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Pancreatic cancer is the most common lethal malignancy, with little improvement in
patient outcomes over the decades. The development of early detection methods and
effective therapeutic strategies are needed to improve the prognosis of patients with this
disease. Recent advances in cancer genomics have revealed the genetic landscape of
pancreatic cancer, and clinical trials are currently being conducted to match the treatment
to underlying mutations. Liquid biopsy-based diagnosis is a promising method to start
personalized treatment. In addition to genome-based medicine, personalized models
have been studied as a tool to test candidate drugs to select the most efficacious
treatment. The innovative three-dimensional organoid culture platform, as well as patient-
derived xenografts can be used to conduct genomic and functional studies to enable
personalized treatment approaches. Combining genome-based medicine with drug
screening based on personalized models may fulfill the promise of precision medicine
for pancreatic cancer.

Keywords: precision medicine, patient derived organoid, patient derived xenograft, liquid biopsy,
molecular subtypes
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with an average
5-year survival rate of less than 10% (1). More than half of patients are diagnosed with metastatic
disease, which is associated with a 5-year survival rate of only 3% (1). Early detection methods and
effective therapies need to be developed to improve the prognosis of PDAC (2). The recent
revolutionary improvement in genetic analysis technology offers the promise of using genetic
information for personalized medicine. In pancreatic cancer, a number of studies have described a
genetic background characterized by a set of commonly mutated genes in core molecular pathways
and significant intratumoral heterogeneity. Resistance to chemotherapeutic agents has also been
attributed to difficulties in drug delivery through a rich stromal microenvironment, as well as the
nature of the cancer itself. For these reasons, the development of therapeutics for pancreatic cancer
has been challenging, and many promising drugs have failed in clinical trials.

Clinical trials are currently underway to tailor treatment to underlying mutations (3–5).
Basically, three groups of pancreatic cancer patients benefit from personalized medicine (Table 1
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and Figure 1). Patients with BRCA1 and BRCA2 mutations
benefit from platinum-based therapy and poly (ADP-ribose)
polymerase (PARP) inhibitors (3, 4, 6–9). Patients with
microsatellite instability-high (MSI-H) benefit from immune
checkpoint blockade (ICB) therapy (5, 10). Patients with wild-
type KRAS (KRASWT) often carry other oncogenic mutations
Frontiers in Oncology | www.frontiersin.org 2
such as BRAF (3, 4), which can be candidates for small-molecule
therapy. To enroll patients in genome-based precision medicine,
recent reports have suggested that diagnosis by liquid biopsy is
promising (11). However, the number of patients who can
benefit from precision medicine is limited due to the limited
number of mutations leading to precision medicine (3, 4).
TABLE 1 | Ongoing clinical trials.

Homologous reconbination deficiency (HRD) related therapies

Targets Patients Drugs Trials

HRD genes metastatic PDAC with germline/somatic BRCA,
PALB2 mutations

Rucaparib Phase 2 NCT03140670

solid tumors with germline/somatic DDR gene
mutations

Rucaparib Phase 2 NCT041717000

metastatic PDAC with DDR gene mutations Rucaparib Phase 2 NCT03337087
metastatic PDAC with DDR gene mutations Rucaparib Phase 2 NCT02890355
advanced PDAC with BRCA1/2, PALB2, CHEK2 or
ATM mutations

Niraparib Phase 2 NCT03601923, Phase 2 NCT03553004

metastatic PDAC with DDR gene mutations Niraparib Phase 1b/2 NCT03404960

Mismatch repair deficiency (MMR-D) or microsatellite instability high (MSI-H)

Targets Patients Drugs Trials

PD-1 advanced/metastatic PDAC Pembrolizumab Phase 2 NCT04058964, Phase 2 NCT03331562,
Phase 2 NCT03264404, Phase 2b NCT02907099, Phase 1 (Part
B) NCT04007744

advanced/metastatic PDAC Nivolumab Phase 2 NCT03697564

KRAS wild-type

Targets Patients Drugs Trials

NTRK fusion advanced/metastatic solid tumors with NTRK/ROS1/
ALK gene rearrangements

Entrectinib Phase 2 NCT02568267

ALK, ROS1 gene
translocations

solid tumors with ALK, ROS1 translocations Crizotinib Phase 2 NCT02465060(MATCH screening trial) Phase
2 NCT02465060(MATCH screening trial)

BRAFV600E solid tumors with BRAFV600E/R/K/D Dabrafenib Phase 2 NCT02465060(MATCH screening trial)
HER2 advanced PDAC, biliary cancers Afatinib Phase 1b NCT02451553

solid tumors with NRG1 fusion Zenocutuzumab Phase 1/2 NCT02912949
FIGURE 1 | Outline of genome-based precision medicine.
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The recent identification of two major transcriptional
subtypes of PDAC with characteristic histopathological
features and different prognoses has provided a new
perspective for developing therapies (12–15). These include a
“basal-like” (or squamous) subtype, which is poorly
differentiated and carries a worse prognosis, and a “classical”
(or progenitor) subtype, which is well differentiated and has a
better prognosis (13, 14, 16). Basal-like and classical subtypes can
predict the response to chemotherapy (12, 17–19) and are
associated with stromal subtypes. Stroma-targeted therapies
have largely failed because of their complicated features and
models which recapitulate the tumor microenvironment (TME),
and drug responses to stroma-targeted therapies are needed. In
addition to precision medicine based on molecular profiling,
phenotypic profiling, such as drug screening using personalized
models, is useful in the clinic. The patient-derived xenograft
(PDX) has been established as a preclinical tool to improve drug
screening and development; however, the PDX model requires
sufficient tissue for transplantation, and failures are not
uncommon (20–23). A recently described, organoid culture
system can be exploited for molecular and phenotypic profiling
to enable personalized therapeutics (24, 25). A variety of
approaches using co-culture of organoids with stromal cells
have been established and used for ICB therapy testing.
Organoid technology may bridge the gap between cancer
genetics and clinical trials, enabling personalized therapy.

Several studies have described the usefulness of precision
medicine based on molecular profiling (3–5) and phenotypic
profiling (24, 25). Approaches using both genome-based
medicine and individualized model-based drug screening will
be useful for achieving precision medicine for pancreatic cancer.
MOLECULAR SUBTYPES OF
PANCREATIC CANCER

Genomic Subtypes
Recent genomic analyses have revealed the mutational landscape
of PDAC (14, 26–28). More than 90% of PDAC harbor activating
KRAS mutations. Mutations in KRAS are seen in all stages of
pancreatic intraepithelial neoplasia (PanIN). The commonly
accepted model of carcinogenesis describes a stepwise
progression from normal pancreatic epithelium to PanIN and
finally to adenocarcinoma due to accumulation of genetic
alterations. Inactivation of tumor suppressor genes, such as
TP53, SMAD family member 4, and cyclin-dependent kinase
inhibitor 2A, is seen with progressive PanIN development and
occurs in more than 50% (29, 30). The prevalence of recurrently
mutated genes then decreases to ~10%, which aggregates into
core molecular pathways, including KRAS, wingless and int
(WNT), NOTCH, DNA damage repair, RNA processing, cell
cycle regulation, transforming growth factor beta (TGF-b)
signaling, switch/sucrose non-fermentable, chromatin
regulation, and axonal guidance (14, 26–28). Pancreatic tumors
exhibit a high frequency of chromosomal rearrangement (31),
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and a subset of PDAC tumors may progress via chromosomal
rearrangements instead of stepwise progression via
accumulation of genetic mutations (31). Chromosomal
rearrangements and amplification of KRAS are reportedly
linked to poor outcomes in PDAC patients (32).

Pathway analyses based on genetic changes have detected
associations of various pathways with outcome in PDAC
patients. DNA repair-associated pathways are associated with a
poor prognosis, whereas beta-catenin signaling is associated with
improved outcomes (33). Many of these pathways can be
actionable therapeutic targets in preclinical models and in
the clinic. Molecular profiling suggests that up to 25% (range
12–25%) of pancreatic cancers harbor actionable molecular
changes (5). Three main groups, such as genetic changes in
homologous recombination deficiency (HRD), mismatch repair
deficiency (MMR-D)/high microsatellite instability (MSI-H),
and oncogene alterations, such as BRAF mutation and NTRK
gene fusions in KRASWT, are considered potential actionable
mutations. In the American Society of Clinical Oncology
(ASCO) guidelines, early testing for actionable genomic
changes (both germline and somatic) is recommended for
pancreatic cancer patients who are likely to be potential
candidates for additional treatment after first-line therapy (34).
Patients with BRCA mutations, MMR-D/MSI-H, and NTRK
gene fusions can be given tailored therapies, such as PARP
inhibitors, ICB therapy, and TRK fusion inhibitors,
respectively. A retrospective analysis of the Know Your Tumor
program testing matched therapies following molecular profiling
revealed significantly longer overall survival (OS) after PARP
inhibitor therapy in patient with BRCA mutations or after ICB
therapy in those with MMR-D compared with patients who
received unmatched therapies (2.58 vs. 1.51 years) or those
without an actionable molecular change (2.58 vs. 1.32 years)
(3). In this study, the most common actionable alteration was
mutations in the DNA damage response (DDR) pathway,
including BRCA mutations. These data suggest promise for this
personalized approach.

HRD
Diverse defects in HR DNA repair genes, such as germline
mutations in BRCA1, BRCA2, and PALB2, somatic mutations
in BRCA1 and BRCA2, and promoter methylation of BRCA1,
have been reported in breast and ovarian cancers (35, 36). BRCA
mutations are also associated with an increased risk for
pancreatic cancer, and 4% to 7% of patients with pancreatic
cancer have a germline BRCA mutation (8). BRCA genes encode
for proteins involved in the HR repair of DNA double-stranded
breaks. Cells with deficient HR repair are sensitive to PARP
inhibition. PARP enzymes are key components in the repair of
DNA single-stranded breaks and replication fork damage (37).
PARP inhibition causes accumulation of such lesions through
catalytic inhibition and trapping of PARP on DNA at the sites of
single-stranded breaks. These processes eventually result in
double-stranded breaks, which cannot be accurately repaired in
tumors with HRD. Thus, PARP inhibitors cause accumulation of
DNA damage and tumor-cell death. Accordingly, PARP
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inhibitors are selectively effective for cells with HRD due to
BRCA1 or BRCA2 mutations (38, 39).

Recent investigations of genomic profiling in large cohorts of
PDAC have reported the significance of HRD in predicting
sensitivity to platinum-based therapy and PARP inhibitors (3,
4, 6, 7). According to ASCO guidelines, treatment with platinum-
based chemotherapy or the PARP inhibitor olaparib is
recommended for patients who have a germline BRCA1 or
BRCA2 mutation. A recent randomized phase III trial (POLO)
demonstrated the efficacy of olaparib, a PARP inhibitor, in
germline BRCA-mutated metastatic PDAC (8). Among the 154
enrolled patients, progression-free survival (PFS) was
significantly longer in the olaparib group than the placebo
group (7.4 vs. 3.8 months). Furthermore, another recent
randomized phase II trial showed that patients with germline
BRCA1/2- or PALB2-mutated PDAC benefit from first-line
platinum chemotherapy, with median OS and PFS of 15.5
(14.6–19) and 7 (6.1–8.1) months, respectively. Patients with
HRD had improved PFS compared with no HRD when treated
with first-line platinum therapy but not with first-line non-
platinum therapy (9). These results suggest that HRD can
effectively be targeted in PDAC.

In addition to mutations in canonical HR genes, a
comprehensive evaluation of HR gene mutations is needed
beyond germline BRCA mutations to understand their
sensitivity to DDR-targeted therapies, including platinum-based
therapy. Multiple groups have identified a broader group of
patients with HRD sensitive to DDR-targeted therapies (3, 4, 7).
The concept of “BRCAness” was introduced to describe the
clinical and biological features in some sporadic tumors shared
with tumors harboring germline BRCA1/2 mutations. Polak et al.
(40) explored signature 3, a mutational signature prevalent in
tumors with BRCAness, and found altered expression of PALB2
and RAD51, which are genes that are important in the HRR
pathway. In addition, signature 3 has been found in tumors with
both germline and somatic BRCA1/2 mutations (40). Thus,
signature 3 can be considered a potential biomarker that could
lead to BRCAness-targeting therapies. O’Reilly and colleagues (7)
evaluated the mutational status of HR genes and HRD genetic
signatures to determine their benefit to platinum therapy. They
observed that patients with HRD had significantly improved PFS
when treated with first-line platinum-based therapy compared
with those who received first-line non-platinum-based therapy.
Subgroup analyses suggest that patients with either pathogenic
somatic or germline BRCA1, BRCA2, or PALB2mutations, as well
as biallelic loss of other rarer HR genes, such as ATM and CHEK2,
could be recommended for platinum-based therapy. Aguirre and
colleagues (4) observed four samples that did not have clear DNA
changes or mRNA downregulation of BRCA1, BRCA2, PALB2, or
RAD51C but nevertheless had enrichment of HRD/signature 3
compared with samples with HRD. These data suggest that
signature 3 can be recommended for platinum-based therapy
and PARP inhibitors. Furthermore, patients with biallelic HRD
show higher tumor mutation burden (TMB), indicating the
potential benefit from immunotherapy as shown in other types
of cancer (41, 42).
Frontiers in Oncology | www.frontiersin.org 4
MMR-D/MSI-H
Immune checkpoint inhibitors have been an effective therapy for
MMR-D/MSI-H cancers regardless of tumor type, although
activity may vary by tumor type. MMR-D occurs as a
consequence of loss-of-function changes in MMR genes
(MLH1, PMS2, MSH2, MSH6) because of the inherited
germline mutations known as Lynch syndrome, or because of the
biallelic somatic inactivation of MMR genes. In PDAC,
approximately 1% of patients have MMR-D or MSI-H due to
Lynch syndrome or somatic MMR gene mutations (43, 44). The
normal MMR system can correct the process of DNA replication
errors but MMR-D results in an inappropriate response to DNA
mismatches, increasing the possibility of gene mutation. MMR-D
causes MSI-H bymissing or inserting one or more of the repeating
units in the inappropriate process of DNA replication and repair.
MMR-D and MSI-H are generally associated with high TMB. A
highTMB increases the potential number of neoantigens, and these
neoantigens can be presented by the tumor cell and recognized by
host immune cells, which are also known as tumor-infiltrating
lymphocytes (TILs) that migrate into TME (45, 46). TILs,
particularly CD8+ cytotoxic T cells, orchestrate a significant
antitumor response to eliminate tumor cells (45, 46). Detection of
MMR-D and/or MSI-H was proposed as a biomarker of an
immunogenic tumor and response to ICB therapy, such as anti-
programmed cell death protein 1 (PD-1) inhibition. The immune
checkpoint inhibitor pembrolizumab is currently approved for
treatment of MMR-D/MSI-H cancer regardless of the histology.
In ASCO guidelines, pembrolizumab is recommended as a second-
line therapy for PDAC patients with MMR-D or MSI-H (34).

The recently published KEYNOTE 158 study (10) and NCI-
MATCH study (5), which investigated the efficacy of ICB
therapy in non-colorectal cancers, clearly suggested that MMR-
D in solid tumors is a predictor of the response to ICB therapy.
However, ICB therapy has low efficacy against pancreatic cancer,
suggesting that cancer type-specific responses show variable
clinical outcomes, and that disease-specific biological factors
may have an independent impact on ICB response, regardless
of MMR-D status. Regarding the underlying mechanisms, the
degree of T-cell infiltration is critical for predicting the efficacy of
ICB therapy in other types of cancers (47–52), and a small subset
of patients with MSI-H tumors exhibit T-cell infiltration and
sensitivity to immunotherapy (53). In pancreatic cancer, dense
stroma with desmoplastic reaction may function as a physical
barrier and affect the infiltration of myeloid-derived suppressor
cells and T cells in tumor stroma (54, 55). In addition, PDAC
exhibits substantial immunological heterogeneity, with tumors
influencing T-cell infiltration (45, 56–58). For example, Stanger
et al. (46) observed heterogeneity in the degree of T-cell
infiltration in their cohort of 12 PDAC patients (none of
whom were MSI-H), in line with prior reports for PDAC (45).
The abundance of PD-1+CD8+ T cells was more predictive of
immunotherapy response than was total CD8+ T cell infiltration
alone. Furthermore, Leach and colleagues (59) identified mucin
16 neoantigens as T-cell targets in PDAC and as potential
biomarkers of immunogenic tumors that may guide the
application of immunotherapies (59). These results suggest that
June 2021 | Volume 11 | Article 682872
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both the quality and quantity of tumor-infiltrating CD8+ T cells
are critical for predicting the immunotherapy response, and
novel biomarkers are needed to predict the status of tumor-
infiltrating CD8+ T cells.

Furthermore, the abovementioned results suggest that MMR-
D status is not a perfect predictor of immunotherapy response.
Loss-of-function changes in MMR genes can sometimes be a
passenger mutation/change and responses to immune
checkpoint inhibitor therapy could be affected by founder
mutations that determine the molecular behavior of cancer
(60). MSI-H and high TMB may be a better predictor of the
immune checkpoint inhibitor response, as these markers are
highly associated with MMR-D-driven carcinogenesis (61). The
basis for these differences in T-cell infiltration is poorly
understood in PDAC, where most tumors share the same
oncogenic mutations. Further prospective studies are needed to
evaluate the predictor role of characterization of T-cell
infiltration on ICB response/resistance in cancer patients with
MMR-D tumors.

KRASWT

KRAS mutation is a major driver mutation in pancreatic cancer
and more than 90% of pancreatic cancer patients harbor KRAS
mutation. Recently drugs targeting KRASG12C are available and
clinical trials suggested promising results (62–64). However,
KRASG12D and KRASG12V mutations are more common in
pancreatic cancer, and these mutations are still undruggable. In
KRASWT PDAC patients, NTRK fusions, ALK rearrangements,
ROS, NRG1 rearrangements, BRAF, PIK3CA, and a number of
cancer-associated genes representing potential drivers have been
identified (e.g., ERBB2, STK11, GNAS, CHEK2, and RB1), as
potential targets.

Gene fusions involving NTRK1, NTRK2, or NTRK3 (TRK
fusions) are found in many pediatric and adult malignancies
(65). NTRK fusions are rare in PDAC and are identified in less
than 1% of tumors (66). Pishvaian et al. (67) reported a partial
response to entrectinib, a potent TRK and ROS1 inhibitor in a
subgroup of advanced PDAC patients. Larotrectinib, a highly
selective small-molecule inhibitor of the TRK kinases, has shown
efficacy in preclinical models and in patients with tumors
harboring TRK fusions. In ASCO guidelines, in patients with
tumors harboring NTRK fusions, treatment with larotrectinib or
entrectinib is recommended as treatment options after first-line
therapy such as FOLFIRINOX and gemcitabine plus nab-
paclitaxel (GnP) (34). NRG1 rearrangement contributes to
susceptibility to ERBB inhibitors and anti-EGFR antibodies
and clinical trials are ongoing (68, 69). ALK gene
translocations have been reported in 0.16% of PDAC, and
crizotinib is reportedly effective for a PDAC patient with ALK
gene translocation (70).

BRAFV600E mutations occurred at a frequency of 3% and were
mutually exclusive with KRAS mutations. BRAFV600E could be a
driver event based on mouse models (71). Analyses of PDAC
cells revealed that BRAFV600E cells are sensitive to the FDA-
approved BRAF inhibitor PLX-4032, while cells with KRAS
mutations are resistant (33). These data suggest that a subset
of patients may benefit from targeted therapy along the KRAS/
Frontiers in Oncology | www.frontiersin.org 5
BRAF axis. Aguirre et al. (4) reported the first therapeutic
experience with mitogen-activated protein kinase (MAPK)
inhibition in a patient harboring a BRAF in-frame deletion.
The patient had a partial response to the MEK inhibitor
trametinib. A second patient with rapidly progressive disease
harboring a BRAFmutation was also treated with trametinib but
failed to show a response. This heterogeneity in resistance
mechanisms will require effective combination treatments with
MAPK inhibitors. The Cancer Genome Atlas Research Network
reported that the KRASWT tumors had significantly elevated
tuberous sclerosis complex/mammalian target of rapamycin
(TSC/mTOR) signaling pathway activity compared with KRAS
mutant tumors, indicating that functional activation of the
mTOR signaling pathway may be an alternative oncogenic
driver in KRASWT pancreatic cancer (15).

These data suggest that larger multicenter clinical trials are
needed to fully investigate the therapeutic efficacy of the
inhibition of upstream and downstream signaling of RAS in
KRASWT patients with other oncogenic mutations.

Liquid Biopsy
Although genome-based precision medicine, such as platinum-
based therapy and PARP inhibition, in PDAC patients with HRD
is promising, tissue-based genomic sequencing for first-line
treatment decision making in PDAC remains challenging due
to the turn-around time of obtaining sequencing results, which is
3 to 6 weeks. To enroll patients in genome-based precision
medicine, recent reports have suggested that diagnosis by
liquid biopsy with a short turn-around time has emerged.
Liquid biopsy includes analyses of tumor materials obtained in
a minimally invasive or noninvasive manner by collecting blood
or other body fluids. Liquid biopsy samples are obtained from
saliva, stool, or urine. They include circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), extracellular
vesicles, cell-free DNA, and microRNA. More recently, next-
generation sequencing-based methods have enabled ctDNA
profiling as an alternative to tumor tissue sequencing (72, 73).
For example, the TARGET study recently reported the screening
of 100 patients using ctDNA sequencing for trial enrollment
(74). Most recently, Yoshino and colleagues (11) reported that
ctDNA genotyping significantly shortened the screening
duration (11 vs. 33 days; P < 0.0001) and improved the trial
enrollment rate (9.5 vs. 4.1%; P < 0.0001) compared with
tumor tissue sequencing. Overall, ctDNA was detected in
91.4% (1,438/1,573) of patients; however, the ctDNA detection
rate of PDAC was the lowest (83.4% (304/363) compared with
other types of cancers, such as esophageal squamous-cell
carcinoma cancer (99.1% (107/108) and CRC (96.0%, 628/
654). Overall, they detected multiple biomarkers relevant to the
selection of treatment, including KRAS, NRAS, BRAF, and
PIK3CA muta t i on s ; ERBB2 , FGFR1–2 , and MET
amplifications; FGFR2–3, ALK, NTRK1, and RET fusions; and
MSI. Liquid biopsy also enables the collection of repeated
samples during the course of the treatment of patients and the
collection of clones resistant to ongoing therapy. Thus, this
technology has the potential to promote innovation in
precision medicine.
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Transcriptomic Subtypes
Cancer Cell Subtypes
Targeting drugs, according to tumor subtypes, have improved
treatment outcomes in other cancers. Identification of
therapeutic molecular subtypes in PDAC has been challenging.
In addition to genomic subtypes, transcriptomic subtypes have
been evaluated to understand the biology of pancreatic cancer.
The recent identification of PDAC transcriptional subtypes has
provided a new perspective relevant to the development of
therapies. These include basal-like/squamous and classical/
progenitor (hereafter referred to as basal-like and classical,
respectively) (12–14, 75–77). Basal-l ike tumors are
associated with poor outcomes and treatment resistance (12–
14, 16–19, 75–77). Two independent clinical trials revealed that
basal-like tumors are resistant to FOLFIRINOX-based regimens
(19, 78). In those studies, RNA in situ hybridization or
immunohistochemical analysis of GATA-binding protein 6
(GATA6) was used to differentiate basal-like and classical
tumors. The resistance of basal-like tumors to FOLFIRINOX is
supported by a recent report by Tiriac et al. (24), who showed
that patient-derived organoid (PDO) chemotherapy signatures
may predict treatment response. The signatures representing
individual cytotoxic agents were applied to the COMPASS
cohort, suggesting that basal-like tumors are most likely to
have a non–oxaliplatin-sensitive signature (24). To apply
molecular subtyping in treatment decision-making for PDAC
patients, Rashid et al. (79) revealed that the tumor-intrinsic two-
subtype schema of Moffitt et al. is the most replicable, and they
developed the Purity Independent Subtyping of Tumors, a
clinically usable single-sample classifier based on gene
expression data obtained using multiple platforms, including
microarrays, RNA sequencing, and NanoString.

The development of subtype-based therapies remains
challenging because the genetic and epigenetic aberrations that
promote the stable or dynamic regulation of subtypes are
unknown. The basal-like subtype consists of small subgroups
that are regulated by different mechanisms (14). The master
regulators of the basal-like subtype have been identified, and the
basal-like subtype is associated with the activation of genes
involved in the epithelial–mesenchymal transition, activation
of transcription factors such as MYC and TP63, and
downregulation of markers for endoderm such as HNF4A and
GATA6 (12–14). In addition, expression of the DN isoform of
TP63 (DNp63) and GLI2 promotes the basal-like identity in
PDAC (80, 81). Several epigenetic regulator genes, including
KDM6A, KMT2C, and KMT2D, are associated with the basal-like
subtype (12, 14, 82). Mueller et al. (83) divided the basal-like
subtype into the TP63-related transcriptional program with
squamous differentiation and the RAS/epithelial–mesenchymal
transition-related transcriptional program with undifferentiated
cancers. Further characterization of the master regulators of
molecular subtypes may lead to the identification of
biomarkers and targets for tailored therapies.

Because KRAS is the most commonly mutated gene in PDAC,
the association between KRAS addiction (KRAS dependency)
and a molecular subtype has been debated. KRAS-addicted cells
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have been previously observed as more classical and epithelial in
monolayer cell cultures (12). Collisson et al. (12) showed that
classical PDAC cells are relatively more dependent on KRAS and
more sensitive to erlotinib than basal-like PDAC cells.
Conversely, basal-like PDAC lines are more sensitive to
gemcitabine than classical PDAC (12). KRAS ablation induces
a basal-like phenotype in surviving cells in vivo (80). A study of
the inducible KrasG12D;Trp53-/- PDAC mouse model (84)
revealed cancer cell-intrinsic mechanisms enabling bypass of
KRAS dependency and tumor recurrence (85). Specifically, Yap1
amplification and overexpression enabled escape in
approximately one-third of KRAS-negative recurrent PDAC
tumors (85) and serves a similar role in lung cancer (86).
However, allelic imbalance and elevated expression of mutant
KRAS have been associated with aggressive and undifferentiated
histological phenotypes in PDAC (32, 83). Furthermore,
increased dosage of mutant KRAS is sufficient to induce basal-
like features (32, 87). These results suggest that mutant KRAS
plays an important role in oncogenesis in PDAC, but other
epigenetic or microenvironmental factors are critical in
regulating molecular phenotypes.

Stromal Subtypes
Pancreatic cancer is characterized histologically by a dense
stromal reaction with desmoplasia, which creates a physical
barrier around the tumor cells and prevents appropriate
vascularization and delivery of chemotherapeutic agents (88).
The surrounding desmoplasia was formerly considered to
promote cancer, and a number of clinical trials targeting the
stroma have been conducted to prove this. However, most of
those trials failed, and the current understanding is that the
stroma is multi-faceted (89–91). To reveal the heterogeneity of
stromal components, studies based on single-cell RNA
sequencing have been conducted (92–95). Cancer-associated
fibroblasts (CAFs) play an important role in the TME, and
cancer-derived IL-1 or TGF-b can stimulate the differentiation
of surrounding fibroblas ts into inflammatory and
myofibroblastic CAFs, respectively (93). IL-6 secreted by
inflammatory CAFs promote proliferation of the tumor,
whereas myofibroblastic CAFs produce the surrounding
stroma. Because cancer cells create an environment favorable
to themselves, these stromal subtypes are linked to the cancer cell
subtypes mentioned above. Mauer et al. (77) reported CAF
subtypes using laser capture microdissection and RNA
sequencing of pathologically verified PDAC epithelia and their
adjacent stroma. The authors detected two subtypes reflecting
ECM deposition and remodeling (ECM-rich) versus immune-
related processes (immune-rich). There was a strong association
between ECM-rich stroma and basal-like tumors, whereas
immune-rich stroma occurred more often in association with
classical tumors (77, 96). As such, the epithelial and stromal
subtypes were partially linked, suggesting potential biomarkers
for stroma-targeted therapies in PDAC.

As mentioned previously, TILs are associated with the
response to immune checkpoint inhibitors. Therapeutic
strategies targeting immune modulators have emerged. Bailey
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et al. (14) identified an immunogenic cancer subtype, which
shares many of the characteristics of classical tumors but is
uniquely associated with significant immune-cell infiltration.
This cancer cell subtype, as well as Mauer et al.’s immune-rich
subtype, has potential as a biomarker for immune therapy.
Furthermore, studies using mouse models have revealed
potential targets such as colony-stimulating factor 1 receptor,
cytotoxic T-lymphocyte-associated protein 4 (97, 98), and CXC
chemokine receptor 2 (99, 100), which led to clinical trials.
However, due to their complexity, TME-targeted therapies
have largely failed (101, 102). Clinical trials of such therapies
have been reviewed recently (103). Further investigations are
warranted to discover effective TME-targeted therapies.
PATIENT-DERIVED MODELS

PDO
Organoids are three-dimensional structures that are grown
in vitro and recapitulate many aspects of corresponding organs
in vivo, providing many novel human cancer models.
Theoretically, PDOs allow expansion of small tumor samples,
enabling the analyses of cancer at any stage. Various human
carcinomas have been established from resected specimens and
biopsy samples (24, 104–116). Pancreatic tumors contain
abundant stromal components and exhibit low neoplastic
cellularity, which contribute to the low accuracy of genetic and
transcriptional analyses of the neoplastic compartment in bulk
tumor tissues. In organoid culture, only the epithelial component
expands, thus providing high-quality research materials (24).

The organoid culture system is a powerful tool for personalized
medicine and is used in co-clinical trials because the response of
PDOs to drugs largely mimics the initial response of
corresponding patients to the same drugs (24, 108, 111, 117,
118) (Figure 2). Tiriac et al. (24) established a biobank of 66
pancreatic cancer PDOs, from both biopsy samples and resected
specimens, and compared the gene expression of those PDOs with
responses to standard cytotoxic drugs and identified
transcriptional gene signatures of responders to different
chemotherapies. They found that the transcriptional gene
signature reflects a drug response in an independent cohort of
PDAC patients. Currently, clinical trials using PDOs are ongoing,
and PDO can be used to select second-line or adjuvant treatments
because the time required to generate and test PDOs is about 4–6
weeks (25). Pancreatic cancer frequently acquires resistance to
chemotherapy. Tiriac et al. (24) reported their experience with
longitudinal collection of organoids from the same patient
undergoing chemotherapy. Interestingly, an organoid collected
before the corresponding patient acquired resistance to
FOLFIRINOX and gemcitabine/nab-paclitaxel regimens was
sensitive to gemcitabine, paclitaxel, 5-FU, and oxaliplatin,
whereas organoids collected after the chemoresistance developed
were resistant to those chemotherapeutic agents. In addition, the
first organoid collected was resistant to mTOR inhibition, whereas
subsequent organoids were sensitive to mTOR inhibition. These
results suggest that collecting organoids during chemotherapy
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enables drug selection according to chemosensitivity in PDAC
patients. Collecting organoids from metastatic and recurrent sites
is difficult. However, Gao et al. (119) demonstrated the feasibility
of growing organoids from CTCs from a prostate cancer patient to
overcome this shortcoming.

As mentioned, pancreatic cancer is characterized by a dense
stromal reaction with desmoplasia. To mimic the tumor
environment, co-culture systems have been developed. The co-
culture system of pancreatic stellate cells, a resident
mesenchymal cell, with pancreatic cancer PDOs, has been
established (92). This system enables to produce the
desmoplastic stroma and led to the specification of pancreatic
CAF subtypes , inc luding inflammatory CAFs and
myofibroblastic CAFs (93). Several approaches of co-culturing
PDOs with immune and fibroblastic components have been
established to predict the efficacy of immune checkpoint
inhibitors in other types of cancer (120) (121), which can be
applicable to PDOs in PDAC. As with the PDX mouse model,
organoid transplant mouse models are a powerful tool for drug
screening and biological research. Boj et al. (122) reported that
orthotopic transplantation of organoids led to the development
of all stages of disease progression including early PanIN, late
PanIN, invasive ductal adenocarcinoma, and metastasis. A recent
study reported the usefulness of an intraductal transplantation
mouse model of PDOs (87), which models the progressive
switching of molecular subtypes. These models are promising
tools to evaluate human PDAC at any stage to understand its
fundamental biology and to identify biomarkers of early disease
as well as biomarkers of subtype switching at later stages,
contributing to discovery of novel therapeutic strategies.

PDX
PDXs have emerged as an important platform to discover novel
therapeutic strategies and biomarkers (21, 22, 123). PDX models
retain key features of donor tumors both histologically and
biologically, and effectively recapitulate the chemosensitivity of
corresponding patients compared with conventional two-
dimensional cell-line-based xenograft models (124–127).
Analyses of genetic profiles show good concordance between
primary tumors and the tumors derived from PDX models,
although there were differences in genes involved in the
stromal and immune compartments due to the replacement of
the human stroma by murine elements. The key characteristics
and practical applications of PDXs can be found in recent
reviews (20–23).

PDXmodels of PDAC patients have been reported (128–130),
and one study found a good correlation between response to
gemcitabine in PDXs and in PDAC patients (131). The drug
response of PDXmodels remains stable across generations (up to
10 passages) (128, 132). Hidalgo et al. (133) performed an
empirical treatment of PDX models with a panel of drugs
while the patients were receiving first-line therapy and showed
that GnP is effective in PDX models, which is correlated with the
efficacy of this combination in the clinic (134). Similarly, lack of
efficacy in preclinical studies with PDX predicted failure of the
same therapies in the clinic, such as the SRC inhibitor saracatinib
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and the mTOR inhibitor sirolimus in PDAC (124, 135). Based on
these data, PDX models are an essential part of the preclinical
screening for new chemotherapeutic agents (Figure 2).

PDX models are also used in co-clinical trials, in which they
are developed from patients enrolled in clinical trials and treated
with the same experimental agents (Figure 2). These models are
used to evaluate the clinical response based on appropriate
endpoints such as response rate or tumor growth delay. PDX
models are also powerful tools for simulating tolerance after
exposure to therapies used in the clinical setting and to develop
strategies for overcoming resistance (136, 137). Furthermore,
biological and genetic comparisons between sensitive and
resistant models could lead to the discovery of biomarkers of
drug efficacy as well as biomarkers for inclusion in clinical
studies. In PDAC, PDX studies using gemcitabine revealed
expression of deoxycytidine kinase, the gemcitabine-activating
enzyme, as a predictor of drug efficacy (128, 138). Similarly, PDX
models have been used to determine metabolic and imaging
biomarkers (139, 140). This strategy provides an interesting
platform to evaluate drug response in the patients and PDX
models simultaneously, and to investigate biomarkers of
sensitivity and resistance, as well as new combination strategies
to overcome emerging resistance pathways. These findings
suggest that PDX models hold promise for precision medicine
in PDAC.

Regarding the drawbacks, in most patients, obtaining
individualized PDXs to guide treatment is not feasible because
of the low success rate of engraftment, the discrepancy between
the time needed for PDX expansion and treatment, and the
rapidity of disease progression in patients (131, 133). PDX
models are generally established from surgical specimens,
which provide a large amount of tumor tissue. However,
because most PDAC patients are inoperable, generating PDX
Frontiers in Oncology | www.frontiersin.org 8
from smaller samples, such as fine-needle aspiration for
personalized therapy, is more useful. To resolve this problem,
CTC-derived xenografts are now applied to evaluate other types
of cancer such as breast cancer (141), prostate cancer (142),
gastric cancer (143), small-cell lung cancer (SCLC) (144), and
melanoma (145). A major obstacle is that PDX models require
the use of immunocompromised mice, which prevents the
evaluation of immunomodulators, such as vaccines, anti-PD-1,
and anti-cluster of differentiation 40 (CD40) antibodies.
Humanized mice with human immune system in which
selected immune components have been introduced may solve
the problems. However, human tumor stroma in the cancer
specimens are rapidly replaced by mouse stromal cells including
fibroblasts, inflammatory cells, blood vessels, and immune cells,
and these elements are difficult to introduce in humanized
mouse. As reported, expression profiling based on species-
specific RNA sequencing of PDXs provides a unique
opportunity to distinguish mouse stroma-derived transcripts
from human cancer cell-derived transcripts without physically
separating the two components prior to RNA extraction (87).
Novel approaches, such as short-term primary cultures or
organoids, are being developed and are expected to be applied
to preclinical screening studies (24). Clinical trials using PDOs
are ongoing (25), and PDX-derived organoids are useful for
drug screening.
CONCLUSIONS

Integrated analyses of the genome, epigenome, and transcriptome
are yielding biological insights with potential therapeutic relevance
in PDAC. Genome-based therapies have led to paradigm-
changing treatments for other cancers and have dramatically
FIGURE 2 | Patient-derived models for precision medicine.
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improved survival and cure rates. Therapeutic strategies based on
gene alterations in cancer cells, including HRD andMMR-D/MSI-
H, have improved the survival of PDAC patients. In the You Know
Tumor trial, the OS was significantly longer in patients who
received a tailored therapy than in those without an actionable
molecular change. However, this remains an unfulfilled promise in
PDAC because of the limited number of patients and the rapidity
of disease progression. The rapid analysis of genetic mutations
using liquid biopsy and new biomarkers, such as BRCA-ness,
signature3, and higher TMB, may allow more patients to be
recruited for personalized therapy. In addition, the difficulty of
drug delivery through the stromal barrier in tumors contributes to
high resistance to available chemotherapeutic agents, and
therapeutic strategies targeting stromal components have failed
due to their complexity. In addition to genomic subtypes,
transcriptomic analyses revealed the associations of cancer cell
and CAF subtypes with immune cell components, providing
biological insights relevant to the treatment of PDAC.
Furthermore, phenotypic characterization of individualized
models such as PDXs and PDOs will provide additional
information for selecting tailored therapies for PDAC patients.
Individualized PDXs have the potential to identify effective
therapies; however, they have significant limitations, including
long lead times and the need for large amounts of tumor tissue for
testing. The PDO platform can be exploited for genomic and
Frontiers in Oncology | www.frontiersin.org 9
functional studies even during chemotherapy, with the possibility
of selecting sensitive therapeutic agents after acquisition of
chemoresistance. New approaches such as co-culture of PDOs
with stromal components and humanized PDX may bridge the
gap between cancer genetics and patient clinical trials and allow
for personalized therapy, although further studies are needed to
validate this approach. A multi-parameter approach that
combines genome-based medicine with drug screening using
individualized models will be key for precision medicine.
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