4 Construction and validation of the
prognostic signature based on the DEGs
between the CRG clusters

To explore the potential biological functions of the

cuproptosis subgroups in DLBCL, we identified the DEGs

between the two clusters with the “limma” R package, and 180

genes were obtained (|logFC|>2, adjusted P <0.01). Univariable

Cox regression analysis was then performed to acquire 66 DEGs

associated with prognosis (p< 0.001). Finally, the candidate

genes were incorporated into the construction of the
B

C

D

E

A

FIGURE 1

Genetic alterations and interactions of CRGs in DLBCL. (A) The correlation network of 12 CRGs. The correlation coefficients are represented by
different colors. (B) The tumor mutation burden frequency of CRGs in pan-cancer analysis. (C) The CNV percentage of 12 CRGs in DLBCL. (D)
The associations between expression of SLC31A1 and activity of DNA damage and apoptosis pathway and the relationship between CDKN2A
expression and mTOR pathway activity in DLBCL. (E) The PPI network encoded by CRGs in DLBCL. CNV, copy number variation; PPI, protein-
protein interaction.
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prognostic model using LASSO Cox regression analysis, and a

signature of 5 genes (S100B, TUBB4A, SLC38A5, LOC100507477,

and TEX9) was discovered. The optimal weighting coefficient for

each gene was determined by the regularization parameter

lambda using the min standard (Figure 5A).

The risk model was constructed as follows: risk score =

(0.1239 × expression of SLC38A5) + (0.0194 × expression of

TUBB4A) + (0.0458 × expression of LOC100507477) – (0.0192 ×
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expression of S100B) – (0.0541× expression of TEX9). According

to the median risk score of the corresponding datasets, the

patients with DLBCL were divided into high-scoring and low-

scoring groups respectively in training and validation datasets.

Multivariate Cox regression analysis showed that the risk

score was an independent prognostic factor for DLBCL

(Figure 5B). Next, we performed the external validation on the

expression of these four genes in lymphoma using the online
B C

D

A

FIGURE 2

Identification and assessment of the CRG subtypes. (A) The consensus matrix, consensus cumulative distribution function (CDF), and delta area
by cluster analysis based on CRGs. Two clusters (k=2) would be best. (B) Principal component analysis of two CRG clusters. (C) Kaplan-Meier
survival curves of two CRG clusters (p < 0.001). (D) Heatmap of clinical features and CRGs expressions between subtypes. LDH, lactate
dehydrogenases; ES, extranodal sites; ECOG, The Eastern Cooperative Oncology Group performance score; COO, cell of origin; IPI,
International Prognostic Index.
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database CCLE (no data was available for LOC100507477), and

the expression levels of S100B and TEX9 were relatively low,

consistent with the above formula (Figure 5C). The Kaplan-

Meier survival curve showed a significant difference between the

groups. The high-risk group had a poor prognosis in the

GSE10846 (P<0.0001; HR=2.280 [1.593, 3.263], P<0.001)

(Figure 5D). In the GSE87371, the ability of the model to

predict patient prognosis was further verified (P=0.040;

HR=1.829 [1.019, 3.282], P=0.043) (Supplementary Figure 4A).

Additionally, the 1-year, 2-year, and 3-year survival predicted by

the risk score exhibited AUC values of 0.625, 0.637, and 0.636,

respectively (Figure 5E). AUCs for the validation dataset were

shown in Supplementary Figure 4B. The ranked dot demonstrated

that the prognostic model can well distinguish high-risk groups
Frontiers in Oncology 09
from others. The scatter plot further revealed the worse survival

outcome in the high-scoring group compared to the low-scoring

group (Figure 5F). The same was true in the validation queue

(Supplementary Figure 4C).
3.5 Comprehensive analysis of
cuproptosis-related prognostic model

To further analyze the differences between high- and low-risk

groups, we investigated the relationship between different clinical

characteristics and risk scores. The risk scores were higher in those

LDH above normal levels and non-GCB subgroups (P<0.05)

(Supplementary Figure 5A). And these factors were also
B C

A

FIGURE 3

Characteristics of TME and biological function in the cuproptosis subtypes. (A) The abundance of different infiltrating immune cells in the two
clusters. (B) GSVA of biological pathways between two distinct subtypes. (C) Prediction of drug responsiveness in the subtypes. * P < 0.05, ** P
< 0.01, *** P < 0.001, **** P < 0.0001, - P > 0.05. TME, tumor microenvironment; IC50, half maximal inhibitory concentration.
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identified as risk factors for poor prognosis of DLBCL in previous

studies (96). A high score was also closely associated with subtype

A (P<0.05), consistent with the previous results of poor prognosis

for subtype A (Supplementary Figure 5A).

Then we constructed the co-expression matrix of CRGs and

genes in the prognostic model to further explore the association

between cuproptosis and the model. The results revealed

widespread correlations in these genes (Figure 6A). For

instance, LIPT1 and PDHB (r=0.64, P<0.05) were positively

correlated, while LIPT1 was negatively correlated with

TUBB4A (r=−0.58, P<0.05). Alluvial diagram is plotted for a

better display of clinical characteristics and survival differences

between CRG clusters and risk groups (Figure 6B).
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To better understand the difference in survival in the

prognostic signature, the analysis of the molecular alterations

in five genes of the prognostic model was performed. The

summary report showed that four of them were mutated at a

high frequency in tumor specimens (Figure 6C). Mutations were

present in all 228 samples (100%) (Figure 6C). Among them,

TUBB4A had the highest mutation frequency (45%), followed by

SLC38A5 (29%). The proportion of the CNV for each gene was

summarized in Supplementary Figure 5B.

To further explore the biological differences between

different risk groups, we investigated the DEGs between the

two groups, which generated 2624 genes (|logFC|>1, adjusted P

<0.01) (Figure 6D). GO enrichment analysis indicated that the
B

A

FIGURE 4

Characteristics of TME in the cuproptosis subtypes of TCGA-DLBCL. (A) The abundance of different infiltrating immune cells in the two clusters.
(B) Representative images of pathological H&E staining of two cuproptosis subtypes. * P < 0.05; ns, not significant. TME, tumor microenvironment.
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functions of the DEGs were predominantly related to ion

transport, such as regulation of metal ion transport and

regulation of transmembrane transporter activity (Figure 6E).

The association between CRGs and the abundance of

immune cells had been previously demonstrated, and here we

also investigated the correlation between DEGs-related risk core
Frontiers in Oncology 11
and immune cell infiltration. As shown in the correlation scatter

plot, Tregs, follicular helper T cells, activated and resting NK

cells, naive B cells, memory B cells, and activated dendritic cells

were positively correlated with the risk score. However, a

negative correlation was found between the risk score and

gamma delta T cells, activated memory CD4+ T cells, CD8+ T
B C

D

E F

A

FIGURE 5

Construction and validation of the prognostic signature according to cuproptosis-related DEGs. (A) Construction of the prognostic model using
LASSO Cox regression analysis. (B) Univariate and multivariate Cox regression analysis of clinical features and risk score in the training dataset.
(C) Expression of the 4 genes in the CCLE database. (D) Kaplan-Meier curve in the high- and low-risk group. (E) Sensitivity and specificity of the
risk score model assessed by time-dependent ROC analysis. (F) Ranked dot and scatter plots showing the risk score distribution and patients’
survival status. LASSO, the Least absolute shrinkage and selection operator; ROC, receiver operating characteristic. LDH, lactate
dehydrogenases; ES, extranodal sites; ECOG, The Eastern Cooperative Oncology Group performance score.
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cells, M1 macrophages, resting mast cells, and resting dendritic

cells (Supplementary Figure 5C).
3.6 Construction and evaluation of
combined nomogram

To improve the predictive accuracy as well as the clinical

utility of the prognostic model, we constructed a nomogram
Frontiers in Oncology 12
based on multivariate Cox regression analysis, and the

nomogram incorporated age, the Eastern Cooperative

Oncology Group (ECOG), lactate dehydrogenase (LDH),

extranodal sites (ES), and risk sore (Figure 7A). A C-index of

0.735 indicated that the nomogram had a good predictive value.

The calibration plot for survival probability exhibited a

satisfactory consensus between the prediction and observation

(Figure 7B). The 1-, 2- and 3-year AUC of the nomogram were

77.61%, 75.09%, and 76.36%, respectively, higher than the AUC
B

C D

E

A

FIGURE 6

Comprehensive analysis of the cuproptosis-related prognostic model. (A) Correlations between CRGs and the prognostic model. The results of
P>0.05 were not shown. (B) Alluvial diagram showing clinical characteristics distribution and survival differences of CRG clusters and risk groups.
(C) The tumor mutation burden frequency of genes in the prognostic model in the pan-cancer analysis. (D) The DEGs between high- and low-
risk groups. (E) GO enrichment analyses of DEGs. COO, cell of origin; LDH, lactate dehydrogenases; IPI, International Prognostic Index; DEGs,
differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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of the cell of origin (COO) plus/or International Prognostic

Index (IPI) alone (Figures 7C–E). IPI is the current prognostic

benchmark for DLBCL.
3.7 External experimental validation of
prognostic genes

To validate the expression changes of these prognostic

signature genes in patients with DLBCL, we collected 7 clinical

samples of DLBCL and detected the mRNA expression of these

four genes (TUBB4A, SLC38A5, S100B, and TEX9) using qRT-

PCR. The trend of gene expression in the qRT-PCR analysis was
Frontiers in Oncology 13
basically consistent with our prognostic model. Compared with

the normal lymphoid tissue in the control sample, the expression

of risk genes (TUBB4A and SLC38A5) was up-regulated, while

the expression of protective genes (S100B and TEX9) was down-

regulated in most DLBCL samples (P < 0.05) (Figures 8A–D).
4 Discussion

Copper is a trace metal essential to life. The amount of

copper in the organism is strictly controlled. Due to the close

relationship between copper and the occurrence and

development of cancer, copper ionophores (disulfiram/DSF,
B C

D E

A

FIGURE 7

Constructing and evaluating the combined nomogram. (A) The nomograms with age, LDH, ES, ECOG, and risk score. (B) Calibration curves of
the nomogram for predicting 1-, 2-, and 3-year survival. ROC curves of the nomogram, risk score, COO+IPI, and IPI score for (C) 1-year and
(D) 2-year, and (E) 3-year survival prediction. LDH, lactate dehydrogenases; ES, extranodal sites; ECOG, The Eastern Cooperative Oncology
Group performance score; ROC, receiver operating characteristic; COO, cell of origin; IPI, International Prognostic Index.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1020566
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1020566
dithiocarbamates, elesclomol, etc.) and copper chelators

(trientine, tetrathiomolybdate, etc.) have been applied in

anticancer treatment (97, 98). Cu-DSF has strong cytotoxicity

to leukemic stem cell-like cells in a dose-dependent manner,

whereas it does not affect normal hematopoietic progenitor cells

(99). This may be related to the ability of cancer cells to

accumulate copper, but also to their oxidative sensitivity.

Elesclomol has been included in the clinical trial for acute

myeloid leukemia (100). Copper chelating agents, known to

have anti-angiogenic and anti-tumor activity, have been

demonstrated the rate-limiting effects on tumor growth (101–

104). Choline tetrathiomolybdate (ATN-224) was found to

induce mitochondrial dysfunction and caspase-independent

cell death in DLBCL (29). Recently, a novel mode of cell death

that relies on the TCA cycle and mitochondrial oxidative

respiration has been proposed, called cuproptosis (30). TCA

cycle and OxPhos are also known to play important roles in

DLBCL. B-cell lymphoma uses glucose and glutamine to fuel the

TCA cycle for producing energy and metabolic precursors to

support cell growth and proliferation (32, 105). Glucose-

independent glutamine metabolism promotes the proliferation

and survival of human lymphoma cells through the TCA cycle

(105). Impaired TCA cycling has been reported to induce
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autophagy (106), which acts as a tumor suppressor in DLBCL

(107). Currently, efforts to capture the molecular heterogeneity

of DLBCL depend on gene expression profiles. In another

transcriptomic approach, consensus cluster classification

identified three subgroups, the BCR/proliferative cluster (BCR-

DLBCL), showing upregulation of genes encoding B-cell

receptor (BCR) signaling components, OxPhos cluster

(OxPhos-DLBCL), which was significantly enriched in

mitochondrial OxPhos-related genes, host response tumors

were characterized by active host inflammatory infiltration

(31). The OxPhos subset was characterized by non-functional

BCR signaling and increased mitochondrial metabolism.

Compared with BCR-DLBCL, OxPhos-DLBCL showed

enhanced mitochondrial energy transduction, greater

incorporation of nutrient-derived carbon into the TCA cycle,

and consequent activation of antioxidant defense mechanisms

(108). The OxPhos molecular marker provided these

subpopulations with alternative survival benefits independent

of the BCR network (32). In a study of the metabolic phenotype

of DLBCL, neoplastic lymphocytes in DLBCL samples expressed

a significant OxPhos phenotype, whereas stromal cells strongly

exhibited a glycolytic phenotype, compared with non-tumor

lymphoid tissues from control samples. This suggests that
B

C D

A

FIGURE 8

The expressions of four signature genes were validated by quantitative real-time PCR (qRT-PCR). *P< 0.05; **P< 0.01; ***P< 0.001; ns, no
significance. (A) The expression of TUBB4A in DLBCL patients. (B) The expression of TEX9 in DLBCL patients. (C) The expression of SLC38A5 in
DLBCL patients. (D) The expression of S100B in DLBCL patients.
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tumor lymphocytes in DLBCL undergo a significant degree of

mitochondrial oxidative metabolism rather than aerobic

glycolysis. They then hypothesized that DLBCL’s multi-

compartment metabolism is a result of adapting to its high

metabolic demands. Neoplastic cells metabolically reorganize

the surrounding stroma to undergo aerobic glycolysis, providing

them with substrates for the TCA cycle (33). As an OxPhos

inhibitor, the Gboxin analog 5d has specific selectivity for

DLBCL. Given its strong proliferation inhibition and cell

cycle-blocking effects on DLBCL, 5d is considered a candidate

agent for DLBCL alternative drug development (34). In

conclusion, the TCA cycle and mitochondrial oxidative

respiration are closely associated with DLBCL. However, the

role of cuproptosis in DLBCL has not been explored.

Identifying tumor subgroups with different pathogenesis and

possible therapeutic targets to characterize the genetic

heterogeneity of DLBCL will facilitate a deeper understanding

and precise treatment of the disease. In this study, we identified

two isoforms by consensus clustering based on the expression

profiles of 12 CRGs. Meanwhile, we explored the CNV, gene

expression, and methylation of 12 CRGs in the TCGA DLBCL

dataset. Due to the small number of samples in the dataset

(n=48), we performed a pan-cancer analysis of the SNVs in 12

CRGs. The results showed that 10 of 12 genes were mutated in

98.23% (941/958) of tumor samples, of which CDKN2A was the

most (42%). In addition, CNVs were present in all 12 CRGs.

Among them, the most frequent were CDKN2A (predominantly

deletion) and FDX1 (predominantly amplification). FDX1 is

known to regulate protein lipoylation and is a key regulator in

the process of cuproptosis (30). Furthermore, the CNVs of

MTF1, GLS, LIPT1, and LIAS were closely related to the

survival time of DLBCL patients. We then found that the high

expressions of 3 genes identified as cuproptosis-negative

regulators (MTF1, GLS, and ATP7B) (30) were associated with

shorter OS. In addition, in the study of the correlation between

gene expression and pathway activity, SLC31A1 was found to

have a potential activating effect on the apoptosis pathway and a

potentially inhibiting effect on DNA damage. And CDKN2A

exhibited potential inhibition of the TSC/mTOR pathway. All of

these pathways are known to play a critical role in tumor growth

and progression. SLC31A1 and ATP7B are copper importer (109,

110) and copper efflux transporter, respectively (30). SLC31A1

has been reported to be an important pathway for platinum drug

import into cells (111). In addition, a lower expression level of

SLC31A1 is usually associated with increased cisplatin resistance

in tumors (112). Conversely, ATP7B is involved in the efflux and

sequestration of cisplatin, thereby increasing the resistance of

tumor cells to platinum treatment (113, 114). CDKN2A, an

important tumor suppressor gene, which is frequently mutated

or absent in a variety of tumors, is capable of inducing cell cycle

arrest in G1 and G2 phases (115). CDKN2A deletion is the most

common gene copy number abnormality in DLBCL, which is

associated with poor prognosis (116–118). Metal-responsive
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transcription factor-1 (MTF1) is a candidate susceptibility gene

for lymphoma. Since the products of targets such as

metallothionein can suppress cellular stress generated by

ionizing radiation (119). Glutaminase (GLS) is a mitochondrial

enzyme that catalyzes the conversion of glutamine to glutamate

(120). Highly expressed in cancers including lymphoma,

blocking its enzymatic activity or gene knockout has been

shown to have antitumor activity (121, 122). Under the stress

of PD-1-expressing gd T cells, GLS confers immunosuppressive

properties to ABC-DLBCL cells by enhancing mitochondrial

bioenergetics and consequent STAT3 activation and PD-L1

expression in ABC-DLBCL cells (123). These analyses above

have demonstrated the potential role of cuproptosis in the

prognosis of DLBCL.

In the subsequent comparative analysis of the two subtypes,

we found that subtype A had poorer survival than B, and the

four cuproptosis-negative regulatory genes (CDKN2A, MTF1,

GLS, and ATP7B) were more highly expressed in subtype A. The

difference in the expression of CRGs between the two subtypes

may be a potential reason for their distinct prognosis. Next,

potential biological differences between subtypes were explored

by GSVA. The results showed that subtype A was mainly

enriched in pathways closely related to tumor growth and

development, such as the Notch signaling pathway, MAPK

signaling pathway, VEGF signaling pathway, and ERBB

signaling pathway. For instance, Notch2 is a key membrane

receptor for B-cell function and plays a critical role in the

pathogenesis of lymphoma (124). The main enriched pathways

of subtype B include the p53 signaling pathway and metabolism-

related pathways, such as oxidative phosphorylation and the

TCA cycle. Subtype B may be closely related to OxPhos-DLBCL

identified by Monti et al. (31).

Given the increasing importance of TME in cancer

treatment and prognosis, immune cell infiltration between the

two subtypes was assessed by the CIBERSORT algorithm. Tregs

and resting CD4+ memory T cells were more infiltrated in

subtype A, whereas CD8+ T cells, gamma delta T cells, and

CD4+ memory-activated T cells were more infiltrated in subtype

B. Similarly, the immune infiltration ssGSEA scores in TCGA-

DLBCL and the pathological slide data showed a higher immune

infiltration in cluster B. In the subsequent drug sensitivity

prediction analysis, subgroup A exhibited resistance to

doxorubicin, bleomycin, etoposide, elesclomol, and cisplatin.

Resistance to cisplatin may be related to higher expression of

ATP7B and lower expression of SLC31A1 in subgroup A.

Differences in immune status and treatment responsiveness

between subtypes may contribute to the differences in

survival outcomes.

Based on DEGs between cuproptosis-related subpopulations,

we constructed and validated a prognostic model integrating five

genes (S100B, TEX9, TUBB4A, SLC38A5, LOC100507477) using

LASSO regression analysis. The model was identified as an

independent prognostic factor in Cox regression analysis.
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Different clinical characteristics and prognoses were demonstrated

between high- and low-risk groups. The prognosis of the high-risk

group was worse compared to the low-risk group. Subtype A,

LDH>ULN, and non-GCB subpopulations tended to have a

higher risk score.

Furthermore, four of the five genes in the prognostic model

had SNVs in all 228 samples (100%) of the pan-cancer analysis,

with the most variant being TUBB4A (45%). All four genes had

copy number abnormalities in patients with DLBCL. The human

microtubulin b-IVa class (TUBB4A), which pertains to the b-
microtubulin family, has little or no expression in most normal

tissues but is highly expressed in a variety of human cancer cell

lines (125). TUBB4A deletion has been reported to reduce

prostate tumor growth and metastasis by inhibiting the

activation of NF-kB, cell cycle protein D1, and c-MYC

signaling (126). It is also involved in the resistance of multiple

cancer cells to chemotherapy and radiotherapy (127–129).

Likewise, TEX9 is a testis-expressed protein that belongs to

cancer/testis antigen (CTA) and is normally expressed only in

the testis, except in early-developing embryos and the placenta.

TEX9 expression can be induced in tumor cells when cancer

occurs. TEX9 has been shown the promotion of proliferation

and migration and has an inhibitory effect on the apoptosis of

esophageal squamous carcinoma cells (130). S100 calcium-

binding protein B (S100B) is a Ca+2/Zn+2-p53 binding protein

that blocks phosphorylation and acetylation sites on p53

important for transcriptional activation (131). In addition, it

appears as a key signaling molecule in many physiological and

pathological processes, including inflammation, apoptosis, and

cell growth (132). High expression of S100B in antigen-

presenting cells correlates with a good prognosis (133).

SLC38A5 is a sodium-coupled transporter upregulated in

multiple cancers, mediating the influx of glutamine, serine,

glycine, and methionine into cancer cells. It responds to the

metabolic reprogramming of cancer cells to meet the expansive

demands of tumor growth and proliferation (134). Furthermore,

the gene co-expression matrix revealed the close association of

12 CRGs with genes in the prognostic model. However, the

relationship between these genes in model and DLBCL still

needs to be further investigated.

According to GO enrichment analysis, DEGs between high-

and low-risk groups were closely associated with the metal ion

transport-related pathways. This suggests that there may be

differences in copper transport capacity between the high and

low-risk groups, which may be one of the potential reasons for

the different prognoses in the two groups. Since serum copper

levels have previously been shown to be positively correlated

with disease status in non-Hodgkin lymphoma, with

significantly higher levels in active or relapsed patients than in

patients in remission (16, 23–25).

Correlation analysis of risk score and immune cell

infiltration indicated that the risk score was positively
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correlated with the infiltration of Tregs, but negatively

correlated with the abundance of gamma delta T cells, CD8+ T

cells, and activated CD4+ memory T cells. This may have led to

the difference in survival between the high- and low-risk groups.

Ultimately, a nomogram integrating clinical features and risk

scores was constructed. IPI is the main clinical tool used to

predict the prognosis of patients with aggressive NHL and is the

current prognostic benchmark for DLBCL (2, 96). Compared

with IPI, the nomogram demonstrated higher accuracy and

discrimination in predicting survival.

To further verify the expression level of signature genes in

DLBCL, we performed qRT-PCR on our clinical samples to

quantify the mRNA expression of these four genes (TUBB4A,

SLC38A5, S100B, and TEX9). qRT-PCR analysis showed that the

expression of risk genes (TUBB4A and SLC38A5) was up-

regulated, while the expression of protective genes (S100B and

TEX9) was down-regulated in DLBCL. This was generally

consistent with our prognostic model.

Our study has several limitations. Firstly, our clustering

typing strategy and prognostic signature need to be further

validated for their robustness and clinical utility in a larger

sample. Secondly, since the establishment and validation of the

prognostic model were primarily based on public databases,

further validations are required through cell experiments and

larger clinical samples. In addition, the specific mechanism of

CRG in DLBCL and the underlying mechanism between CRGs

and tumor immunity in DLBCL are currently unclear and

require further study.

In conclusion, we performed systematic analyses on the

molecular alterations of CRGs in DLBCL, and our study

suggests that these genes may play a key role in the prognosis

of DLBCL. The two subtypes identified based on the CRGs

expression signature were significantly different in biological

function, immune cell infiltration, treatment responsiveness, and

clinical prognosis. In addition, the prognostic model constructed

from CRG performed well in predicting the survival of DLBCL

patients and was significantly correlated with the level of

immune infiltration. Furthermore, we built a nomogram

combining clinical features and risk scores that improved the

predictive power of DLBCL. Finally, we carried out an external

experiment to verify the level of prognostic gene expression. Our

work provides new directions for prognostic prediction and

potential therapeutic targets in DLBCL and may provide the

basis for more in-depth studies in the future.
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SUPPLEMENTARY FIGURE 1

(A)Correlation analysis of CNV and survival in DLBCL. (B) The relationships

between expression of CRGs and survival in DLBCL. (C) Correlation
analysis of gene methylation of CRGs and survival in DLBCL. The bubble

color from blue to red represents the hazard ratio from low to high, and
bubble size is positively correlated with the Cox P value significance. The

black outline border indicates Cox P value ≤ 0.05.

SUPPLEMENTARY FIGURE 2

Validation of CRG clusters. (A, C) The consensus matrix of the consensus
clustering. (B, D) The sample clustering consistency diagram. A and B

were for GSE31312. C and D were for TCGA-DLBCL. Two clusters (k=2)
would be best.

SUPPLEMENTARY FIGURE 3

Prediction of drug responsiveness in the distinct subtypes. IC50, half

maximal inhibitory concentration.

SUPPLEMENTARY FIGURE 4

Validation of the prognostic signature in GSE87371. (A) Kaplan-Meier

curve in the high- and low-risk group. (B) Sensitivity and specificity of
the risk score model assessed by time-depend ROC analysis. (C) Ranked
dot and scatter plots showing the risk score distribution and patients’

survival status.

SUPPLEMENTARY FIGURE 5

(A) Differences in risk scores among groups with distinct clinical

characteristics. (B) The CNV percentage of genes in the model of
DLBCL. (C) Correlation between risk score and immune infiltration in

DLBCL. COO, cell of origin; LDH, lactate dehydrogenases; CNV, copy

number variation.
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