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in patients with PSA serum
levels of 4∼10 ng/mL
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Purpose: To investigate the predictive performance of the combined model by

integrating clinical variables and radiomic features for the accurate detection of

prostate cancer (PCa) in patients with prostate-specific antigen (PSA) serum

levels of 4-10 ng/mL.

Methods: A retrospective study of 136 males (mean age, 67.3 ± 8.4 years) with

Prostate Imaging-Reporting and Data System (PI-RADS) v2.1 category ≤3

lesions and PSA serum levels of 4-10 ng/mL were performed. All patients

underwent multiparametric MRI at 3.0T and transrectal ultrasound-guided

systematic prostate biopsy in their clinical workup. Radiomic features were

extracted from axial T2-weighted images (T2WI) and apparent diffusion

coefficient (ADC) maps of each patient using PyRadiomics. Pearson

correlation coefficient (PCC) and recursive feature elimination (RFE) were

implemented to identify the most significant radiomic features. Independent

clinic-radiological factors were identified via univariate and multivariate

regression analyses. Seven machine-learning algorithms were compared to

construct a single-layered radiomic score (ie, radscore) and multivariate

regression analysis was applied to construct the fusion radscore. Finally, the

radiomic nomogram was further developed by integrating useful clinic-

radiological factors and fusion radscore using multivariate regression analysis.

The discriminative power of the nomogram was evaluated by area under the

curve (AUC), DeLong test, calibration curve, decision curve analysis (DCA), and

clinical impact curve (CIC).

Results: The transitional zone-specific antigen density was identified as the

only independent clinic-radiological factor, which yielded an AUC of 0.592

(95% confidence interval [CI]: 0.527-0.657). The ADC radscore based on six

features and Naive Bayes achieved an AUC of 0.779 (95%CI: 0.730-0.828); the
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T2WI radscore based on 13 features and Support Vector Machine yielded an

AUC of 0.808 (95%CI: 0.761-0.855). The fusion radscore obtained an improved

AUC of 0.844 (95%CI: 0.801-0.887), which was higher than the single-layered

radscores (both P<0.05). The radiomic nomogram achieved the highest value

among all models (all P<0.05), with an AUC of 0.872 (95%CI: 0.835-0.909).

Calibration curve showed good agreement and DCA together with CIC

confirmed the clinical benefits of the radiomic nomogram.

Conclusion: The radiomic nomogram holds the potential for accurate and

noninvasive identification of PCa in patients with PI-RADS ≤3 lesions and PSA of

4-10 ng/mL, which could reduce unnecessary biopsy.
KEYWORDS

magnetic resonance imaging, prostate cancer, PI-RADS, radiomics, machine learning
Introduction

Prostate cancer (PCa) is among the most common

malignancies in the male population and is a major global

health problem (1). It is crucial for patients to be diagnosed

with PCa as earlier as possible while reducing unnecessary

biopsies. Currently, prostate-specific antigen (PSA) and

multiparametric magnetic resonance imaging (mpMRI) both

play essential roles in PCa screening and the selection of suitable

candidates for biopsy (2, 3). However, PSA-based screening has

several challenges including an increased false positive rate, the

inability to detect PCa with random biopsy, multifocality in PCa,

and the molecular heterogeneity of PCa (4). Around 70% of

patients with PSA levels of 4-10 ng/mL, which is a diagnostic

gray zone, may undergo unnecessary biopsy (5). mpMRI is a

common non-invasive imaging technology applied in the

detection and diagnosis of PCa, identification of aggressive

disease, as a triage test before biopsy, targeting biopsy, and

active surveillance of patients after a negative biopsy (6).

However, mpMRI images may contain clinically valuable

information related to tumor heterogeneity and biological

characteristics, which may be difficult for radiologists to

interpret in clinical practice (7), which calls for more

advanced methods.

Radiomics is a novel tool that involves extracting quantitative

features from medical images using computational algorithms

such as machine learning, which can identify new biomarkers and

assess the heterogeneity of the disease (8). Recently, radiomics and

its combination with machine learning techniques have shown its

promise in MRI-based PCa diagnosis, which was superior to

Prostate Imaging-Reporting and Data System (PI-RADS) category

(9–13). mpMRI protocol suggested by PI-RADS v2.0 includes T2-

weighted imaging (T2WI), diffusion-weighted imaging (DWI)
02
and the corresponding apparent-diffusion coefficient (ADC)

maps, and dynamic contrast-enhanced (DCE) imaging (14).

Despite several advancements in the diagnosis of PCa using

mpMRI, it still suffers from relatively high cost, inconsistent

image quality, moderate specificity, and inter-observer

variability in result interpretation (15, 16). Some studies have

shown that the incremental value of DCE imaging over the

combination of T2WI and DWI in the diagnosis of PCa is

modest (17–19). The PI-RADS v2.1 emphasizes that although

DCE imaging is essential, its role in the determination of the PI-

RADS category is secondary to that of T2-WI and DWI (20).

Previous studies have shown that in those patients with PSA levels

of 4-10 ng/mL, biparametric MRI (bpMRI) achieved better

performance than conventional MRI and mpMRI with higher

specificity in detecting PCa and reduced unnecessary biopsies

(21–23). Accordingly, this study aimed to investigate the

effectiveness of radiomic features extracted from bpMRI in the

identification of PCa and to develop and validate a radiomic

nomogram for PCa diagnosis in a subgroup of patients with PI-

RADS ≤3 lesions and PSA serum levels of 4-10 ng/mL, providing

a practical tool for accurate diagnosis and personalized treatment.
Materials and methods

Patients

The Institutional Review Board approved this retrospective

study and the requirement for written informed consent was

waived. A total of 314 consecutive patients who underwent

prostate MRI examination due to elevated PSA levels in our

hospital between January 2018 and December 2021 were

retrospectively reviewed. The inclusion criteria were as follows:
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(1) patients who received transrectal ultrasound-guided

systematic prostate biopsy; (2) patients who underwent MRI

scans within one week prior to biopsy; (3) patients with PI-

RADS ≤3 lesions; and (4) patients with PSA serum levels of 4-10

ng/mL. The exclusion criteria were: 1) incomplete clinical data

(n=56); 2) a history of previous therapy for PCa prior to MR

scans, such as radiotherapy, endocrine therapy, and

chemotherapy (n=45); 3) MR images with poor image quality

(such as susceptibility artifact) (n=30); 4) the puncture site did

not well match with the lesion location in MR images (n=47).

Finally, 136 patients (mean age, 67.3 ± 8.4; range, 38-86 years)

were included in this study. The patients were randomly divided

into a training dataset (n=95; 34 PCa and 61 hyperplasia) and a

validation dataset (n=41; 15 PCa and 26 hyperplasia). Figure 1

illustrates the patient recruitment pathway and the inclusion and

exclusion criteria.
Clinical and radiological features

Baseline clinical variables were collected from the electronic

medical record system, including age, total PSA (tPSA), free PSA

(fPSA), and the ratio of fPSA to tPSA (fPSA/tPSA).

The length, width, and height of the entire prostate and

transition zone (TZ) were measured on mpMRI by an

experienced radiologist (with 11 years of experience in

prostate MRI) and checked by a senior radiologist (with 20

years of experience in prostate MRI). The transverse diameter

and anteroposterior diameter of the TZ, the transverse diameter
Frontiers in Oncology 03
and anteroposterior diameter of the entire prostate were

measured on a horizontal section. The superoinferior

diameters of the TZ and the entire prostate were measured on

the sagittal plane. The prostate volume (PV) was measured at the

boundary of the prostate capsule, and the transitional zone

volume (TZV) was measured at the boundary of the fibrous

layer of the TZ. The PV and TZV were calculated using the

following ellipsoid volume formula: volume (ml) = (p/6) ×

anteroposterior diameter (cm) × transverse diameter (cm) ×

superoinferior diameter (cm). Peripheral zone volume (PZV) =

PV - TZV. Prostate-specific antigen density (PSAD) = tPSA/PV,

prostate transitional zone-specific antigen density (TZ-PSAD) =

tPSA/TZV, and prostate peripheral specific antigen density (PZ-

PSAD) = tPSA/PZV = tPSA/PV-TZV.
MR imaging and image Interpretation

All patients were scanned on a 3.0T MR system (Achieva,

Philips Medical Systems, Best, Netherlands) with a 16-channel

Sense Torso XL coil. The MRI sequences included axial T1-

weighted imaging, axial, coronal, and sagittal T2WI, axial DWI,

pre-contrast axial fat- suppressed T1 high-resolution isotropic

volume examination (THRIVE), and post-contrast axial breath-

hold DCE that performed with fat-suppressed enhanced-

THRIVE. The detailed acquisition parameters of routine MR

sequences are shown in Table 1.

A total of 20 periods of dynamic enhanced prostate scanning

were performed, with a total scanning time of 2 min. The
FIGURE 1

The patient recruitment pathway and the inclusion and exclusion criteria.
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contrast agent was injected at the end of the first period.

Gadodiamide (MEDRAD Healthcare, 0.2 mmol/kg body

weight) was administrated via intravenously pumping (3.0 ml/

s) followed by 20 ml of a saline flush at the same rate.

The PI-RADS v2.1 score for each case was evaluated by two

radiologists (with 9 and 11 years of experience in PCa diagnosis,

respectively), blinded to pathological data except for tumor

location. Any discrepancy among the two observers was

resolved by consulting with a third radiologist (with 20 years

of experience in PCa diagnosis). The PI-RADS v2.1 scores were

assessed on T2WI, DWI, and DCE-MRI images. If there were

multiple lesions, the PI-RADS score was determined by the

largest or most aggressive lesion.
Frontiers in Oncology 04
Tumor segmentation and volume of
interest construction

Figure 2 shows the workflow of this study. The manual

segmentation of prostatic nodules was performed by a

radiologist with 9 years of experience in PCa diagnosis using

ITK-SNAP software (http://www.radiantviewer.com). The

regions of interest (ROIs) were drawn by radiologists for

radiomic analysis are confirmed by systematic biopsy cores.

The lesions were manually outlined on each slice of the axial

T2WI and ADC images separately, which covered the whole

suspicious lesions and avoided the surrounding prostate capsule,

peripheral blood vessels, seminal vesicle root, bleeding,
FIGURE 2

The workflow of this study.
TABLE 1 The detailed acquisition parameters of MRI.

T2WI T1WI DWI eTHRIVE

TR/TE (ms) 3384/120 543/8 2787/61 3.1/1.8

Flip angle (°) 90 90 90 10

Slice thickness/gap (mm) 4 4 4 4/0

Acquisition time 02:55.9 01:52.4 01:54.3 01:50.6

FOV (mm) 230× 230 230× 230 250× 250 240× 240

Matrix 250× 250 250× 250 116×114 200× 200

Reconstruction matrix 0.57×0.57 0.57×0.57 1.12×1.12 0.58×0.58

Bandwidth (Hz/pixel) 1038.6 225.6 32.2 723.4

No. of excitations 1 1 4 1

B value (s/mm2) 0/1000
fro
DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; e-THRIVE, enhanced T1 high-resolution isotropic volume examination; TR/TE, repetition
time/echo time; FOV, field of view.
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calcification, and urethra. Then, ROIs were utilized to obtain

volumes of interest (VOIs). The segmentation results were

independently validated by a radiologist with 11 years of

experience in PCa diagnosis to reduce potential bias.
Image preprocessing

The N4 correction algorithm in the 3D Slicer (version 4.11.0;

https://www.slicer.org) was used to remove the MRI offset field

artifacts and reduce the inhomogeneity of the radio frequency field

as well as the influence of the MR equipment itself. Then, the MRI

gray value was normalized to reduce the gray difference between

MRI sequences caused by different acquisition times and parameter

settings, to ensure accurate and reliable radiomic analysis. Finally,

the B-spline interpolation algorithmwas used to resample the ROIs

to a uniform size (1*1*1) for feature extraction.
Feature extraction

The calculation and extraction of radiomic features were

conducted consistently with the guideline of the Image

Biomarker Standardisation Initiative (24). An open source

radiomic package PyRadiomics v3.0 (25) (https://pypi.org/

project/pyradiomics/) was applied to extract radiomic features

from the original and filtered MR images (wavelet filter and

Laplacian of Gaussian filter). Among them, the Log filter sigma

parameter defines the texture roughness, and we set the sigma

size to 1, 3, and 5 to obtain filtered images of different textures.

For wavelet filtering, the bin width is set to 10. A total of 1130

radiomic features were extracted from each MR sequence, which

could be divided into four groups: i) shape-based features

(n=14), ii) first-order features (n=72), iii) texture features

(n=300), and iv) wavelet features (n=744). Texture features

included gray-level co-occurrence matrix (GLCM), gray-level

size zone matrix (GLSZM), gray-level run length matrix

(GLRLM), neighboring gray tone difference matrix (NGTDM),

and gray-level dependence matrix (GLDM) features.
Feature selection and radiomic score
development

All radiomic features were standardized into a normal

distribution with z-score normalization. A two-step feature

se lec t ion process was employed by us ing severa l

dimensionality reduction techniques. In the first step, we

applied Pearson correlation coefficient (PCC) analysis to

eliminate feature pairwise correlation and to ensure the

features were independent of each other. One feature was

selectively excluded from each pair with a correlation
Frontiers in Oncology 05
coefficient >0.99. In the second step, the remaining features

were subsequently selected by the recursive feature elimination

(RFE) algorithm. After that, seven machine learning classifiers

were compared to build the best-performing T2WI- and ADC-

based radiomic score (ie, radscore), including random forest

(RF), support vector machine (SVM), logistic regression (LR),

least absolute shrinkage and selection operator (LASSO), linear

discriminant analysis (LDA), naive Bayes (NB), and K-nearest

neighbor (KNN). Five-fold cross-validation was used for feature

selection and classification algorithm optimization. The fusion

radscore was obtained by linear fitting of T2WI- and ADC-based

radscores using multivariate regression analysis in the

training dataset.
Radiomic nomogram establishment and
assessment

Clinic-radiological variables with P<0.10 in univariate

logistic regression were entered into multivariate logistic

regression. The stepwise regression method was used to screen

the variables in the multivariate regression model. Variables with

P<0.05 were considered independent factors.

A radiomic nomogram was developed by integrating

significant clinic-radiological variables in univariate regression

analysis and radscore via multivariable logistic regression.

Calibration curves of the nomogram and Hosmer–Lemeshow

test were used to assess the agreement between prediction and

actual observation. Moreover, we performed decision curve

analysis (DCA) and clinical impact curve (CIC) to evaluate the

net benefit of clinical decisions.
Statistical analysis

All statistical analyses were done using R software (version

3.4.1; http://www.Rproject.org) and SPSS Statistics (version 26.0;

IBM Corp., New York, USA). The distribution of continuous

data was evaluated by the Kolmogorov-Smirnov test.

Continuous and categorical variables were compared by t-test,

Mann-Whitney U test, or Chi-square, if appropriate. The R

package “glmnet” statistical software (R Foundation) was used to

perform the modeling of classifiers. Other R packages were used

as follows: “rms” package for multivariable logistic regression

analysis and calibration curves, “pROC” package for receiver

operating characteristic curve (ROC), “rmda” package for

decision curve analysis (DCA), and clinical impact curve

(CIC). ROC analysis was used to evaluate the classification

performance of models, including area under the curve

(AUC), sensitivity, specificity, and accuracy. The Delong test

was used to compare the area under the curves (AUCs). P<0.05

was considered statistically significant.
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Results

Patient characteristics

There were 57.4% of cases were in the TZ (benign 57.5% and

malignant 57.1%). Table 2 compares the clinic-radiological

characteristics of benign and malignant prostatic nodules. The

results showed that PV (P<0.001), TZV (P<0.001), PSAD

(P=0.010), and TZ-PSAD (P=0.001) were statistically different

between benign and malignant prostatic nodules. The clinic-

radiological variables between the training and validation

datasets were nonsignificant (all P>0.05).
Clinical model

Univariate analysis of 11 clinic-radiological variables

showed that PV (P=0.045), TZV (P=0.009), PSAD (P=0.008),

and TZ-PSAD (P=0.001) were significantly associated with

cancer (Table 3). The results of multivariate analysis showed

that only TZ-PSAD (P=0.001) was an independent predictor of

PCa (Table 3). The clinical model based on TZ-PSAD achieved

an AUC of 0.712 (95%CI: 0.655-0.769) in the training dataset

and 0.592 (95%CI: 0 .527-0 .657) in the val idat ion

dataset (Table 4).
Comparison of single-layered radscores

For the ADC sequence, 679 radiomic features were

retained after PCC analysis, and six features were finally
Frontiers in Oncology 06
selected (Table 5). The NB-based ADC radscore yielded the

highest AUC of 0.743 (95%CI: 0.690-0.796) in the training

dataset and 0.779 (95%CI: 0.730-0.828) in the validation

dataset (Table 4 and Figure 3). For the T2WI sequence, 681

features were retained after PCC analysis, and 13 features were

finally identified (Table 5). The SVM-based T2WI radscore

achieved the highest AUC of 0.816 (95%CI: 0.765-0.867) in the

training dataset and 0.808 (95%CI: 0.761-0.855) in the

validation dataset (Table 4 and Figure 3). Compared with

the single-layered radscores, the fusion radscore obtained

higher performance (all P<0.05), with an AUC of 0.876

(95%CI: 0.837-0.915) in the training dataset and 0.844 (95%

CI: 0.801-0.887) in the validation dataset (Table 4 and

Figure 3). Figure 4 displays color-coded feature maps of the

identified texture features derived from ADC- and T2WI

images for qualitative visualization of the features. This

figure demonstrates distinctive textures between benign and

malignant cases.
Discriminative performance and clinical
usefulness of radiomic nomogram

Multivariate logistic regression analysis of PV, TZV, PSAD,

TZ-PSAD, and fusion radscore demonstrated that only TZV

(P=0.011) and fusion radscore (P<0.001) were identified as two

independent risk factors of cancer. The radiomic nomogram was

developed based on TZV and radscore (Figure 5), the formula

was as follows: nomogram score = -1.749 -0.033*TZV +

5.825*radscore. The radiomic nomogram achieved an AUC of

0.905 (95%CI: 0.870-0.940) in the training dataset and 0.872
TABLE 2 Comparison of clinic-radiological characteristics between benign and malignant prostatic lesions.

All (n=136) Benign (n=87) Malignant (n=49) P-value

Age, years 67 (62, 73) 67 (62, 71) 67 (61.5, 75) 0.678

TPSA 7.6 (6.08, 9.32) 7.4 (6.2, 9.2) 8 (5.81,10) 0.818

FPSA 1.1 (0.7, 1.7) 1.14 (0.8,1.72) 0.93 (0.54,1.86) 0.230

FPSA/TPSA 0.15 (0.1, 0.23) 0.16 (0.12, 0.22) 0.13 (0.09, 0.26) 0.355

PV 52.71 (35.39, 73.58) 63.01 (42.83, 77.69) 35.02 (26.95, 55.74) <0.001

TZV 27.11 (11.77, 41.79) 33.69 (18.48, 52.19) 13.89(7.38,29.5) <0.001

PZV 24.11(17.17,32.72) 27.04 (18.23, 34.39) 21.64 (14.43, 30.33) 0.097

PSAD 0.14 (0.1, 0.19) 0.13 (0.1, 0.16) 0.19 (0.1, 0.28) 0.010

TZ-PSAD 0.27 (0.16, 0.53) 0.22 (0.15, 0.42) 0.36 (0.22, 0.94) 0.001

PZ-PSAD 0.30 (0.21, 0.44) 0.28 (0.21, 0.42) 0.36 (0.19, 0.46) 0.607

PI-RADS >0.999

1 2 (1.5) 1 (1.1) 1 (2.0)

2 44 (32.4) 28 (32.2) 16 (32.7)

3 90 (66.2) 58 (66.7) 32 (65.3)
front
Unless otherwise indicated, continuous variables were presented as median (interquartile range, IQR), and categorical variables were presented as number (%).
TPSA, total prostate specific antigen; FPSA, free prostate specific antigen; PV, prostate volume; TZV, transitional zone volume; PZV, peripheral zone volume; PSAD, prostate specific antigen density; TZ-
PSAD, prostate transitional zone-specific antigen density; PZ-PSAD, prostate peripheral specific antigen density; PI-RADS, Prostate Imaging Reporting and Data System.
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(95%CI: 0.835-0.909) in the validation dataset, which was higher

than TZ-PSAD and fusion radscore (all P values<0.05) (Table 4

and Figure 3). The calibration curves of the radiomic nomogram

demonstrated accepted agreement between prediction and

actual observation (Figure 5), as verified by Hosmer-

Lemeshow tests (training dataset: P=0.234; validation dataset:

P=0.172). The DCA and CIC showed the clinical usefulness of

the risk prediction nomogram.
Frontiers in Oncology 07
Discussion

This present study demonstrated that the radiomic model

based on bpMRI achieved good performance in capturing the

heterogeneity of prostatic diseases, which could be used to

distinguish PCa from hyperplasia in a non-invasive way. The

PSA-based screening strategy is not actable in patients with PI-

RADS ≤3 lesions and PSA level of 4-10 ng/mL. However, the
TABLE 4 The performance comparison of various models.

Dataset Models AUC (95%CI) P Sensitivity (%) Specificity (%) Accuracy

Training cohort TZ-PSAD 0.712
(0.655-0.769)

<0.001 67.6 65.6 66.3

ADC-based radscore 0.743
(0.690-0.796)

<0.001 64.7 68.9 67.4

T2WI-based radscore 0.816
(0.765-0.867)

<0.001 82.4 73.8 76.8

Fusion radscore 0.876
(0.837-0.915)

Ref. 85.3 73.8 77.9

Radiomic nomogram 0.905
(0.870-0.940)

<0.001 88.2 85.2 86.3

Validation cohort TZ-PSAD 0.592
(0.527-0.657)

<0.001 60.0 53.8 56.1

ADC-based radscore 0.779
(0.730-0.828)

0.038 73.3 65.4 68.3

T2WI-based radscore 0.808
(0.761-0.855)

<0.001 73.3 76.9 75.6

Fusion radscore 0.844
(0.801-0.887)

Ref. 80.0 84.6 82.9

Radiomic nomogram 0.872
(0.835-0.909)

0.002 73.3 84.6 80.5
fro
AUC, area under the curve; TZ-PSAD, prostate transitional zone-specific antigen density; ADC, apparent-diffusion coefficient; T2WI, T2-weighted imaging.
TABLE 3 Univariate and multivariate logistic regression analyses of risk factors for cancer.

Variables Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age, years 1.01 (0.96-1.06) 0.790

PI-RADS

2 Ref

3 1.19 (0.50-2.84) 0.697

TPSA 0.91 (0.76-1.10) 0.345

FPSA 0.97 (0.68-1.38) 0.865

FPSA/TPSA 0.57 (0.02-14.75) 0.735

PV 0.98 (0.97-1.00) 0.045

TZV 0.97 (0.95-0.99) 0.009

PZV 1.01 (0.97-1.04) 0.749

PSAD 1504.68 (6.53-346905.17) 0.008

TZ-PSAD 17.91 (3.45-93.00) 0.001 17.91 (3.45-93.00) 0.001

PZ-PSAD 0.74 (0.12-4.72) 0.746
ntiers
OR, odds ratio; PI-RADS, Prostate Imaging Reporting and Data System; TPSA, total prostate specific antigen; FPSA, free prostate specific antigen; PV, prostate volume; TZV, transitional
zone volume; PZV, peripheral zone volume; PSAD, prostate specific antigen density; TZ-PSAD, prostate transitional zone-specific antigen density; PZ-PSAD, prostate peripheral specific
antigen density.
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radiomic nomogram combining TZV and fusion radscore can

individually predict the probability of PCa with high accuracy

and good calibration and clinical utility.

In recent years, mpMRI has been increasingly applied for the

qualitative evaluation of PCa (26, 27). The PI-RADS was

proposed for better standardization of prostate MRI

performance and image interpretation. PI-RADS v 2.1 in 2019

introduced the concept of bpMRI (T2WI and DWI) to simplify

prostate MRI (20). Prostate MRI categorizes suspected PCa into

low- and high-risk, with risk scores ranging from 1 to 5. PI-

RADS hinges on the subjective judgment of radiologists, which

is prone to inter-reader variability (28). A recent meta-analysis

(29) showed varied inter-reader agreements of PI-RADS v2.1

and moderate inter-reader reliability (pooled k value of 0.65)

among radiologists for whole gland and TZ lesions. Nonetheless,

PI-RAS 2.1 has higher inter-reader reproducibility than version

2.0 (30). One of the most crucial challenges for clinicians is the

occurrence of equivocal or PI-RADS 3 findings (31). While

biopsy is recommended for PI-RADS 4 or 5 lesions, PI-RADS 3

lesions are considered borderline results with no definite

recommendation or conclusion (20). Although PI-RADS 1 or

2 are not recommended for undergoing an imaging-guided

biopsy, such an approach may miss a small portion of PCa

due to the low cancer detection rate for PI-RADS 1 (6%; range,

0-20%) and PI-RADS 2 (9%; range, 5-13%) in the patient-level

analysis (32). Additionally, whether patients with a serum PSA

level of 4-10 ng/mL should be recommended for a biopsy is
Frontiers in Oncology 08
clinically challenging (33). In this current study, we focused on

patients with both PI-RADS ≤3 lesions and PSA level of 4-10 ng/

mL, which has not yet been reported in previous literature.

The clinical application of PSA has several limitations,

leading to overdiagnosis and overtreatment (34, 35).

Therefore, new methods for accurate risk stratification of

prostatic nodules and reducing unnecessary biopsies are

desirable to improve the management of PCa and patient

prognosis. In recent years, non-invasive, cost-effective, high-

accuracy liquid biopsy biomarkers such as DNA methylation

have been developed for early diagnosis of PCa (36). However,

liquid biopsy biomarkers still lack large-scale validation and

have methodological and biological limitations, precluding

implementation in clinical practice. Radiomics refers to the

high-throughput mining of quantitative image features from

standard-of-care medical images that enables to uncover of

disease characteristics including biological property and tumor

heterogeneity that fail to be appreciated by the naked eye (37).

Radiomics provides a non-invasive way to evaluate PCa better

than morphological visual interpretation. Li et al. (11)

constructed a radiomic model based on mpMRI including

T2WI, ADC, DWI, and DCE imaging and achieved an AUC

of 0.86 when tested, improving diagnostic performance of PI-

RADS v2.1 in PI-RADS categories 1-5 PCa. Qi et al. (33) found

that mpMRI radiomics outperformed single sequence-based

models; however, they did not explore the added value of

DCE to T2WI and ADC. The results showed that the AUC of

DCE model was lower than that of ADC and T2WI models

(0.774 vs 0.853 vs 0.828). Thus, it seems that DCE may be

difficult to bring significantly incremental value to bpMRI. Jing

et al. (9) compared the combination of lesion segmentation and

whole prostate segmentation on T2WI and DWI to establish the

optimal radiomic methodology. The results showed that the

radiomic model based on whole prostate T2WI and lesion DWI

achieved the best performance in predicting clinically

significant PCa, which was superior to PI-RADS scores (9).

However, Montoya et al. (38) showed that bpMRI radiomics

and kallikreins failed to outperform PI-RADS v2.1 scores and

their combination did not achieve further performance

improvement. Some studies compared different classifiers in

the prospective diagnosis of prostate diseases based on mpMRI

and found that the RF classifier performed better than other

classifiers (39–42). Gui et al. (43) built a radiomic nomogram

combing T2WI-based radiomic features and PSA yielded an

AUC of 0.90 in the differential diagnosis of PCa and

hyperplasia. Given that various deep-learning- and radiomics-

based methods have been proposed for PCa classification,

Castillo T et al. (44) compared the value of a deep-learning

model with that of a radiomic model for the PCa diagnosis and

concluded that the radiomic model was more accurate than a

fully automated deep-learning model (AUC: 0.65-0.88 vs 0.44-

0.73). Zhang et al. (45) showed that perilesional radiomic

features could enhance the discrimination ability of the
TABLE 5 Radiomic features contained in the ADC-based and T2WI-
based radiomic models.

ADC

original_glszm_ZoneEntropy

log-sigma-5-0-mm-3D_firstorder_Range

log-sigma-5-0-mm-3D_glszm_ZoneEntropy

wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis

wavelet-LLL_glszm_SizeZoneNonUniformity

T2WI

log-sigma-1-0-mm-3D_firstorder_Kurtosis

log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis

log-sigma-5-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis

wavelet-LLH_firstorder_Maximum

wavelet-LLH_glcm_ClusterShade

wavelet-LHH_gldm_HighGrayLevelEmphasis

wavelet-HLL_firstorder_Variance

wavelet-HLH_firstorder_Entropy

wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

wavelet-HHL_firstorder_Skewness

wavelet-HHH_gldm_HighGrayLevelEmphasis

wavelet-LLL_firstorder_Minimum

wavelet-LLL_ngtdm_Busyness
ADC, apparent-diffusion coefficient; T2WI, T2-weighted imaging.
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A

B C

FIGURE 3

Diagnostic performance of models. (A) comparison of AUCs of different classifiers for ADC and T2WI, respectively; (B) ROC of the optimal
single-layered radscore; (C) ROC of TZV, fusion radscore, and radiomic nomogram.
FIGURE 4

The visual feature maps of the selected texture features extracted from ADC- and T2WI images of benign and malignant cases.
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intralesional radiomic features. Lim et al. (46) indicated a

moderate accuracy for T2WI (0.547) and ADC (0.684) for

determining which PI-RADS category 3 lesions represent

PCa. Considering the performance of radiomic model

depends on feature selection and the employed machine

learning algorithms, in this study, we carried out rigorous

feature selection and compared seven machine learning

classifiers to find the most suitable methods to build radiomic

models, with an AUC of 0.84 in the validation dataset.
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This study also has several limitations. First, this is a

retrospective study performed in a single center with a

relatively small sample size, which may indicate selection bias

and low generalizability of the findings. Therefore, larger

multicenter studies are warranted for reducing the effects of

selection bias on model accuracy. Second, this study used

manual segmentation rather than semi-automatic or automatic

delineation, which was labored and time-consuming. Third, this

study was unable to test a more advanced approach such as
A

B

D E

C

FIGURE 5

Nomogram performance for predicting probability of PCa. (A) nomogram; (B) calibration curve of training dataset; (C) calibration curve of
validation dataset; (D) clinical decision curve; (E) clinical impact curve.
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deep-learning for the prediction of PCa in such a population,

which may show more merits and deserve further investigation.

Finally, biological interpretability of texture features is lacking.

Efforts to introduce biological meaning into radiomics are

gaining traction in this field with distinct emerging approaches

available, such as correlation with pathology features and

biological function, radiology–pathology coregistration, and

analysis of biological pathways or genomic correlations in

humans or animals (47).
Conclusion

In this study, we investigated the role of radiomic features

derived from bpMRI (T2WI plus ADC) in the differentiation of

PCa and hyperplasia. The combination of T2WI and ADC was

superior to a single sequence in predicting PCa. The radiomic

nomogram integrating TZV and radscore has the potential to

accurate and noninvasive identification of PCa in patients with

PI-RADS ≤3 lesions and PSA of 4-10 ng/mL, which could reduce

unnecessary biopsy.

In the future, liquid biopsy diagnostic biomarkers can be

added to improve the performance of MRI in early screening

of PCa.
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