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Immune-related gene pairs (IRGPs) have been associated with prognosis in various
cancer types, but few studies have examined their prognostic capabilities in glioma
patients. Here, we gathered the gene expression and clinical profile data of primary lower-
grade glioma (LGG) patients from The Cancer Genome Atlas (TCGA), the Chinese Glioma
Genome Atlas (CGGA, containing CGGAseq1 and CGGAseq2), the Gene Expression
Omnibus (GEO: GSE16011), and Rembrandt datasets. In the TCGA dataset, univariate
Cox regression was performed to detect overall survival (OS)-related IRGs, Lasso
regression, and multivariate Cox regression were used to screen robust prognosis-
related IRGs, and 19 IRGs were selected for the construction of an IRGP prognostic
signature. All patients were allotted to high- and low-risk subgroups based on the TCGA
dataset median value risk score. Validation analysis indicated that the IRGP signature
returned a stable prognostic value among all datasets. Univariate and multivariate Cox
regression analyses indicated that the IRG -signature could efficiently predict the
prognosis of primary LGG patients. The IRGP-signature-based nomogram model was
built, revealing the reliable ability of the IRGP signature to predict clinical prognosis. The
single-sample gene set enrichment analysis (ssGSEA) suggested that high-risk samples
contained higher numbers of immune cells but featured lower tumor purity than low-risk
samples. Finally, we verified the prognostic ability of the IRGP signature using experiments
performed in LGG cells. These results indicated that the IRGP signature could be
regarded as a stable prognostic assessment predictor for identifying high-risk primary
LGG patients.

Keywords: lower-grade glioma, immune-related gene pairs (IRGPs), overall survival (OS), prognostic
signature, ssGSEA
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INTRODUCTION

Gliomas are characterized by high recurrence rates and high
mortality and are the most common primary intracranial tumors
that occur in the adult central nervous system (1). Gliomas can
be divided into 4 grades (Grades I–IV) according to the World
Health Organization (WHO) classification system (2). Lower-
grade gliomas (LGGs; WHO Grade II or III astrocytomas and
oligodendrogliomas) are well-differentiated but may deteriorate
to higher grades (Grade IV) over time (3, 4). In recent years,
despite advances in diagnostic and therapeutic modalities for
primary LGGs, patient prognosis has not improved (5).
Therefore, the identification of new and significant targets or
biomarkers to enhance the treatment effect and improve public
awareness of LGGs management is urgent.

In recent studies, some elements of the immune system,
such as the tumor microenvironment (TME), immune-related
genes (IRGs) and immune cells have been found to play key
roles in the formation and progression of tumors (6–8). The
TME is highly associated with tumorigenesis, development, and
prognosis, and immune cells play critical roles on tumor
formation and progression (6, 9, 10). Recently, despite many
challenges and doubts, many promising preclinical and clinical
immunotherapy measures have been emerged for the treatment
and management of glioma, including active and passive
immunotherapy, gene therapy, and immune-checkpoint
inhibitors, further revealing the important role played by
immunotherapy in glioma treatment (11). Increasing evidence
has indicated the significant contribution of IRGs to the
complex regulatory network of cancer. IRGs have also been
regarded as biomarkers to predict prognosis of cancer patients
(12). A recent study constructed a stable IRG signature that was
found to serve as an effective and predictive prognostic model
among primary LGG patients (13).

In this study, we identified the prognostic significance of
IRGPs in 476 primary LGG patients obtained from The Cancer
Genome Atlas (TCGA) dataset. These findings have been
confirmed in four external independent datasets (Chinese
Glioma Genome Atlas [CGGA]: CGGAseq1 and CGGAseq2;
Gene Expression Omnibus [GEO]: GSE16011, and Rembrandt).
Furthermore, the results of gene set enrichment analysis (GSEA)
and biological process analysis may provide additional clues
regarding the potential functions of these IRGPs during glioma
pathogenesis. In addition, we also built a nomogrammodel based
on patient age, the risk score and WHO grade for the prediction
of 1-, 3-, and 5-year overall survival (OS) rates among primary
LGG patients. IRGPs were found to be strong prognostic
biomarkers and predictors in primary LGG patients.
MATERIALS AND METHODS

Data Acquisition
In our study, we collected five independent glioma cohorts,
including the TCGA cohort, two CGGA cohorts (CGGAseq1
and CGGAseq2), the Rembrandt cohort, and the GSE16011
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cohort. The RNA-seq data for the TCGA cohort was acquired
from the Genomic Data Commons Data Portal website (GDC;
https://portal.gdc.cancer.gov/), and the relevant clinical data
were obtained from the cBioPortal website (https://www.
cbioportal.org/).

The mRNA expression data and clinical information for the
CGGAseq1 and CGGAseq2 cohorts were retrieved from the
CGGA website (http://www.cgga.org.cn/). The microarray data
for the GSE16011 and Rembrandt validation cohorts were
obtained from the Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/geo/), and relevant
clinical data were acquired from a previous publication (14).
The list of 2,497 IRGs was obtained from the MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp) (15) and ImmPort
(https://www.immport.org/home) websites.

Patient Exclusion Criterion
The criteria for including glioma patients were as follows:
(a) primary glioma patients with OS > 1 month; (b) patients
with expression data; and (c) patients with WHO Grade II or III
gliomas. By applying these inclusion criteria, we obtained five
independent cohorts (TCGA, CGGAseq1, CGGAseq2,
GSE16011, and Rembrandt), which included 476, 270, 137,
102, and 129 primary LGG patients, respectively. The basic
information for the selected patients is shown in Table 1.

Data Processing
The fragments per kilobase of transcript per million (FPKM)
data from the three RNA-seq cohorts were transformed into
transcripts per kilobase million (TPM) values using a previous
publicly available algorithm (16, 17). These TPM values were
then used in the later experiments. The undisposed data of these
microarray cohorts were obtained to perform background
adjustment and quantile normalization using a robust
multiarray averaging method (RAM) with the “affy” (18) and
“simpleaffy” (19) packages.

Construction of the IRGP Signature
The training set obtained from TCGA was used to screen OS-
related IRGs using univariate Cox regression analysis, and a total
of 1,007 OS-related IRGs were identified (p < 0.001). Those IRGs
with median absolute deviation (MAD) < 0.5 were excluded to
calculate the IRGP index. A pairwise comparison translation was
performed between OS-related IRG expression values to obtain
an index for each IRGP in each sample. The IRGP was assigned a
value of 1 if the expression of the former IRG was higher than
that of the latter IRG; else, the index was defined as 0. IRGPs with
gene ratios (1/0 or 0/1) > 0.4 and < 0.6 were retained. Univariate
Cox regression was performed again to obtain OS-related IRGPs.
Next, the Lasso Cox regression method, a recommended
dimensionality-reduction method for the regression of high-
dimensional data, was performed to select the OS-related
IRGPs without multicollinearity. Finally, an IRGP-based risk
signature was established by multivariate Cox regression, and an
equation was produced to calculate risk scores for LGG patients
May 2021 | Volume 11 | Article 665870
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with relevant IRGP indexes and respective coefficients. The
following equation was obtained:

risk score=on
i=1Coef i∗xi

in which Coefi is the coefficient of each IRGP index, and xi is
the IRGP index value for each screened IRGP among
five cohorts.

Functional Enrichment Analysis
Differentially expressed genes (DEGs) between the low- and high-
risk primary LGG patients were identified using the “limma”
package (20) and defined using the standards of |log2 (fold-
change)| >1 and p < 0.05 in the TCGA cohort. A total of 3,673
genes were defined as DEGs and were used to perform gene-
ontology biological-processes (GO-BP) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses using by the
“clusterProfiler” R package (21). The GSEA software (version
4.0.1, https://www.gsea-msigdb.org/gsea/index.jsp) (22) was used
to perform GSEA to identify tumor hallmarks enriched in primary
LGG patients with higher IRGP scores. Tumor hallmarks with |
Normalized Enrichment Score (NES)| > 1.5, normalized p-value <
0.05, and false-discovery rate (FDR) q-value < 0.25 were defined as
significantly enriching tumor hallmarks.

Single-Sample Gene-Set Enrichment
Analysis (ssGSEA)
A single-sample GSEA (ssGSEA) algorithm was used to quantify
the infiltration of each immune cell type in the LGG TME using
the R package “GSVA” (23). To identify TME infiltrating immune
cells, gene sets from previous studies were downloaded (24, 25).
The values acquired by ssGSEA represent the relevant abundance
of each infiltrating immune cell in each sample.

Construction and Validation of the
Nomogram Model
The establishment and validation of a nomogram model were
accomplished using the package “rsm.” The continuous variables
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of risk score, patient age and WHO grade, based on the findings
of the multivariate Cox regression, were contained in our
nomogram model. The “calibrate” function of the “rms”
package was performed to generate calibration plots.

Cell Culture
SW-1088, SW-1783, and Bt142-mut human glioma cell lines
were purchased from American Type Culture Collection
(ATCC). Normal human astrocytes (NHA) were acquired
from the Culture Collection of the Chinese Academy of
Sciences (Shanghai, China). SW-1088 and SW-1783 was
cultured in Leibovitz’s L-15 Medium (Gibco), BT142-mut was
cultured in DMEM/F12 with an additional 0.9% glucose, 4 mM
L-glutamine (ATCC), 25 µg/mL insulin, 100 µg/mL transferrin,
20 nM progesterone, 15 µM putrescine and 30 nM selenite, all of
these Medium were supplement with 10% fetal bovine serum
(FBS; Gibco). All cells were maintained at 37°C in an incubator
containing 5% CO2.

Western Blotting Analysis
The cells were harvested and lysed with radioimmunoprecipitation
assay (RIPA) cell lysis buffer. 6%–12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and polyvinylidene
difluoride (PVDF) membranes were used to separate and transfer
protein lysates (25 ng). The membranes were incubated with
primary antibodies, including endothelial growth factor receptor
(EGFR, 1:10,000, Proteintech), slit guidance ligand 1 (SLIT1,
1:1,000, Abcam), beta-2 adrenergic receptor (ADRB2, 1:1,000,
CST), macrophage scavenger receptor 1 (MSR1, 1:1,000, CST),
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
1:2,000, Proteintech). The membranes were then incubated with
horseradish peroxidase (HRP)-conjugated anti-rabbit and anti-
mouse secondary antibodies corresponding to the primary
antibodies. Finally, the bands were visualized with the enhanced
chemiluminescence (ECL) substrate (Thermo) by GV6000M
(GelView 6000pro). The intensities of the protein bands Were
quantified (ImageJ software) and standardized against the levels
of GAPDH.
TABLE 1 | The basic information for primary low-grade glioma (LGG) patients in the TCGA, CGGAseq1, CGGAseq2, GSE16011, and Rembrandt datasets.

Variable TCGA set (n=476) CGGAseq1 set (n=270) CGGAseq2 set (n=137) GSE16011 set (n=102) Rembrandt set (n=129)

Age
>=mid 245 51.47% 143 52.96% 72 52.55% 58 56.86% 67 51.94%
<mid 231 48.53% 127 47.04% 65 47.45% 54 52.94% 62 48.06%

Gender
Male 260 54.62% 150 55.56% 85 62.04% 67 65.69% 77 59.69%
Female 216 45.38% 120 44.44% 52 37.96% 35 34.31% 52 40.31%

Grade
WHO II 231 48.53% 130 48.15% 90 65.69% 22 21.57% 64 49.61%
WHO III 245 51.47% 140 51.85% 47 34.31% 80 78.43% 65 50.39%

IDH1
Wildtype 85 17.86% 176 65.19% 35 25.55% 37 36.27% N/A N/A
Mutant 388 81.51% 64 23.70% 101 73.72% 44 43.14% N/A N/A
N/A 3 0.63% 30 11.11% 1 0.73% 21 20.59% N/A N/A

1p/19q
Codel 157 32.98% 81 30.00% 50 36.50% N/A N/A N/A N/A
Non-codel 323 67.86% 157 58.15% 85 62.04% N/A N/A N/A N/A
N/A 0 0.00% 32 11.85% 2 1.46% N/A N/A N/A N/A
May 2021 |
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Quantitative Real-Time PCR (qRT-PCR)
TRIzol reagent (Thermo) was used to extract total RNA from
cells. RNA was reverse transcribed into cDNA using High
Capacity cDNA Reverse Transcription Kits (Bio-Rad).
Quantitative real-time polymerase chain reaction (qRT-PCR)
was performed using the following primer sequences: EGFR: F
primer, 5’-AGGCACGAGTAACAAGCTCAC-3’, R primer,
5’-ATGAGGACATAACCAGCCACC -3’; SLIT1: F primer, 5’-
G C C TGGAAC TCAATGGCAAC - 3 ’ , R p r i m e r ,
5’-CTGGTTTCGGTTCAGTCGCA-3’; ADRB2: F primer, 5’-
T T G C TGGCACCCAATAGAAG - 3 ’ , R p r i m e r ,
5’-CAGACGCTCGAACTTGGCA-3’; MSR1: F primer, 5’-
GCAGTGGGATCACTTTCACAA - 3 ’ , R p r i m e r ,
5’-AGCTGTCATTGAGCGAGCATC-3’; and GADPH: F
primer, 5’-CTCACCGGATGCACCAATGTT-3’, R primer: 5’-
CGCGTTGCTCACAATGTTCAT-3’. The relative mRNA
expression levels were analyzed using GraphPad Prism 8
software after normalizing against the expression level
of GAPDH.

Statistical Analysis
We implemented Kaplan-Meier method to contrast the survival
outcomes between low and high IRGP score LGG patients by
using the two-sided log-rank statistical test. Receiver operating
characteristic (ROC) model (time-dependent) was utilized to
evaluate the prognostic predictive power of the IRGP score. The
prognostic value of IRGPs were assessed by univariate Cox
regression analysis. The independent prognostic role of IRGP-
signature was determined by univariate and multivariate Cox
regression in each cohort. Statistical analyses were performed by
the R program langage (version 3.6.1, https://www.r-project.org/)
and SPSS Statistics software (version 25, https://www.ibm.com/
products/software) in this study.
RESULTS

Identification and Construction of IRGP
Index in Primary LGG Patients
Figure 1 displays the workflow used for our study process.
First, the IRG expression matrix were screened from all five
datasets, and then the intersecting IRGs among all datasets were
identified using a Venn diagram. A total of 1,107 IRGs were
detected in all five datasets (Figure 2A). For a better analysis,
the TCGA dataset was served as our training set and applied a
univariate Cox regression analysis (p < 0.001) to screen the
identified IRGPs in the TCGA dataset, resulting in the
identification of 327 IRGs. After determining the value of
IRGPs, which were calculated by these screened IRGs, we
obtained a final set of 1,124 OS-related IRGPs. In order to
build the relationship between OS outcomes and IRGPs,
univariate Cox regression analysis was performed and
recognized 101 IRGPs that were noticeably correlated with
patient prognosis. To identify robust IRGPs, we used Lasso
Cox regression analysis and multivariate Cox regression
analysis on the training set. Finally, we extracted 10 IRGPs
Frontiers in Oncology | www.frontiersin.org 4
(Figures 2B, C) and 19 IRGs, including 5 negative and 5
positive gene pairs. The Cox regression analysis results were
used to confirm the IRGP signature for predicting the OS
among primary LGG patients. The coefficients and univariate
Cox analysis results for these 10 IRGPs are shown in Table S1.
Risk score was calculated for each patient on the basis of the
developed risk model. We selected an optimal cut-off value of
0.6037 for the IRGP index to predict primary LGGs prognosis
by using time-dependent ROC curve analysis. Using the
determined cut-off value as the threshold, patients were
divided into low- and high-risk subgroups in the TCGA
dataset, and the Kaplan-Meier survival curves showed that
primary LGG patients with lower risk scores had better
clinical outcomes (higher OS rates and a longer OS times,
Figure 2D, p < 0.001). The survival status and risk scores
distributions are shown in Figure 2E. In addition, we analyzed
the progression free survival (PFS)of the patients, which
returned a similar conclusion (Figure 2F, p < 0.001). The
survival status and risk score distributions are shown in
Figure 2G.

To confirm the predictive ability of the IRGP signature, we
used the risk scores from the TCGA dataset to build a The ROC
curves indicated that IRGPs might provide the reliable power for
the prediction of OS among the training dataset (1-year area
under the ROC curve [AUC] = 0.922, 3-year AUC = 0.886,
5-year AUC = 0.843; Figures 2H–J).

Validation of the Prognostic Value
of IRGP-Signature
After establishing the prognostic model, we merged the other
four datasets into two external validation sets (CGGAseq1 and
CGGAseq2 were combined into the CGGA dataset, whereas the
GES16011 and Rembrandt datasets were combined into the GEO
dataset). Risk scores were calculated for patients in the GEO and
CGGA datasets using the formula applied to the TCGA dataset
to validate the prognostic ability of the IRGP signature. And
primary LGG patients were divided into high- and low-risk
subgroups in the CGGA and GEO datasets based on the
training set’s median value risk score. As shown in Figures 3A,
C (p < 0.001), the results were consistent for these independent
data sets were consistent with the findings from the training
dataset. Primary LGG patients in the low-risk subgroup had
higher survival rates and longer OS times in both of the
validation datasets. Survival status and risk score distributions
are shown in Figures 3B, D, indicating that higher mortality and
shorter overall survival times will be seen among patients with
higher risk scores. In order to better investigate the effect of
treatment on the prognosis of LGG patients, we added the
influence of clinical treatment on patients between high-risk
group and low-risk group based on IRGPs signature in the
CGGA dataset. And then we further divided two groups into
three subgroups: 1. No special treatment; 2. Radiotherapy or
chemotherapy; 3. Radiotherapy and chemotherapy. The results
showed that there was no significant difference among the three
treatments in the low-risk group, but there was significant
difference in the high-risk group (Figures S1A, B). This
May 2021 | Volume 11 | Article 665870
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finding implies that our model can guide clinical treatment and
predict prognosis to a certain extent.

The ROC analysis was used to assess the accuracy of 10 IRGP-
based risk score prediction in the GEO and CGGA datasets. The
results displayed that the IRGP signature was a reliable predictor in
the CGGA dataset (1-, 3-, 5-year AUC = 0.767, 0.756 and 0.716,
respectively; Figures 3E–G) and GEO dataset (1-, 3-, 5-year AUC =
0.852, 0.713 and 0.654, respectively; Figures 3H–J). These results
demonstrated that the IRGP signature presented a robust
prognostic value for multiple cohorts of primary LGG patients.

Predictive Abilities of Risk Models for
Different Clinical Sample Characteristics
To evaluate the robustness of each of the 10 IRGPs for predicting
various clinical characteristics in primary LGG patients,
a heatmap was designed to visualize the correlations between
the identified IRGPs and common clinical features of LGGs,
including age, sex, WHO grade, IDH mutation status, 1p/19q
Frontiers in Oncology | www.frontiersin.org 5
co-deletion status, and risk score (Figure 4A). We found that
gene expression ratios of 1 for ADRB2|MSR1, CALCRL|MDK,
CXCL12|PLSCR1, KCNH2|TFRC, and BMP4|BTK were
negatively correlated with high risk in primary LGG patients,
whereas gene expression ratios of 1 for SHC1|TCF7L2, AR|STC2,
EGFR|SLIT1, PDGFA|SEMA4D, and APOBEC3C|CXCL12 were
positively correlated with high risk among primary LGG
patients, suggesting that these IRGPs may be potentially
detrimental in primary LGG patients who express them.
Meanwhile, we found that some clinical characteristics,
including age > 40 years, 1p/19q non-codeletion, IDH wild-
type, and WHO grade III, were enriched in the high-risk
subgroup; however, no difference in gender was identified
between two subgroups. Box plots were used to visualize the
relationships between risk score and each of the examined
clinical characteristics among all five datasets (Figures 4B–E,
Figure S1I). In order to assess the prognostic roles of these
different clinical characteristics in primary LGG patients,
FIGURE 1 | Study flow chart.
May 2021 | Volume 11 | Article 665870
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Independent Prognostic Value of the IRGP
Signature Stratification
To evaluate the independent prognostic value of the IRGP
signature for the TCGA dataset and the four validation
datasets (CGGAseq1, CGGAseq2, GSE16011, and Rembrandt),
univariate and multivariate COX regression analyses were
performed and we systematically analyzed their clinical
information, including age, sex, WHO grade, IDH mutation
status, 1p/19q co-deletion status, and the risk score based on the
Frontiers in Oncology | www.frontiersin.org 6
10 IRGPs to determine hazard ratios (HR), 95% confidence
intervals (Cis), and p-values (Figure 5A).

We found that the risk score, age, IDHmutation status, WHO
grade and 1p/19q co-deletion status were correlated with survival
in the TCGA dataset, and most of these results could be
reproduced in the other datasets. Risk score, age and WHO
grade were positively correlated with final risk, suggesting the
growth of risk prediction, in contrast with the 1p/19q co-deletion
status and IDH mutation status. However, only the risk score
A B C

H I J

D E F G

FIGURE 2 | (A) Venn diagram showing the 1,007 immune-related genes (IRGs) screened in all five datasets. (B) Least absolute shrinkage and selection operator
(Lasso) regression were performed to calculate the minimum criteria. (C) Multivariate Cox analysis was used to calculate the coefficients of the IRG pairs (IRGPs).
(D) Kaplan–Meier (KM) survival curves revealed that the low-risk subgroup had better overall survival (OS) than the high-risk subgroup in The Cancer Genome Atlas
(TCGA) dataset. (E) Survival status and distributions of risk scores (based on the IRGP signature) of primary low-grade glioma (LGG) patients in TCGA dataset.
(F) KM curves showed that the high-risk subgroup had a worse platinum-free interval (PFI) than the low-risk subgroup in the TCGA dataset. (G) Survival status and
risk score distribution scatter plots for primary LGG patients in TCGA dataset. (H–J) Receiver operating characteristic (ROC) curves for the IRGP signature for the
prediction of 1/3/5-year survival in the TGGA dataset.
May 2021 | Volume 11 | Article 665870
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(HR = 1.818, 95% CI: 1.556–1.214, p < 0.001), but no other
clinical information, was significantly and consistently associated
with survival across all tested datasets. These results powerfully
suggested that the IRGP signature can be explored for use in
clinical applications to predict the prognosis of primary LGG
patients as a potential OS predictor.

Construction and Validation of
a Nomogram
The WHO glioma grade, without doubt, has been correlated with
patient prognosis, althoughmultivariate regression analysis revealed
no significant differences between two subgroups in theWHO grade
of gliomas in the present analysis. Therefore, in order to evaluate the
prognostic abilities of the IRGP signature, we selected clinical
Frontiers in Oncology | www.frontiersin.org 7
variables, including age, WHO grade, and the risk score for use as
independent prognostic factors during the establishment of a
nomogram model based on the training set (Figure 5B). In
Figure 5B, longer lines represent the stronger effects of various
influential factors. The risk score was associated with the longest
line, indicating that the risk score had the most stable effect on the
prediction of survival rate compared with the other two clinical
characteristics. The calibration curves generated for this nomogram
to forecast 1-, 3-, and 5-year survival rates had significant accuracy
of prediction (Figures 5C–E). We found that OS prediction using
the nomogram had stable predictive accuracy in the validation
datasets (Figures S1C–I). In addition, The C-index of our
nomogram model was 0.878 for the TCGA dataset, and we also
obtained great C-index values for the CGGA (C-Index: 0.734) and
A B C

E F G

H I J

D

FIGURE 3 | (A) Kaplan–Meier (KM) survival curves of 10 immune-related gene pairs (IRGPs) in the China Glioma Genome Atlas (CGGA) validation dataset.
(B) Survival status and risk score distribution scatter plots of primary low-grade glioma (LGG) patients in the CCGA dataset. (C) KM survival curves of 10 IRGPs in
the Gene Expression Omnibus (GEO) validation dataset. (D) Survival status and risk score distribution scatter plots of primary LGG patients in the GEO dataset.
(E–G) ROC curves of the IRGP signature for predicting 1/3/5-year survival in the CGGA dataset. (H–J) ROC curves of the IRGP signature for predicting 1/3/5-year
survival in the GEO dataset.
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GEO validation datasets (C-Index: 0.748). These findings suggest
that the nomogram model based on IRGP signature had the
dependable ability to act as a model for predicting outcomes
of patients.

Biological Processes Correlated With the
IRGP Signature
To study the underlying biological functions of the IRGP
signature, differential expression analysis was used to identify
Frontiers in Oncology | www.frontiersin.org 8
DEGs between the high- and low-risk primary LGG patients in
the training dataset. We selected DEGs (p < 0.05, |log2 (fold-
change)| > 1) and used the R package “clusterProfiler” to
perform KEGG and GO enrichment analysis based on the
identified DEGs. We found these pathways were primarily
enriched in immune-related biological processes, including
cell adhesion molecules, T cell receptor signaling pathways,
natural killer cell-mediated cytotoxicity and B cell receptor
signaling pathways, and cancer-associated pathways, such as
A

B C

D E

FIGURE 4 | (A) Heatmap of the correlation between the 10 immune-related gene pairs (IRGPs) and the clinicopathological features of The Cancer Genome Atlas
(TCGA) dataset. (B–E) Box plots revealed that patients with different clinicopathological features (including age, 1p/19q co-deletion status, WHO grade, and IDH
mutation status) had different risk scores between the high- and low-risk subgroups. World Health Organization; IDH, isocitrate dehydrogenase. *P < 0.05,
**P < 0.01, ***P < 0.001, ns, no significant difference.
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A
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C D E

FIGURE 5 | (A) Univariate and multivariate Cox analyses of clinicopathological and molecular features, including age, gender, WHO grade, IDH mutational status,
1p/19q co-deletion status, and risk scores, in each dataset. (B) A nomogram was established to predict the overall survival (OS) of primary low-grade glioma (LGG)
patients at 1/3/5 years. (C–E) Calibration curves for the nomogram for predicting the OS probability at 1/3/5 years among primary LGG patients in the TCGA
dataset. WHO, World Health Organization; IDH, isocitrate dehydrogenase; TCGA, The Cancer Genome Atlas.
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the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)
signaling pathway, the p53 signaling pathway, and the nuclear
factor (NF)-kB signaling pathway. The top 30 most significantly
enriched pathways are shown in Figures 6A, B. In addition, we
performed GSEA between high- and low-risk primary LGG
patients. The results identified 48 cancer hallmark gene sets in
the high-r i sk subgroup, such as P53_PATHWAY,
IL2_STAT5_SIGNALING, PI3K_AKT_MTOR_SIGNALING,
and MTORC1_SIGNALING (Figures 6C, S2A). These
enrichment analyses revealed that the IRGP signature might
play a prognostic role in primary LGG.
Frontiers in Oncology | www.frontiersin.org 10
Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
Based on the risk scores determined for the IRGP signature in the
training dataset, all samples were divided into low- and high-risk
subgroups, and unsupervised clustering analysis of 29 IRG sets
was performed, with each sample obtaining an ssGSEA score. As
shown in Figure 7A, the high-risk subgroup showed higher
levels of IRGs than the low-risk subgroup. The stromal scores,
immune scores, ESTIMATE (estimation of stromal and immune
cells in malignant tumor tissues using expression data) scores,
and tumor purity were significantly different (p < 0.0001)
between two subgroups. We found that the tumor purity was
markedly lower in the high-risk subgroup than in the low-risk
A

C

B

FIGURE 6 | (A) Top 30 gene ontology biological process (GO-BP) analysis enrichment results based on differentially expressed genes. (B) Top 30 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis enrichment results. (C) Top 10 gene set enrichment analysis (GSEA) results in the
high-risk subgroup.
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D

FIGURE 7 | (A) Hierarchical clustering of primary low-grade glioma (LGG) patients into high- and low-risk subgroups based on the immune-related gene pair (IRGP)
signature. Tumor purity, estimated scores, immune scores, and stromal scores were assessed by ESTIMATE, based on 29 immune-associated gene sets.
(B) Comparison of human leukocyte antigen (HLA) genes between high- and low-risk subgroups. (C) qRT-PCR analysis of four IRGs in NHA, SW-1088, Bt142-mut,
and SW-1783 cells. Expression was normalized against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA expression. Data are presented as the mean ±
SEM. (D) Western blotting analysis was performed to measure IRG protein levels in NHA, SW-1088, Bt142-mut, and SW-1783 cells. ***P < 0.001.
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subgroup. However, in the high-risk subgroup, the immune
scores, ESTIMATE score and stromal scores were observably
higher, which demonstrated opposite trends compared with
tumor purity. These findings showed that low-risk samples
contained lower numbers of immune cells and stromal cells
but higher numbers of tumor cells than high-risk samples. In
addition, we also analyzed the expression of human leukocyte
antigen (HLA) in each subgroup. Interestingly, all HLA genes
were expressed at higher levels in the high-risk subgroup (P <
0.0001, Figure 7B).

Validation of the Transcription and Protein
Expression Levels of IRGs
To further ascertain the believability of the IRGP signature in
normal human astrocytes and low-grade glioma cells (WHO
Grade III, astrocytoma), we performed western blotting analysis
and qRT-PCR to investigate the transcription and protein
expression levels of four selected IRGs (EGFR, SLIT1, ADRB2,
and MSR1) in these cell lines. We discovered that these genes’
transcription and protein expression levels in normal human
astrocytes were lower than those in LGG cells. In addition, we
found that EGFR had higher transcription and protein
expression levels compared with those for SLIT1 in gliomas
characterized as WHO III in patients >40 years. However, an
adverse trend was detected for the levels of ADRB2 and MSR1
(Figures 7C, D). The results observed for WHO Grade III I
patients >40 years were consistent with the IRGPs we have
obtained previously in high-risk patients (EGFR|SLIT1 = 1,
ADRB2|MSR1 = 0).
DISCUSSION

In clinical settings, patients remain at risk for recurrence and
death, even after sufficient surgical treatment, due to the
malignant characteristics of glioma. Although temozolomide
and other chemotherapy drugs have been shown to be effective
for patient treatments, current protocols have difficulty
predicting prognosis and targeting treatments during the early
stages of glioma (26, 27). Therefore, reliable clinical biomarkers
capable of accurately identifying patients and predicting
prognosis remain necessary and practical to facilitate the better
treatment of patients. In our study, we constructed an IRGP
signature based on IRGs for predicting the outcomes of primary
LGG patients and obtained significance in most analyses.

Much recent studies have focused on the relationships
between IRG expression and the occurrence and development
of various tumors (28). Deepening research has shown that IRGs
have the stable ability to predict patient prognosis, and several
IRGs with robust predictive functions have been reported (12).
Interestingly, increasing attention has been given in checkpoint-
inhibitor immunotherapy on account of its favorable effects for
the management of solid tumors (29–32) and is expected to
become a new option for LGG patients. To date, some existing
models have used IRGs as a prognostic predictor of glioma
patients (33, 34). A study examining the gene expression pattern
Frontiers in Oncology | www.frontiersin.org 12
of tumor immune infiltration identified an association with LGG
malignancy, and a risk model based on 20 IRGs with different
expression levels was shown to present decent OS prediction
abilities for LGG (13). However, many prognosis-related models
are limited by factors such as small sample size and the lack of
sufficient validation.

Therefore, we selected five datasets (TCGA, CGGAseq1,
CGGAseq2, GSE16011, and Rembrandt) from TCGA, CGGA,
and GEO databases, resulting in the inclusion of 1,114 patients
with primary LGG and the identification of 1,007 common IRGs
with differential expression among all five datasets. After a series
of analyses based on the TCGA dataset, 10 IRGPs were defined
using 19 selected IRGs to build a prognostic model for primary
LGG patients, and a risk score was calculated for each patient.
According to the median value of the risk scores, patients were
divided into low- and high-risk subgroups, and survival analysis
revealed a noteworthy difference between two subgroups, with
worse clinical outcomes for the high-risk group. In the
correlation analyses with clinical characteristics, we detected
distinct differences in the age, WHO grade, 1p/19q co-deletion
status and IDH mutation status between the high- and low-risk
subgroups. However, multivariate Cox regression revealed that
the risk score constructed using the 10 IRGP signature was a
stable, independent prognostic factor of LGG outcomes. In
addition, we established nomograms, based on the IRGP
signature risk score, age and WHO grade, for primary LGG
patients in the training dataset. During the validation process, we
found that the nomograms had robust abilities to predict the OS
of patients in GEO and CGGA databases; although the
prediction ability was slightly lower for the GEO dataset,
the analysis revealed good performance. To further explore the
potential biologic processes associated with the IRGP signature,
we screened DEGs between the high- and low-risk subgroups
and conducted GO, KEGG, and GSEA analyses. The results
including cell invasion, proliferation, and immune and
inflammatory responses, with many enriched pathways
correlated with immune and inflammatory responses. Finally,
based on the previously identified high-risk groups and 29 IRG
sets, we used ssGSEA to examine the differential expression of
HLA associated genes in primary LGG patients in the TCGA
dataset. Not surprisingly, the results displayed that the high-risk
subgroup was associated with increased immune cell infiltration
and IRG expression than the low-risk subgroup, further
confirming the key role played by immunity in the prognosis
of primary LGG patients.

In this study, we selected five diverse datasets containing
primary LGG patients, providing some advantages for the
analysis methods and conclusions; however, some limitations
remain. First, some clinical molecular features, such as O6-
methylguanine (O6-MeG)-DNA methyltransferase (MGMT)
status, which has been regarded as a robust predictor of
prognosis in patients with glioma (35–37), were not included
in the current analysis. In addition, the two GEO datasets
(GSE16011 and Rembrandt) could not be further analyzed in
our study due to the omission of information, including IDH
mutation status and 1p/19q co-deletion status. In addition, our
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data were all obtained from open-access datasets. Although all
data were analyzed after normalization to values of [0,1], due to
differences between microarray and sequencing technology,
some systematic errors likely remained. Moreover, our results
were only studied and analyzed in retrospective datasets, with no
analysis of a prospective dataset. Additionally, the ethnic groups
included in the five datasets were not uniform, although the
impacts of ethnic differences were minimized by the risk model
during the validation process. The conclusions obtained from a
series of limited bioinformatics analyses are insufficient and
require further verification through comprehensive
experiments and clinical studies. Furthermore, the functional
and expression data of these IRGs in primary LGG patients
remains necessary, preferably in larger and multiple datasets
combined with additional clinical features.

In conclusion, our study constructed and comprehensively
analyzed an IRGPs-based risk model. Combined with
independent clinical factors, we established nomograms for
predicting the prognosis of primary LGG patients.
Furthermore, ssGSEA and HLA gene expression analyses
revealed differences in immune cell infiltration and IRG
expression between different risk subgroups. These findings
indicate that this may be a valid method for assessing the
prognostic risk of primary LGG patients and may represent a
promising avenue to develop more effective treatments and
management strategies for primary LGG patients.
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