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Objective: To compare the dosimetric parameters of different radiotherapy plans [helical
tomotherapy (HT), volume-modulated arc therapy (VMAT), and fixed-field intensity-modulated
radiation therapy (FF-IMRT)] for locally advanced nasopharyngeal carcinoma (NPC).

Methods: A total of 15 patients with locally advanced NPC were chosen for this
retrospective analysis and replanned for HT, VMAT, and FF-IMRT. The prescribed
planning target volume (PTV) dose for the primary tumor and metastatic lymph nodes
was 70 Gy (2.12 Gy/fraction, delivered over 33 fractions). The prescribed PTV dose for the
high-risk subclinical region was 59.4 Gy (1.8 Gy/fraction, delivered over 33 fractions). The
dosimetric parameters of the PTV and organs at risk (OARs) and the efficiency of radiation
delivery were assessed and compared using the paired-samples t-test.

Results: Compared with VMAT and FF-IMRT plans, HT plans significantly improved the
mean conformity index (CI) and homogeneity index (HI). The HT plans reduced the
maximum doses delivered to OARs, such as the brainstem, spinal cord, and optic nerves,
and significantly reduced the volume delivered to the high-dose region, especially when
examining the V30 value of the parotid glands. However, VMAT reduced the treatment time
and improved the efficiency of radiation delivery compared with HT.

Conclusions: For locally advanced NPC, the results showed that HT and VMAT
possessed better target homogeneity and conformity, reducing the dose delivered to
OARs compared with conventional FF-IMRT, with HT achieving the best effect. Among the
techniques studied, VMAT had the shortest radiation delivery time. The results of this
study can provide guidance for the selection of appropriate radiation technologies used to
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treat patients with locally advanced NPC who are undergoing concurrent
chemoradiotherapy.
Keywords: radiotherapy technique, helical tomotherapy (HT), volume-modulated arc therapy (VMAT), fixed-field
intensity-modulated radiation therapy (FF-IMRT), nasopharyngeal carcinoma (NPC)
1 INTRODUCTION

Nasopharyngeal carcinoma (NPC) is among the most common
head and neck cancer. The incidence of NPC has unique
geographical and ethnic distribution patterns, with a high
incidence in Asia, particularly in Southeast Asia. According to
data from GLOBOCAN 2012, high incidence rates have been
identified in several provinces of southeast China (such as
Guangdong, Hongkong), Thailand, and the Philippines (1).
NPC cases in China represented 48.62% and 50.34% of
the incidence and mortality for all cases of Asia in 2012,
respectively (2). Approximately 68% of NPC patients
suffer from locally advanced disease at the time of diagnosis
(3). Due to the complex anatomy and small region for surgery,
the primary treatment modality for NPC is radiotherapy.
Early-stage NPC can only be treated with radiotherapy.
Locally advanced NPC is typically treated with concurrent
chemotherapy and radiotherapy (CCRT) (4). However, CCRT
can lead to considerable acute and late toxicities in many of the
normal structures surrounding the nasopharynx, such as the
pharyngeal mucosa, parotid glands, and cranial nerves (5, 6).
Therefore, an increasing number of studies have begun to focus
on reducing treatment-related side effects in patients with NPC
undergoing CCRT.

Modern radiation techniques have evolved alongside the
development of radiation equipment and advancements in
radiation physics in recent years. Following the conventional
three-dimensional conformal radiation therapy (3D-CRT)
technique, intensity-modulated radiation therapy (IMRT) can
achieve specific dosimetric and clinical objectives through a
computer-aided optimization process (7), providing highly
conformal dose distributions to the planning target volume
(PTV), minimize the dose delivered to organs at risk (OARs)
(8, 9), and significantly reduce acute and late toxicity (10, 11).
Volume-modulated arc therapy (VMAT) and helical
tomotherapy (HT) are gaining increasing attention compared
with conventional fixed-field IMRT (FF-IMRT, 5/7/9-field).
VMAT uses low monitor units (MUs) and treatment times,
varying dose rates, and a dynamic multileaf collimator (MLC)
based on a variable-speed rotational treatment paradigm. HT is a
rcinoma; HT, helical tomotherapy;
y; FF-IMRT, fixed-field intensity-
ns at risk; CI, conformity index; HI,
emotherapy and radiotherapy; PTV,
its; MLC, multileaf collimator; AJCC,
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new computed tomography (CT)-based rotational IMRT that
delivers a highly conformal dose distribution and spares OARs
through the use of 51 independent beam directions and 64
pneumatically driven MLC leaves.

However, the high costs of primary equipment and
maintenance for HT treatment systems result in increased
treatment costs, which limits the use of this modality in
clinical practice, especially in lower-income countries. This
study aimed to assess three modern IMRT techniques (HT,
VMAT, and FF-IMRT) in terms of the dosimetric parameters
measured for the PTV and OARs in locally advanced NPC and to
determine whether HT has significant dosimetric impacts that
might justify the costs associated with this modality.
2 MATERIALS AND METHODS

2.1 Patient Characteristics and CT
Simulation
A total of 15 patients with Stage III/IVA NPC treated between
February 2019 and February 2020 in our hospital were chosen for
this research. All patients were staged according to the American
Joint Committee on Cancer (AJCC) Manual for Staging of
Cancer, 8th edition (12). The selection criterion was biopsy-
proven squamous cell carcinoma. The ages of all eligible patients
ranged from 39 to 68 years, and the mean and median ages were
56.7 and 60 years, respectively. A total of 10 patients received
CCRT, 2 patients received radiotherapy and concurrent weekly
targeted therapy with nimotuzumab, and 3 patients received
both chemotherapy and targeted therapy with nimotuzumab
during radiotherapy. The information for all patients is shown in
Table 1. Thermoplastic head, neck, and shoulder masks were
used to immobilize all patients in a supine position to perform
CT simulations with 3-mm slice thickness using a Philips 16-
slice Brilliance big bore CT scanner (Philips Medical Systems,
Amsterdam, Netherlands) following the administration of
intravenous contrast. Scanned images were obtained from the
top of the head to the carina for all patients.

2.2 Target and Normal Tissue Volume
Definition
All CT images were transferred to the Monaco 5.11 (Elekta AB,
Stockholm, Sweden) planning system for contouring. For
consistency, all contouring of the target and OARs was
performed by the same radiation oncologists who specialized
in head and neck radiotherapy. The target volume delineation
of the NPC was based on the Radiation Therapy Oncology
Group (RTOG) 2009 guidelines (13). The gross tumor volume
(GTV70) was defined as the known gross disease of the
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nasopharynx. Grossly positive lymph nodes (GTVnd) were
defined as any lymph node >1 cm or nodes with necrotic
cancer. The clinical target volume for 59.4 Gy (CTV59.4) was
defined as the region at high risk for microscopic disease, which
included all potential routes of spread for primary and nodal
diseases. The primary high-risk regions included the entire
nasopharynx, anterior one-third of the clivus, skull base,
pterygoid fossa, parapharyngeal space, inferior sphenoid sinus,
posterior one-fourth of the nasal cavity/maxillary sinuses,
inferior soft palate, and retrostyloid space. The common high-
risk lymph node regions typically included the bilateral upper
deep jugular, retropharyngeal area, and levels II, III, IV, and V
lymph nodes. Level IB lymph nodes can be spared in selected
patients. The OARs for NPC include the brainstem, spinal cord,
optic nerves, optic chiasm, eyes, lens, temporal lobe, parotid
glands, pituitary, temporomandibular joints (TMJ), mandible,
oral cavity, brachial plexus, esophagus, and larynx. The PTV was
defined as the CTV area + 3 mm.

2.3 Treatment Planning and Prescribed
Doses
All treatment planning procedures were developed by the same
radiation physicist to ensure consistency. The FF-IMRT and
VMAT plans were designed using the Monaco planning system
version 5.11, and the HT plans were designed in the tomotherapy
planning system (Accuray Inc., Madison, USA). The FF-IMRT
and VMAT plans were designed to be executed using the Elekta
Synergy (Elekta Ltd., Crawley, UK), equipped with 8-MV photon
beams, and the MLCi2 (40 pairs of MLC leaves, each with a 1-cm
width at the isocenter). The prescribed PTV dose for the primary
tumor (PTV70) and metastatic lymph nodes (PTVnd) was 70 Gy
(2.12 Gy/fraction, delivered over 33 fractions). The prescribed
PTV dose for the high-risk subclinical region was 59.4 Gy (1.8
Gy/fraction, delivered over 33 fractions). The details regarding
the dose constraints for normal tissues within the NPC plans are
summarized in Table 2.
Frontiers in Oncology | www.frontiersin.org 3
2.3.1 HT Plans
The HT plans were generated using a tomotherapy planning
station with a 6-MV X-ray and performed on the Tomo HD
(Accuray Inc., Madison, USA). The parameters for beamlet
calculation included a field width of 2.5 cm, a pitch value of
0.287, a modulation factor of 3, and a normal dose
calculation grid.

2.3.2 VMAT Plans
The VMAT plans were generated in the Monaco 5.11 planning
system, and an 8-MV X-ray in a Synergy linear accelerator was
used. The VMAT plans were designed using a beam with double
360° arcs, featuring 100 control points per arc. All VMAT plans
were designed using the Monte Carlo algorithm in the Monaco
5.11 planning system.

2.3.3 FF-IMRT Plans
The FF-IMRT plans were generated in the Monaco 5.11 planning
system, and an 8-MV X-ray in a Synergy linear accelerator was
used. Nine evenly distributed coplanar fields with gantry angles
of 200°, 240°, 280°, 320°, 0°, 40°, 80°, 120°, and 160° were used,
featuring 20 control points in each beam. All FF-IMRT plans
were prepared using the Monte Carlo algorithm in the Monaco
5.11 planning system. The optimization functions of the FF-
IMRT plans were the same as those in the VMAT plans. The
dynamic MLC (DMLC, sliding window) technique was used in
the FF-IMRT plans.

2.4 Plan Evaluation Parameters
The data obtained in the dose–volume histogram (DVH) for all
plans were analyzed, and plan comparisons focused on the
following parameters.

2.4.1 PTV Coverage
The dose that received 98% volume of the PTV (D98%), the dose
that received 50% volume of the PTV(D50%), the dose received
2% volume of the PTV(D2%), the mean dose (Dmean), the
conformity index (CI), and the homogeneity index (HI) were
TABLE 2 | The dose–volume constraints of normal tissues in NPC.

Structures Dose–volume constraints

Brainstem Dmax < 54 Gy
Spinal cord Dmax < 45 Gy
Optic nerves Dmax < 54 Gy or D1 < 60Gy
Optic chiasm Dmax < 54 Gy
Lens Dmax < 8 Gy
Eyes Dmax < 40 Gy
Pituitary Dmax < 60 Gy
Mandible Dmax < 70 Gy
TMJ Dmax < 70 Gy
Brachial plexus Dmax < 66 Gy
Oral cavity V40 < 40%
Parotid gland V30 < 50%
Temporal lobes Dmax < 60 Gy or D1 < 65Gy
Larynx V45 < 40%
Esophagus V45 < 40%
November 2021 |
TABLE 1 | Clinicopathological characteristics of the patients with
nasopharyngeal carcinoma (NPC).

Characteristics No. of Patients (N = 15)

Age(years)
≤60 9
>60 6

Sex
Male 13
Female 2

Pathology (SCC*)
Poorly differentiated 10
Non-keratinizing 5

Clinical stage
III 10
IVA 5

Concurrent therapy
Chemotherapy 10
Targeted therapy 2
Chemotherapy + targeted therapy 3
*SCC, squamous cell carcinoma.
Volume 11 | Article 764946
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quantified to evaluate PTV coverage. The CI was used to evaluate
the conformity of the prescribed dose distribution:

CI =
Vt,ref

Vt
� Vt,ref

Vref

where Vt,ref, Vt, and Vref denote the target volume that received
the prescribed dose, the target volume, and the total volume
covered by the prescribed dose, respectively. The CI ranges from
0 to 1, with a high CI indicating a high conformal dose delivery to
the target. In accordance with The International Commission on
Radiation Units and Measurements (ICRU) report No. 83 (14),
the HI was calculated using the following formula:

HI =
D2% − D98%

D50%

HI was used to evaluate the homogeneity of the dose
distribution. The low HI value indicates good homogeneity of
the target volume.

2.4.2 Organs at Risk
For patients with NPC, the following values were determined: the
maximum doses (Dmax) delivered to the brainstem, spinal cord,
optic nerves, optic chiasm, lens, eyes, pituitary, mandible, TMJ,
and brachial plexus; the mean doses (Dmean) delivered to the
larynx, oral cavity, and esophagus; the volume that received 30
Gy (V30) and the Dmean for the parotid glands; the dose delivered
to 1% of the OAR volume (D1); and the maximum dose (Dmax)
delivered to the temporal lobes.

2.4.3 Treatment Time
The treatment delivery time for each plan was determined
and compared.

2.4.4 Data Analysis
All plans were normalized to deliver the prescribed dose to 95%
volume of the PTV to allow for comparison across results. The
data collected from the DVHs for the PTV and OARs were
Frontiers in Oncology | www.frontiersin.org 4
analyzed using SPSS 19.0 (SPSS, Inc., Chicago, IL, USA).
Significant differences were tested using the paired-samples t-
test. A p < 0.05 was considered significant.
3 RESULTS

3.1 PTV Coverage
The mean PTV70, PTVnd, and PTV59.4 values for NPC were 53.6 ±
30.3 cc (11.3–106.5 cc), 41.6 ± 38.9 cc (6.9–107.9 cc), and 674.0 ±
142.4 cc (503.3–874.0 cc), respectively. All HT, VMAT, and FF-
IMRT plans were normalized to cover 95% of the PTV
with ≥100% of the prescribed dose. The Dmax constrained in the
PTV was <110% of the prescription dose.

The detailed results are shown in Table 3. The conformal and
homogeneous dose distribution to the PTV target for the HT
plans, as assessed using the CI and HI, respectively, were
significantly better than those for the VMAT and FF-IMRT
plans (p < 0.001; Figure 1). The HT plans also had the best Dmean

value (p < 0.001), approaching the prescription dose,
demonstrating significant advantages over the other two
plans. Compared with the conventional FF-IMRT plans, the
VMAT plans did not show significant superiority for HI and CI
(p > 0.05), and only the CI of PTV59.4 was better for VMAT
compared with FF- IMRT (p = 0.016). Typical dose distributions
and dose–volume histograms for the three plans are presented
in Figures 2 and 3.
3.2 OARs
The DVH data for the OARs in NPC are listed in Table 4. Our
results showed that the Dmax values for the brainstem, spinal
cord, optic nerves, lens, eyes, pituitary, TMJ left, and temporal
lobes assessed in HT plans were significantly lower than those in
FF-IMRT and VMAT plans (p ≤ 0.01). HT also resulted in
significantly improved dose sparing based on the V30 value of the
parotid glands, the D1 of the temporal lobes, and the Dmean of the
TABLE 3 | Dosimetric parameters for PTV of three plans.

Parameters IMRT VMAT HT p*

VMAT vs. IMRT HT vs. IMRT HT vs. VMAT

PTV70
Dmean (Gy) 72.10 ± 0.49 72.24 ± 0.37 70.63 ± 0.23 0.117 <0.001 <0.001
HI 0.07 ± 0.01 0.07 ± 0.01 0.03 ± 0.01 0.217 <0.001 <0.001
CI 0.75 ± 0.04 0.76 ± 0.03 0.82 ± 0.04 0.086 <0.001 <0.001
PTVnd
Dmean (Gy) 72.11 ± 0.52 72.30 ± 0.25 70.63 ± 0.25 0.409 <0.001 <0.001
HI 0.07 ± 0.02 0.07 ± 0.02 0.03 ± 0.01 0.726 <0.001 <0.001
CI 0.77 ± 0.05 0.78 ± 0.04 0.82 ± 0.04 0.184 <0.001 <0.001
PTV59.4
Dmean (Gy) 62.50 ± 0.60 62.47 ± 0.49 60.85 ± 0.43 0.765 <0.001 <0.001
HI 0.17 ± 0.04 0.17 ± 0.04 0.11 ± 0.01 0.082 <0.001 <0.001
CI 0.65 ± 0.08 0.66 ± 0.08 0.76 ± 0.08 0.016 <0.001 <0.001
Novem
ber 2021 | Volume 11 |
*P value was computed by paired t test.
Article 764946

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lu et al. Radiation Techniques in NPC
larynx, compared with FF-IMRT and VMAT (p < 0.05).
Compared with FF-IMRT, VMAT significantly decreased the
Dmax of the brainstem, spinal cord, optic nerve, eyes, TMJs, and
temporal lobe and decreased the Dmean of the larynx and
esophagus (p < 0.05).
Frontiers in Oncology | www.frontiersin.org 5
3.3 Treatment Time
The treatment delivery times for the three treatment techniques
were determined to study the execution efficiency of the three
radiotherapy technologies. The mean treatment delivery times
for FF-IMRT, VMAT, and HT were 7.49 ± 0.32, 4.40 ± 0.29,
FIGURE 1 | Conformity index (CI) and homogeneity index (HI) for planning target volume (PTV) with intensity-modulated radiation therapy (IMRT; circle), volume-
modulated arc therapy (VMAT; square), and helical tomography (HT; triangle). *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 2 | Typical dose distributions for the three plans in locally advanced nasopharyngeal carcinoma (NPC). (A) Fixed-field intensity-modulated radiation therapy
(FF-IMRT), (B) volume-modulated arc therapy (VMAT), and (C) helical tomography (HT) plans.
November 2021 | Volume 11 | Article 764946
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and 7.59 ± 0.40 min, respectively. Compared with FF-IMRT and
HT, VMAT had the highest execution efficiency.
4 DISCUSSION

Cancer is a major public health problem worldwide and is
expected to represent the leading cause of death in every
country during the twenty-first century. Worldwide, 129,079
newly diagnosed NPC cases and 72,987 NPC-related deaths
were reported in 2018 (15). In southeast China, the incidence
of NPC is higher than in most other countries. Due to the unique
anatomical structure of the nasopharynx and the high sensitivity
of NPC to ionizing radiation, radiotherapy is the preferred
treatment. With the continued development of radiotherapy
technology, local NPC control and survival have significantly
improved over the past half-century (16). CCRT is a standard
treatment for locally advanced NPC. However, 15.8% of NPC
patients experience recurrence within 5 years after radiotherapy,
especially among patients with advanced disease (17), indicating
that novel treatment approaches remain necessary.

Molecular targeted therapy and immunotherapy represent
two new approaches to NPC. Epidermal growth factor receptor
(EGFR) is highly expressed in NPC compared with other solid
Frontiers in Oncology | www.frontiersin.org 6
tumors (18). A retrospective analysis showed that an EGFR
inhibitor (e.g., nimotuzumab) combined with CCRT was
beneficial for treat ing local ly advanced NPC (19).
Immunotherapy has become a hotspot for cancer treatment
research. Clinical trial data have shown that immune-
checkpoint inhibitors, such as those against programmed cell
death 1 (PD-1), can be effective in patients with recurrent or
metastatic NPC (20, 21). However, the feasibility of concurrent
immunotherapy and radiotherapy in locally advanced NPC
remains unclear.

For patients with recurrent disease, the primary cause of local
recurrence is insufficient irradiation dose delivered to the target
area, which is limited by the dose tolerance of the surrounding
OARs. Therefore, exploring feasible and optimized
radiotherapeutic techniques is critical to achieving highly
conformal treatment plans and acquiring good OAR sparing
results. A number of constraining organs surround the
irradiation area in NPC, and radiotherapy may cause acute or
late adverse effects of these structures (e.g., acute mucositis,
xerostomia, and temporal lobe neuropathy). Our study aimed
to decrease the radiation doses and irradiated volumes of
these structures.

CCRT has demonstrated improved survival benefits in locally
advanced NPC, but it typically induces acute and late toxicities,
A B

C D

FIGURE 3 | Typical dose–volume histograms for the three plans in locally advanced nasopharyngeal carcinoma (NPC). Dose–volume histograms for planning target
volume of 70 Gy (PTV70; red), planning target volume for metastatic lymph nodes (PTVnd; brown), planning target volume of 59.4 Gy (PTV59.4; purple), (A) the brainstem
(blue), (B) optic nerve (orange), (C) parotid gland (pink), and (D) temporal lobe (green).
November 2021 | Volume 11 | Article 764946
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sometimes emerging months or even years after treatment
completion (22). A phase II study showed that the addition of
an anti-EGFR antibody to radiotherapy enhanced radiotherapy-
related acute toxicities to the skin and mucosa (23). Therefore,
attention should be paid to side effects related to the treatment
and their effects on quality of life among patients with NPC, in
addition to the local tumor control rate. As one of the few
hospitals in China equipped with several advanced linear
accelerators (nine linear accelerators, including Versa HD and
HT), our hospital had the unique capacity to perform a
Frontiers in Oncology | www.frontiersin.org 7
dosimetric study of IMRT, VMAT, and HT. Reports
comparing the dosimetric parameters of FF-IMRT, VMAT,
and HT with regard to the PTV and OARs in NPC are rare.
Therefore, this study aimed to estimate which of the three
radiotherapy techniques were dosimetrically superior to
provide guidance regarding technique selection for patients
with locally advanced NPC.

Due to the complex anatomy and various OARs closely
positioned to NPC target tissues, radiotherapy for NPC is
technically challenging and highly complex. Previous studies
TABLE 4 | Dose–volume histogram comparisons for the main OARs of three plans.

OARs IMRT VMAT HT p*

VMAT vs. IMRT HT vs. IMRT HT vs. VMAT

Brainstem
Dmax (Gy) 53.77 ± 1.33 53.16 ± 1.26 51.84 ± 1.95 0.006 <0.001 0.002

Spinal cord
Dmax (Gy) 43.99 ± 1.03 42.99 ± 1.15 41.34 ± 1.57 0.022 <0.001 <0.001

Optic nerve left
Dmax (Gy) 55.46 ± 2.98 54.46 ± 4.13 52.07 ± 3.14 0.040 <0.001 0.002

Optic nerve right
Dmax (Gy) 55.05 ± 2.39 55.11 ± 3.13 50.90 ± 3.24 0.881 <0.001 <0.001

Optic chiasm
Dmax (Gy) 42.52 ± 11.57 41.88 ± 11.82 42.67 ± 7.26 0.378 0.912 0.600

Lens left
Dmax (Gy) 7.43 ± 1.64 7.16 ± 1.94 5.47 ± 0.82 0.346 <0.001 0.001

Lens right
Dmax (Gy) 7.69 ± 1.28 7.46 ± 1.36 5.82 ± 0.62 0.502 <0.001 <0.001

Eye left
Dmax (Gy) 35.72 ± 4.70 33.06 ± 6.68 28.13 ± 5.25 0.011 <0.001 0.001

Eye right
Dmax (Gy) 35.92 ± 3.29 33.62 ± 5.62 26.62 ± 4.59 0.018 <0.001 <0.001

Pituitary
Dmax (Gy) 58.22 ± 4.97 58.54 ± 5.35 52.32 ± 6.78 0.375 <0.001 <0.001

Mandible
Dmax (Gy) 67.39 ± 3.87 67.76 ± 3.83 66.61 ± 4.20 0.249 0.234 0.095

TMJ left
Dmax (Gy) 61.07 ± 2.53 59.16 ± 3.54 57.85 ± 3.42 0.001 <0.001 0.004

TMJ right
Dmax (Gy) 60.23 ± 4.88 58.58 ± 5.17 57.10 ± 5.36 0.016 <0.001 0.027

Brachial plexus left
Dmax (Gy) 63.93 ± 2.19 64.32 ± 2.18 63.25 ± 3.79 0.132 0.363 0.177

Brachial plexus right
Dmax (Gy) 64.20 ± 2.63 64.79 ± 3.00 63.27 ± 4.10 0.074 0.171 0.022

Oral cavity
Dmean (Gy) 38.06 ± 1.48 38.44 ± 1.79 37.68 ± 1.57 0.404 0.356 0.229

Parotid gland left
Dmean (Gy) 33.81 ± 1.34 33.38 ± 1.87 33.64 ± 1.04 0.471 0.683 0.664
V30 (%) 50.58 ± 2.52 49.96 ± 2.70 45.23 ± 1.73 0.537 <0.001 <0.001

Parotid gland right
Dmean (Gy) 34.71 ± 1.08 33.86 ± 1.72 33.87 ± 1.13 0.036 0.048 0.975
V30 (%) 51.15 ± 1.68 50.44 ± 2.06 45.56 ± 2.14 0.359 <0.001 <0.001

Temporal lobe left
Dmax (Gy) 65.16 ± 3.94 64.79 ± 3.80 62.09 ± 3.73 0.071 <0.001 <0.001
D1 (Gy) 59.38 ± 1.26 59.13 ± 1.84 58.23 ± 1.28 0.429 0.006 0.028

Temporal lobe right
Dmax (Gy) 63.90 ± 1.39 64.08 ± 1.69 60.46 ± 0.77 0.659 <0.001 <0.001
D1 (Gy) 58.87 ± 0.85 59.35 ± 1.05 58.00 ± 1.00 0.080 0.001 <0.001

Larynx
Dmean (Gy) 43.22 ± 1.08 41.99 ± 2.07 39.56 ± 0.98 0.024 <0.001 0.001

Esophagus
Dmean (Gy) 30.41 ± 6.63 28.80 ± 6.58 28.18 ± 5.91 0.007 <0.001 0.371
Novembe
r 2021 | Volume 11 |
*p value was computed by paired t test.
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have confirmed that the modern IMRT is associated with a
significantly steeper dose gradient surrounding the target region
compared with conventional 3D-CRT (17, 24). Growing
evidence suggests that HT can sculpt radiation doses to fit the
complex shapes of tumorous regions, avoiding the delivery of
high-dose radiation to OARs through the rapid opening and
closing of leaves in a collimator that rotates around the patient
(25). Therefore, HT is frequently used to treat various diseases
(26–29), including NPC (30). In this study, the results showed
that the three IMRT techniques met the clinical demands of NPC
therapy but HT presented with a sharp dose gradient associated
with optimal HI and CI values. Based on these results, HT is the
recommended radiotherapy technique for ensuring local tumor
control and improving patient prognosis when treating NPC
with radiotherapy.

In addition to improved target conformity and homogeneity,
HT demonstrated significantly better performance in sparing
the surrounding OARs compared with the other techniques. The
nasopharynx is adjacent to several critical organs, such as the
brainstem, lens, and optic nerves. To protect critical organs,
some parts of the tumor are often underdosed, which may lead to
a low local control rate (31). The delivery of high doses of
radiation to large volumes of normal tissues typically results in
the development of severe adverse effects, such as dysphagia and
radiation mucositis, which may interrupt radiation treatment.
Therefore, decreasing the dose and volume delivered to normal
tissues that surround the targeted radiation regions is crucial. In
our study, the results showed that compared with the FF-IMRT
and VMAT plans, the HT plans significantly decreased the Dmax

of the brainstem, spinal cord, optic structures, pituitary, TMJ,
temporal lobes, and larynx (Table 4). Moreover, the HT plans
decreased the V30 value of the parotid glands compared with the
FF-IMRT (p < 0.001) and VMAT (p < 0.001) plans. Therefore,
HT plans may decrease radiotherapeutic adverse effects by
reducing the doses and volumes of normal organ irradiation.

The significant advantages of HT plans over FF-IMRT and
VMAT plans with regard to PTV coverage and OAR sparing are
associated with the following features. First, the linear accelerator
used during HT can rotate 360° continuously, with 51 optimized
beam angles combined with a continuously moving couch.
Second, HT delivers radiation in the form of a helical
tomoscan by using constant beam widths of 1, 2.5, and 5 cm.
Finally, HT is equipped with a pneumatic binary MLC system
with rapid leaf transition times. In addition, the onboard
megavoltage CT (MVCT) of HT allows daily setup validation.
The margin expanding from the CTV to the PTV can be
decreased because setup errors are reduced by daily setup
verification, resulting in a reduced dose delivered to OARs.
The MVCT can be used to perform adaptive radiotherapy
planning, which can eliminate volume variations delivered to
the target and OARs between intrafractions.

HT plans also have some drawbacks. Vernat and Pasquier
reported that HT increases the normal tissue volume in the low-
dose region compared with IMRT and VMAT when applied to
oropharyngeal and prostate cancers (32, 33). Xie has reported
that the HT plan increased the V5 and V10 values of the lung and
Frontiers in Oncology | www.frontiersin.org 8
heart compared with IMRT and VMAT plans for left-sided
breast cancer (34). Therefore, the application of HT in lung
and breast cancers remains controversial. In NPC cases, most
OARs are serially organized structures, closely related to Dmax.
Thus, our study focused on the Dmax of most OARs, except for
the parotid glands, rather than examining the low-dose volumes.
For the parotid glands, the V30 and Dmean were evaluated
according to RTOG guidelines. Our results showed that HT
could significantly decrease the V30 value of the parotid glands.

Compared with FF-IMRT, VMAT exhibited better OAR
sparing abilities. In addition, compared with FF-IMRT and HT,
VMAT reduced the treatment time and improved the treatment
efficiency while ensuring the treatment effect. Compared with FF-
IMRT and HT, VMAT reduced the treatment delivery time by
41.3% and 42%, respectively. Several studies have reported that
VMAT achieves higher PTV dose conformity and better OAR
sparing abilities with a shorter treatment delivery time than FF-
IMRT for various cancers (29, 35, 36). Shortened treatment times
may reduce the influence of uncertain factors, including the
probability that patients will move and suffer discomfort.
Therefore, VMAT is the most appropriate treatment technique
for patients who cannot remain in a stable position for long times
due to physical or mental discomfort.

Our study had some limitations. First, we only used a nine-
field coplanar arrangement for FF-IMRT and a two-arc coplanar
beam configuration for VMAT to reduce the complexity of
comparisons, as evidence suggests that these two techniques
are the best options for obtaining better target coverage with
enhanced sparing of the OARs for FF-IMRT and VMAT
radiotherapy (37–39). Additionally, the limited sample size in
our study may result in insufficient statistical power to identify
significance for some of the dosimetric parameters. Therefore,
further clinical trials with large sample sizes focusing on the
clinical significance of HT in NPC are essential in the future.
5 CONCLUSION

For patients with locally advanced NPC, the HT and VMAT
plans showed improvements in target coverage and OAR sparing
compared with the FF-IMRT plans. The HT plans achieved
optimal conformity and homogeneity for PTV coverage, with
optimal OAR sparing. VMAT was associated with reduced
treatment time and improved radiation delivery efficiency,
which can reduce the patients’ discomfort and the probability
of movement during treatment. In addition, the treatment costs
of VMAT are lower than those of HT. Therefore, our results may
provide guidance for technique selection in patients with locally
advanced NPC who are undergoing CCRT.
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