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Preoperative prediction of recurrence outcome in hepatocellular carcinoma

(HCC) facilitates physicians’ clinical decision-making. Preoperative imaging and

related clinical baseline data of patients are valuable for evaluating prognosis.

With the widespread application of machine learning techniques, the present

study proposed the ensemble learning method based on efficient feature

representations to predict recurrence outcomes within three years after

surgery. Radiomics features during arterial phase (AP) and clinical data were

selected for training the ensemble models. In order to improve the efficiency of

the process, the lesion area was automatically segmented by 3D U-Net. It was

found that the mIoU of the segmentation model was 0.8874, and the Light

Gradient Boosting Machine (LightGBM) was the most superior, with an average

accuracy of 0.7600, a recall of 0.7673, a F1 score of 0.7553, and an AUC of

0.8338 when inputting radiomics features during AP and clinical baseline

indicators. Studies have shown that the proposed strategy can relatively

accurately predict the recurrence outcome within three years, which is

helpful for physicians to evaluate individual patients before surgery.
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1 Introduction

Hepatocellular carcinoma (HCC) accounts for 85%-90% of

the main pathological types of primary liver cancer (1–3). It is

easy to spread in the liver through the portal vein system to form

intrahepatic metastasis, and it is also easy to form tumor

thrombus in the portal vein and cause portal hypertension.

HCC is mostly found in the middle and late stages, which

leads to its generally poor prognosis (4–8). According to

statistics, the recurrence rate of HCC after surgery is as high

as about 70% (9), and the survival rate is only 15%-40% (10).

Fortunately, treatment modalities represented by precision

surgery have greatly improved patient prognosis. Liver

resection with early diagnosis can improve the survival rate of

patients within one year to 91%-98% (11, 12). Therefore, rational

clinical decision-making is essential to reduce recurrence and

improve survival.

Accurate preoperative prediction of recurrence can help

doctors assess the necessity and risk of surgery, so that they

can design rational clinical decisions. Early (1-2 years after

surgery) (13) and long-term (5 years and beyond) (14)

recurrence predictions have been performed in a small

number of studies, with encouraging results. It is worth noting

that the recurrence rate of HCC within 3 years after surgery is

50-55%, which accounts for about 71%-78% of the total

recurrence (15). Three years after surgery is a critical period,

and the absence of recurrence within 3 years indicates a

relatively good prognosis. There is no doubt that preoperative

prediction of the recurrence outcome in patients within 3 years

after surgery is also of great significance for evaluating the illness

and selecting treatment options.

The rise of artificial intelligence (AI) technology has brought

new strategies for the prediction of HCC recurrence, especially

novel data processing methods represented by machine learning

and radiomics. Studies have shown that patients’ preoperative

imaging, personal information and clinical manifestations are

closely related to prognosis (16, 17). Because of this, some

researchers have employed the preoperative performance of

patients to predict postoperative recurrence through AI

algorithms. Ji et al. (18) collected data on 480 patients

undergoing HCC resection from 3 centers. Combined with

radiomics characteristics and some biochemical indicators, a

Cox-based recurrence risk prediction model was constructed,

and the final C-index reached 0.633-0.699. Zeng et al. developed

a random survival forest (RSF) model using the 15

characteristics of HCC patients. The model obtained a C-index

of 0.725 on the validation set, which was encouraging. Huang

et al. (19) developed a machine learning prognostic model to

identify high-risk patients after surgical resection. The results

show that the eXtreme Gradient Boosting tree (XGBoost)

achieved the best discrimination in the internal validation

queue. In reference (20), 143 features were extracted, including
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26 preoperative clinical features, 5 postoperative pathological

features, and 112 imaging features, for predicting early

recurrence of HCC. As a result, the area under the receiver

operating characteristic curve (AUC) of the preoperative model

was 0.739, with relatively strong generalization ability.

Nevertheless, there is still room for improvement in the

current related work. For example, the lesion area adopted to

extract features in most studies needs to be manually segmented

from the original image, which brings great challenges to

improving work efficiency and reducing costs. In addition, the

features of the input model are often not concise and efficient,

which will lead to a decrease in accuracy. It is necessary to

explore efficient feature representations and achieve automatic

and accurate predictions.

This study aimed to develop an excellent predictive strategy

for recurrence-free survival (RFS) outcomes in patients with

HCC within 3 years after surgery. A 3-dimension deep learning

framework was applied to automate lesion segmentation. Seven

feature representation methods were compared to explore the

most superior feature combinations, including clinical baseline

indicators, radiomics features during arterial phase (AP), portal

venous phase (PVP), and delayed phase (DP), and combination

of clinical data with radiomics features during each phase. Four

novel Boosting ensemble learning models were selected for

prediction of recurrence outcome. This work has the

following highlights:
● Deep learning was employed for automatic segmentation

of regions of interest (ROI), which avoided the

drawbacks of manual delineation.

● Seven feature representations were explored to find the

best model input.

● The study compared novel Boosting ensemble learning

methods to select the model with best performance,

which may be applicable in the future.
2 Materials and methods

The workflow of this study is shown in Figure 1.
2.1 Patients

HCC patients who underwent partial hepatectomy in

Qingdao University Affiliated Hospital from January 2014 to

December 2018 were followed after surgery regularly. The

inclusion criteria were as follows: 1. The pathological diagnosis

was HCC; 2. The first treatment was partial hepatectomy; 3.

Enhanced CT examination was performed within 1 month

before surgery, and all periods were completed; 4. The
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patient’s personal information and relevant clinical data were

complete; 5. It has been confirmed that whether the recurrence

occurred within 36 months after surgery. The following were the

exclusion criteria: 1. Patients who have received chemotherapy,

interventional therapy, targeted therapy, etc. before partial

hepatectomy; 2. Patients with a history of other tumors; 3.

Patients whose tumors have metastasized; 4. Imaging and

clinical data were incomplete; 5. The follow-up data were

incomplete or the recurrence outcome within 3 years couldn’t

be judged. Additionally, all patients included in the study

underwent radical hepatectomy. The criteria for radical

hepatectomy were: (1) no residual tumor was found at the

margin of resection, which was negative; (2) no tumor was

found in the remaining liver; (3) tumor markers returned to

normal within two months after surgery. Ultimately, 105

patients were selected for the study. RFS period is defined as

the time from the date of liver resection to the date of recurrence

and within 3 years after surgery is within 36 months from the

date of liver resection.

It must be emphasized that the principles of the Declaration

of Helsinki were followed and the study was approved by the

hospital ethics committee (ethics number: 20001-01). All

patients signed an informed consent certificate before surgery.
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2.2 Imaging acquisition

The scanning equipment for the detection was the German

CT (SOMATOM Definition Flash, Siemens) and the American

Discovery CT (GE Healthcare). The scanning method was a

three-level contrast-enhanced scan of the upper abdomen, and

the scanning range was from the top of the liver to the lower

edge of the two kidneys. During the scanning process, the

voltage, current, scanning layer thickness, layer spacing, and

pixel matrix size were set to 120 kV, 200-350 mA, 5 mm, 5 mm,

and 512 × 512, respectively. Workers administered iohexol and

350 mg/m1 of iodine through a peripheral vein at a flow rate of

3.0 ml/s and a dose of 1.5 ml/kg under the action of a pressure

syringe. Finally, AP, PVP, and DP images were obtained for

the study.
2.3 Lesion segmentation

Generally, studies mostly segment lesions manually, which

reduces work efficiency. Based on the previous manual

annotation, we built a 3D U-Net deep learning model for

automatic and accurate segmentation of lesions.
FIGURE 1

The workflow of this study.
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2.3.1 Manual annotation
This work adopted the supervised learning to automatically

segment the ROIs, so manual annotation was required before

model training. Two physicians with extensive experience in

radiology were selected for this task, one of whom delineated the

tumor area of each slice with the help of 3D Slicer (Boston, MA,

USA) software without knowing any patient’s baseline data, and

the other one was responsible for checking the annotation

results. Once there was a dispute, return to discuss and re-

mark if necessary. All CT images for the three periods were

delineated and formed into volumes of interest (VOIs).
2.3.2 Data pre-processing
Considering that some slices in CT images do not contain

ROIs, this will increase the computational complexity. Slices

without lesions were cropped according to the annotated images

and the remainders were studied. Moreover, we normalized the

image format to 256×256×48 for better input to the model. In

order to expand the amount of data, data augmentation

operations were performed on the divided training set,

including but not limited to image flipping, rotation, cropping,

scaling, and blurring (21, 22).
2.3.3 Construction of segmentation model
CT images have 3D structures, and the traditional method

convert them into 2D slices and then send into the 2D

segmentation model, which results in the loss of spatial

information. In this study, a 3D convolutional neural network

(3D U-Net) was constructed to segment lesions directly, which

comprehensively preserved the spatial information between

slices (23, 24).

Similar to the classic U-Net, the 3D U-Net also consists of

Encoder and Decoder, each of which contains four sub-modules.

In the Encoder, each sub-module contains two 3 × 3 × 3

convolutional layers, and each convolutional layer is connected

to an activation function. After completing the convolution

operation, max-pooling with a stride of 2 is performed on

each dimension. In Decoder, each sub-module contains an

upsampling process (deconvolution operation) with a stride of

2, and then two 3 × 3 × 3 convolutional layers and activation

functions are added in turn. It must be emphasized that the

padding in the convolutional layer of this module is set to 1,

which makes the convolution operation not change the size of

the image. Changes in image size are completely controlled by

pooling and upsampling. Additionally, the last sub-module of

the Decoder consists of a 1 × 1 × 1 convolutional layer, which

reduces the number of output feature maps. Batch normalization

(BN) was introduced before each activation function.

This work aims to segment liver tumors from other tissues,

where the input channel of the model was set to 256 × 256 × 48,

and the activation function adopted ReLU. After the

construction was completed, the total parameters and the
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trainable parameters of the neural network reached 4,122,466

and 4,117,570, respectively.
2.4 Radiomics feature extraction
and selection

Feature extraction is an essential part of radiomics analysis.

In this study, we performed radiomic feature extraction for

segmented liver tumors. Using the Pyradiomics 3.0.1 library in

Python, a total of 788 dimensional features including Shape,

Firstorder, GLCM, GLRLM, GLSZM, and GLDM were

extracted. Each type of features was performed 9

transformations including Original, Wavelet-LLH, Wavelet-

LHL, Wavelet-LHH, Wavelet-HLL, Wavelet-HLH, Wavelet-

HHL, Wavelet-HHH, and Wavelet-LLL. Among them,

“Wavelet-XXX” represents the wavelet transform, followed by

the corresponding basis function type.

Due to the high dimension of the extracted features, it is easy

to cause “dimensionality disaster” and affect the model

performance. Therefore, selecting features with large

contributions can reduce the dimension as much as possible

without affecting the comprehensiveness of the features. This

work employed the Least Absolute Shrinkage Selector Operator

(Lasso) algorithm to select the extracted features and ranked the

contribution of each feature. By constructing a penalty function,

Lasso can compress the coefficients of variables and make some

regression coefficients 0, so as to achieve the purpose of variable

selection. In addition, Lasso can also filter variables and reduce

the complexity of the model. The variable screening here refers

to not putting all the variables into the model for fitting, but

selectively putting the variables into the model to get better

performance parameters. Complexity adjustment refers to

controlling the complexity of the model through a series of

parameters to avoid overfitting. The optimal model was fit and

the value of the penalty parameter a was determined based on

the sklearn library in Python. For the dimensionality-reduced

features, correlation coefficients and cluster heatmaps, as well as

the coefficient distribution of each feature are visualized to better

interpret the radiomics features.
2.5 Selection of clinical baseline features

This study collected clinical baseline data of HCC patients in

addition to CT images, such as personal information and clinical

indicators. The gender and age of patients were collected as

personal information data. Clinical indicators here were mainly

tumor markers and liver function indicators, including alpha-

fetoprotein (AFP), hepatitis B surface antigen (HBsAg), albumin

(ALB), the total bilirubin (T- BIL), alanine aminotransferase

(ALT) and aspartate aminotransferase (AST), etc. It should be

noted that positive and negative results were obtained for AFP
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and HBsAg, while other liver function indicators were

represented as specific test results.
2.6 Construction of recurrence
prediction models

A total of seven feature representations, including selected

radiomics features during AP, PVP, and DP, clinical baseline

features, and their combined features, were input into the

recurrence prediction models. The Boosting ensemble learning

algorithms were adopted to predict the RFS outcome within

3 years.

2.6.1 Light gradient boosting machine
Gradient Boosting Decision Tree (GBDT) is a classic

ensemble algorithm in machine learning. Its main idea is to

employ weak classifiers (decision trees) to iteratively train to

obtain the optimal model, which has the advantages of good

training effect and not easy overfitting. LightGBM (Light

Gradient Boosting Machine) is a framework for implementing

the GBDT algorithm. It supports efficient parallel training and

has faster training speed, lower memory consumption, better

accuracy, support for distributed and fast processing of massive

data, etc. (25). Currently, this framework has been relatively

widely used in the field of medical data processing (26–28), but it

has not been attempted in the HCC recurrence prediction task.

A leaf-wise algorithm with a depth limit is adopted in

LightGBM. This strategy finds the leaf with the largest split

gain from all the current leaves each time, and then splits and

loops, which reduce more errors and get better accuracy under

the same number of splits. Moreover, the Gradient-based One-

Side Sampling (GOSS) operation is proposed to reduce

computation and improve accuracy. This method does not

calculate the gradient through the sample points used, but

calculates the gradient by partial sampling. The Exclusive

Feature Bundling (EFB) is also proposed to bundle some

features together to reduce the feature dimension, thereby

reducing the time-consuming to find the best fork. This study

implemented the LightGBM algorithm based on the sklearn

library in Python to perform the binary classification task, that

is, recurrence or not within 3 years.
2.6.2 Categorical boosting
Categorical Boosting (CatBoost), as a novel ensemble

learning algorithm, has been applied to some medical data

processing tasks, but has not been used to predict HCC

recurrence (29, 30). Catboost adopts the oblivious tree as the

base tree model, which is characterized by the same
Frontiers in Oncology 05
segmentation features in each layer. Leaf nodes can be

converted to binary codes, and the value of the node is stored

in a floating-point vector of length 2 to the power of d (d is the

depth of the tree). One of the advantages of this tree is that the

prediction performance is better, and this structure can also

weaken the shortcomings of easy fitting in decision trees to a

certain extent. When Catboost completes training, it stores the

leaf node value of each tree into a vector. When predicting, it can

quickly retrieve the corresponding leaf node value by judging

which leaf node it is in, so it can improve the prediction

efficiency and enhance the model performance. This work

selected it for predicting HCC recurrence.

2.6.3 eXtreme gradient boosting
XGBoost has been widely used in the field of medical data

analysis since it was proposed in 2014 (31, 32). In the HCC

recurrence prediction task, this algorithm was also tried and

achieved significant results (19). Its greedy algorithm-based split

node calculation and missing value handling techniques are very

suitable for data mining. The algorithm was trained to predict

RFS outcomes and compared with other models such as

LightGBM and CatBoost.

2.6.4 Gradient boosting decision tree
We also employed GBDT as the baseline model for

comparison. It is an ensemble learning algorithm based on

decision trees that iterates over new learners through gradient

descent. In this paper, the classification task was performed,

and the Classification And Regression Tree (CART)

was selected.
2.7 Statistical analysis

For the analysis of clinical baseline data, the differences

involved in this study were compared using student t-test or

Mann-Whitney U-test, where the criterion of significant

difference was set at P<0.05. Mean ± 95% confidence interval

(CI) was calculated as results for continuous variables. To reflect

the criticality of certain variables, the univariate Kaplan-Meier

curve was introduced for survival analysis.

We calculated the mean Intersection overUnion (mIoU),

accuracy (Acc), Kappa and Dice coefficients of 3D U-Net to

reflect the segmentation effect. Additionally, Acc, recall,

precision (Prec), F1 score, receiver operating characteristic

curve (ROC) and corresponding AUC were introduced as

performance evaluation criteria for the ensemble learning

models. It should be emphasized that the classification

threshold was set to 0.5.
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2.8 Experimental setup

The image data during the three scanning periods were

randomly divided into training set, validation set and test set

according to the ratio of 8:1:1. The segmentation model was

trained on the training set and validation set, and the test set was

employed to demonstrate the performance. All lesions

segmented by the model during three periods were acquired

and their radiomic features were extracted. For the Lasso

regression algorithm, the study obtained the best a value

through 10-fold cross-validation to select key features.

Considering the small sample size, this study selected the 5-

fold cross-validation method to determine the features

representation and predict the recurrence outcome, and

calculated the mean value of five experiments and the

corresponding 95% CI as the results. The relevant computing

equipment for this experiment was configured with a CPU AMD

Ryzen 7 5800H (16 GB memory) and a GPU NVIDIA® Tesla

V100 (32 GB memory) with acceleration support of the compute

unified device architecture (CUDA). All work was carried out in

the Windows 10 operating system, and the programming

language, deep learning framework and key libraries included

Python 3.7, Pytorch, Pyradiomics, sklearn, VTK, etc.
3 Results

3.1 Analysis of patients’ basic data

During follow-up, 52 patients (49.52%) were found to have

recurrence within 3 years after surgery, of which 46 (88.46%)

were male and 6 (11.54%) were female; 24 (46.15%) were aged 60

years or older and 28 (53.85%) were younger than 60 years old;

34 (65.38%) were AFP positive, and 18 (34.62%) were negative;

51 (98.08%) were HBsAg positive, and 1 (1.92%) were negative.

53 patients (50.48%) were found to have no recurrence within 3

years after surgery, of which 41 (77.36%) were male and 12

(22.64%) were female; 25 (47.17%) were aged 60 years or order

and 28 (52.83%) were younger than 60 years old; 30 (56.60%)

were AFP positive, and 23 (43.40%) were negative; 45 (84.91%)

were HBsAg positive, and 8 (15.09%) were negative. Based on

this, a univariate Cox proportional hazards model was

established to judge the influence of different factors on RFS,

and the related results were represented by the Kaplan-Meier

curves (Figure 2). Through the statistics of gender classification

group (HR=1.85, P=0.155) and HBsAg result classification

group (HR=6.15, P=0.072), it was found that gender and

HBsAg affect RFS to some extent although the differences were

not significant, followed by AFP (HR=1.37, P=0.280). Notably,

age was not significantly associated with recurrence outcome

from the age-categorized group in this study (HR=0.90,

P=0.711). However, patient’s age is a key factor affecting
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prognosis from previous studies (20, 33), so we still regarded it

as one of the features. Table 1 shows the statistical results of

some continuous clinical indicators. It can be found that ALB, T-

BIL, ALT, and AST (P=0.149, 0.377, 0.128, and 0.223,

respectively) were relatively significantly different or not

significantly different between the recurrence and non-

recurrence groups.
3.2 Results of lesion segmentation

The training and validation sets during the three periods

were input into 3D U-Net for training, and the model

performance was optimized through parameter adjustment

and continuous iteration. The key hyperparameters were set as

follows: Momentum optimizer was selected and set to 0.9, initial

learning rate, weight_decay and batch_size were set to 0.001,

4.0×10-3, 2, respectively. After the model iterated for 500 epochs,

it fully converged (the loss value of the validation set was lower

than 0.001). At this point, we stopped the training and saved the

parameters. The performance on the test set was excellent, with

mIoU of 0.8874, Acc of 0.9915, Kappa of 0.8738 and Dice

coefficient of 0.9360, which indicates that the deep learning

model has strong generalization ability for segmenting liver

lesions. To visually compare the segmentation effects, this

paper presents 3D reconstruction visualization images of the

upper abdomen based on CT scans, manually annotated tumors,

and deep learning-segmented tumors (Figure 3). The VTK

library in Python was adopted as the relevant drawing tool. It

must be emphasized that the lesion areas involved in subsequent

calculations were automatically segmented by the trained model.
3.3 Results of radiomics feature
extraction and selection

A total of 788 radiomic features were extracted in this study,

including 100 features from original transform and 688 features

from wavelet transform. In the original transform, the extracted

contents were 14 shapes, 18 firstorder, 22 GLCM, 16 GLRLM, 16

GLSZM and 14 GLDM features. In the wavelet transform, the

contents extracted by Wavelet-LLH, Wavelet-LHL, Wavelet-

LHH, Wavelet-HLL, Wavelet-HLH, Wavelet-HHL, Wavelet-

HHH, and Wavelet-LLL included 144 firstorder, 176 GLCM,

128 GLRLM, 128 GLSZM and 112 GLDM features. Since high-

dimensional features may affect model performance,

dimensionality reduction and selection of contributing features

is significant.

The Lasso algorithm was used for fitting to obtain the best a
values during AP, PVP and DP, respectively. The model was

fully converged after 10,000 iterations based on the 10-fold

cross-validation. The optimized a values for AP, PVP and DP

were calculated as 0.0518, 0.0244 and 0.0202, respectively.
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Meanwhile, 22, 38, and 41 features with contribution degrees

were selected during the above three periods respectively.

Figures 4A, B, and C show the selected feature names and the

corresponding coefficients distribution in AP, PVP, and DP,

respectively. Figure 5 shows the correlation coefficient between

the features and the clustering results through heatmaps (the

color depth represents the correlation strength).
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3.4 Results of recurrence prediction

3.4.1 Comparison of different feature
representations

Seven feature representation methods for evaluating the

prognosis of HCC were considered, including clinical baseline

features, radiomics features of AP, radiomics features of PVP,
TABLE 1 Statistical results of 4 clinical indicators.

Clinicalindicator Total dataset (N = 105) P-value

Recurrence (N =52) Non-recurrence (N = 53)

ALB(g/L) 40.36 ± 1.28 40.42 ± 1.26 0.1493

T-BIL(mmol/L) 20.32 ± 4.81 20.34 ± 4.69 0.3765

ALT(u/L) 51.12 ± 15.42 50.89 ± 15.02 0.1282

AST(u/L) 42.78 ± 12.23 42.20 ± 11.92 0.2233
front
all outcomes are based on recurrence within 3 years after surgery. ALB, T-BIL, ALT, and AST represent albumin, the total bilirubin, alanine aminotransferase and aspartate
aminotransferase, respectively. Each indicator is represented by the mean of the sample and the corresponding 95% confidence interval (CI).
B

C D

A

FIGURE 2

Kaplan-Meier survival analysis curve of patients, where the variables in (A–D) are gender, age, alpha-fetoprotein (AFP), hepatitis B surface
antigen (HBsAg) respectively.
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radiomics features of DP, radiomics features of AP combined

with clinical indicators, radiomics features of PVP combined

with clinical indicators, and radiomics features of DP

combined with clinical indicators. In order to explore the

most excellent feature representation, we separately input the
Frontiers in Oncology 08
above features into the ensemble learning algorithms and

optimized the training. Considering the randomness of the

results based on the small sample size, the training process

adopted 5-fold cross-validation, that is, the dataset was

randomly divided into 5 equal parts, 4 of which were used
FIGURE 3

3D reconstruction visualization images before and after segmentation. (A) is the 3D visualization of the original CT image before segmentation;
(B) is the 3D visualization after manually segmenting the tumor; (C) is the 3D visualization after segmenting the tumor using deep learning.
B

C

A

FIGURE 4

Distribution of selected radiomics feature coefficients. (A–C) show the features and their distributions during arterial phase (AP), portal venous
phase (PVP) and delay period (DP), respectively.
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for training and the remaining 1 was used for testing. This step

was repeated 5 times. The average value of 5 experiments and

the corresponding 95% CI were regarded as the evaluation

standard. Meanwhile, the ROC curves and their AUC values

reflected the generalization ability of the models. The ROC

curves of the models with different features were drawn and

their AUC values were calculated. Due to space limitations, we

only show the results using the LightGBM algorithm in Table 2

and Figure 6, and the rest of the results are in the Appendix. It

can be seen that the effect of combining radiomics features with

clinical baseline indicators was better than inputting radiomics

features or clinical indicators alone, with AP combining

obtaining the best effect, followed by DP combining and PVP

combining. The effect of only inputting clinical indicators was

the least satisfactory, which might be caused by too little

information represented by the features.
Frontiers in Oncology 09
3.4.2 Comparison of prediction models
Seven feature representations were employed to compare the

performance of ensemble learning models. Likewise, the study

performed five-fold cross-validation on each model and

calculated the associated evaluation metrics. During training,

GridSearchCV method was adopted to adjust the model

parameters and no overfitting occurred for each model. Due to

space limitations, we only show the results inputting the most

effective feature representations in this section, and the rest of

the results are in the Appendix. It is found that for the four

ensemble learning algorithms, different feature expressions input

have similar laws, so the following only analyzes the models

when radiomics features during AP and clinical indicators are

input. Table 3 shows certain key parameters of each model. The

test results of the Boosting ensemble models are shown in

Table 4. It can be found that the performance of LightGBM
B

C

A

FIGURE 5

(A–C) represent the correlation and the clustering heatmaps between features during the AP, PVP and DP, respectively.
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was the most excellent, with an average Acc of 0.7600, recall of

0.7673, Prec of 0.7733, and F1 score of 0.7553, which indicated

that this algorithm can accurately predict recurrence outcome

within 3 years after surgery. It is worth noting that XGBoost

performed well in previous similar studies, but not as good as the

former in this task. It had an Acc of 0.7224 and an F1 score of

0.6936, which was not as superior to LightGBM. Additionally, as

the baseline model, GBDT only obtained an average Acc of

0.6543, recall of 0.6382, Prec of 0.6600 and F1 score of 0.6387.

The per-fold and averaged ROC curves and corresponding AUC

values are shown in Figure 7. LightGBM had the strongest

generalization, and its AUC reached 0.8338 (CI: ± 0.0680),

followed by CatBoost (0.8084 ± 0.0650), XGBoost (0.7441 ±

0.0946), and GBDT (0.7343 ± 0.0214).
4 Discussion

In this study, the LightGBM model was constructed for the

first time to accurately predict the recurrence outcome of HCC

within three years after surgery. An efficient feature

representation was explored, that is, the combination of

radiomics features of tumor during AP, patient personal

information, and clinical indicators. We trained the deep

learning automatic segmentation model to make the process

efficient. The results show that the proposed method was the

most effective, achieving an accuracy of 0.7600 and an AUC

of 0.8338.

Compared with manual segmentation, although the effect of

deep learning segmentation is not as good as the former, it has

higher efficiency and lower labor cost (34). In this paper, the

mIoU of 3D U-Net reached 0.8874, which indicated that this

algorithm can accurately segment the liver tumor region. It only
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took 1.22-1.85s to execute each sample on the local device, which

was much faster than the manual way. It is undeniable that deep

learning with excellent performance is the future trend of lesion

segmentation methods (35).

This work selected 22 radiomics features during AP combined

with 8 clinical baseline features from the seven feature

representations and validated superiority. This feature

combination eliminated dimensional redundancy, including

tumor features with large contribution coefficients and clinical

factors that affect prognosis. Notably, the present study found that

the radiomics features during AP were superior to during PVP

and DP, suggesting that AP might better capture features affecting

recurrence. In addition, combined representations outperformed

individual clinical or radiomics feature representations. Possibly

the combination increased the amount of available information,

making the model more likely to learn complex preoperative-

prognostic associations (36).

Four novel Boosting ensemble models were adopted for

comparison, among which LightGBM achieves the best

performance (AUC=0.8338), outperforming CatBoost

(AUC=0.8084), XGBoost (AUC=0.7441) and GBDT

(AUC=0.7343) when inputting radiomics features during AP

and clinical baseline indicators. Previous studies have confirmed

the state-of-the-art of the XGBoost algorithm in the HCC

prognosis prediction task (19). XGBoost belongs to the

boosting family and is an engineering implementation of the

GBDT algorithm. It focuses the residuals during training, uses a

second-order Taylor expansion in the objective function and

adds regularization. Meanwhile, the exact greedy idea is adopted

in the generation process of the decision tree. When looking for

the best split point, a pre-sort algorithm is adopted, that is, all

features are pre-sorted according to the value of the feature, and

then all the split points on all the features are traversed, and the
TABLE 2 Comparison of recurrence prediction results of ensemble learning models using different feature representations.

Feature representation Acc Recall Prec F1 score

Personal and 0.6062 0.6164 0.6019 0.6039

clinical indicators ± 0.0877 ± 0.1429 ± 0.0930 ± 0.1027

AP 0.7224 0.6946 0.7528 0.7156

± 0.0834 ± 0.0944 ± 0.1231 ± 0.0804

PVP 0.6438 0.6782 0.6409 0.6570

± 0.1117 ± 0.1122 ± 0.1019 ± 0.1014

DP 0.6343 0.6909 0.6331 0.6560

± 0.0690 ± 0.0413 ± 0.0872 ± 0.0520

AP+ 0.7495 0.7673 0.7402 0.7502

other indicators ± 0.0629 ± 0.1051 ± 0.0525 ± 0.0710

PVP+ 0.6824 0.6927 0.6844 0.6846

other indicators ± 0.0783 ± 0.0941 ± 0.0780 ± 0.0771

DP+ 0.6819 0.6309 0.7168 0.6630

other indicators ± 0.0659 ± 0.0912 ± 0.1273 ± 0.0756
fron
Each result is represented by the mean of 5 experiments and 95% CI.
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FIGURE 6

The ROC curves and the corresponding AUCs of the ensemble learning model with different feature representations. (A) is the result of
inputting personal information and clinical indicators; (B–D) are the results of inputting radiomic features during AP, PVP and DP respectively;
(E–G) are the results of inputting radiomics features during AP, PVP and DP combined with clinical data respectively.
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total number of samples split according to these candidate split

points is calculated. The objective function gain is to find the

feature and candidate splitting point corresponding to the

maximum gain, so as to split. XGBoost training is performed

by addition, that is, each time a tree is trained by focusing

residuals, and the final prediction result is the sum of all trees.

However, XGBoost performs pre-sorting in the selection of
Frontiers in Oncology 12
optimal split points, and then calculates the objective function

gain of all samples for all split points of all features. The space

and time complexity of this process is very large, and to a certain

extent affects the accuracy (31).

To address this issue, we adopted LightGBM for predicting

recurrence. Based on XGBoost, LightGBM employs histogram

algorithm to solve the problem of excessive number of split

points. This method takes up less memory and reduces

computation time. Secondly, it introduces the GOSS

algorithm, which extracts according to the weight information

of the samples to reduce a large number of samples with small

gradients, and at the same time does not change the distribution

of the dataset too much. Moreover, LightGBM also proposes the

EFB mode, which reduces dimensionality by bundling features.

Therefore, LightGBM can improve the model accuracy while

reducing the computational effort (37), which leads to its better

performance in the prognosis prediction task. In the future, it is

necessary to further validate the applicability of the proposed

method on larger datasets.

It should be emphasized that this study aimed to predict the

postoperative recurrence risk of patients only through

preoperative factors, including preoperative imaging

examination and clinical indicators detection. Because only in

this way can it help the doctor’s clinical decision-making.

Although postoperative pathological examinations, such as

microvascular invasion (MVI) are very meaningful for

recurrence prediction (38), they were not considered in this

study. The feasibility and effectiveness of this method have been

demonstrated in reference (39, 40).

There are some other studies to predict the recurrence of HCC

after surgery. Shen et al. (41) used the TCGA database and

machine learning method to build a prediction model for

recurrence of HCC patients, and optimized the recurrence

prediction model. After the model was optimized, the prediction

accuracy was 74.19%. Lee et al. (20) employed genetic algorithm to

predict early recurrence of HCC, and extracted a total of 143

features, including 26 preoperative clinical features, 5

postoperative pathological features, and 112 imaging features.

After training, the AUC of the preoperative and postoperative
TABLE 3 Key parameter settings for each ensemble learning model.

Model Parameter name Parameter settings

LightGBM n_jobs -1

n_estimators 600

learning_rate 0.01

max_depth 5

num_leaves 32

colsample_bytree 0.51

subsample 0.6

CatBoost iterations 5000

learning_rate 0.01

l2_leaf_reg 3

bagging_temperature 1

subsample 0.6

random_strength 1

depth 6

border_count 128

XGBoost learning_rate 0.001

n_estimators 1000

max_depth 5

min_child_weight 1

gamma 0

subsample 0.6

colsample_bytree 0.8

seed 27

GBDT n_estimators 1000

learning_rate 0.01

max_depth 5

random_state 4
TABLE 4 5-fold cross-validation results for recurrence prediction using different ensemble learning models.

Model Acc Recall Prec F1 score

LightGBM 0.7600 0.7673 0.7733 0.7553

± 0.0579 ± 0.1311 ± 0.0771 ± 0.0716

CatBoost 0.6833 0.6164 0.7107 0.6511

± 0.0543 ± 0.1313 ± 0.0397 ± 0.0879

XGBoost 0.7224 0.6346 0.8032 0.6936

± 0.0834 ± 0.1154 ± 0.1521 ± 0.0978

GBDT 0.6543 0.6382 0.6600 0.6387

± 0.0463 ± 0.1328 ± 0.0286 ± 0.0828
fron
Each model was evaluated employing the mean of each fold result and corresponding 95% CI.
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models were 0.781 and 0.767 on the training set, and 0.739 and

0.741 on the test set, respectively. Saito et al. (42) adopted support

vector machine (SVM) to predict the recurrence outcome of HCC

patients based on the postoperative pathological results. The

patients were grouped according to the criteria of recurrence

within 1 year, 1-2 years, and 4 years after resection. The final

accuracy of ROI prediction in HCC and non-HCC regions was

80.6% and 68.1%, respectively. It must be emphasized that our

work only collected 105 patients, but still obtained relatively

remarkable performance, suggesting that the proposed method

had more potential for predicting recurrence outcomes.

It is undeniable that the present study still has some

shortcomings. For example, the small sample size from a

single center challenges the applicability of the models. This

work only focuses on the prediction of recurrence outcomes

within 3 years, and further follow-up is required to predict at

different times in the future. Moreover, the proposed method has

not been tested in real clinical practice, which needs to be

validated in the future. Zeng et al. (43) developed a machine

learning method to predict the early recurrence of radical HCC

hepatectomy using the data from two centers, and the effect was

relatively significant. While we have mined the key features that

influence the model, the interpretability issues of machine

learning still need to be addressed.
Frontiers in Oncology 13
5 Conclusion

This study aims to help physicians to evaluate the

effectiveness of surgery and thus facilitate rational clinical

decision-making. An ensemble learning strategy based on

efficient feature representation was proposed for the

recurrence outcome in HCC patients within three years after

surgery. The 3D U-Net was used to automatically segment the

lesions. Radiomics features during AP and clinical baseline

features were selected as input and four ensemble models were

trained. The results showed that LighGBM outperformed other

ensemble algorithms, suggesting that it may be a novel model for

predicting recurrence. In the future, the dataset will be expanded

for early and late recurrence prediction and external clinical

validation will be performed to validate the applicability of the

method. When the generalization ability of the method is

successfully verified, the relevant software (or web program)

will be designed and applied to clinical practice.
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FIGURE 7

ROC curves and corresponding AUCs of various ensemble learning models. (A–D) represent the results of ensemble learning models - Light
Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost) and Gradient Boosting Decision
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