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Background: Breast ultrasound is the first choice for breast tumor diagnosis in China,

but the Breast Imaging Reporting and Data System (BI-RADS) categorization routinely

used in the clinic often leads to unnecessary biopsy. Radiologists have no ability

to predict molecular subtypes with important pathological information that can guide

clinical treatment.

Materials and Methods: This retrospective study collected breast ultrasound images

from two hospitals and formed training, test and external test sets after strict selection,

which included 2,822, 707, and 210 ultrasound images, respectively. An optimized deep

learning model (DLM) was constructed with the training set, and the performance was

verified in both the test set and the external test set. Diagnostic results were compared

with the BI-RADS categorization determined by radiologists. We divided breast cancer

into different molecular subtypes according to hormone receptor (HR) and human

epidermal growth factor receptor 2 (HER2) expression. The ability to predict molecular

subtypes using the DLM was confirmed in the test set.

Results: In the test set, with pathological results as the gold standard, the accuracy,

sensitivity and specificity were 85.6, 98.7, and 63.1%, respectively, according to the

BI-RADS categorization. The same set achieved an accuracy, sensitivity, and specificity of

89.7, 91.3, and 86.9%, respectively, when using the DLM. For the test set, the area under

the curve (AUC) was 0.96. For the external test set, the AUC was 0.90. The diagnostic

accuracy was 92.86% with the DLM in BI-RADS 4a patients. Approximately 70.76% of

the cases were judged as benign tumors. Unnecessary biopsy was theoretically reduced

by 67.86%. However, the false negative rate was 10.4%. A good prediction effect was

shown for the molecular subtypes of breast cancer with the DLM. The AUC were 0.864,

0.811, and 0.837 for the triple-negative subtype, HER2 (+) subtype and HR (+) subtype

predictions, respectively.
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Conclusion: This study showed that the DLM was highly accurate in recognizing breast

tumors from ultrasound images. Thus, the DLM can greatly reduce the incidence of

unnecessary biopsy, especially for patients with BI-RADS 4a. In addition, the predictive

ability of this model for molecular subtypes was satisfactory,which has specific clinical

application value.

Keywords: breast cancer, deep learning, ultrasound, cancer diagnosis, molecular subtype

INTRODUCTION

Breast cancer is the most common malignant tumor in
women in China (1, 2). Breast ultrasound is more suitable
for tumor discovery in Asian women considering the higher
breast density (3, 4) and the younger age at diagnosis (5,
6). Patients with Breast Imaging Reporting and Data System
(BI-RADS) 4a or higher findings are usually recommended
to undergo core needle biopsy or surgery. BI-RADS has
a wide range of possibilities to predict the presence of
malignancies, but its false positive findings lead to unnecessary
biopsies in a large number of individuals without breast
cancer (7).

The combination of deep learning (8) and large datasets
has shown good performance in the diagnosis of many
diseases, including cancer (9–12). The deep learning model
(DLM) takes the original image pixels and corresponding
category labels in medical image data as inputs and does
not require manual design features required by traditional
methods but automatically learns features related to category
classification (13).

Based on receptor status, breast cancers are divided into
five subtypes (14). If the molecular subtype is identified
before surgery, we can determine whether the patient is
suitable for neoadjuvant treatment and which scheme should
be more efficient. However, currently, we cannot obtain subtype
information through traditional ultrasound examinations.

In addition to the differentiation of benign and malignant
breast tumors from ultrasound images, previous studies have
focused on the correlation between imaging features and
molecular subtypes. Breast cancers with the triple-negative
subtype were more likely to be associated with circumscribed
margins and were less associated with calcifications (15–18).
Human epidermal growth factor receptor 2 (HER2) (+) breast
cancers usually show enhanced posterior acoustics on ultrasound
images (15, 17). Tumors with posterior shadowing are often
found in hormone receptor (HR) (+) HER2 (–) breast cancers
(16, 19, 20). In addition, echogenic halos were frequently present
in the HR (+) HER2 (–) subtype (17, 20). Due to the various
imaging features of different subtypes, there is potential to
predict molecular subtypes with DLM by analyzing only the
ultrasound images.

In this study, we constructed a DLM based on ultrasound
images. We obtained a higher accuracy for breast tumor
diagnosis with the DLM than with radiologists. We obtained
a good prediction for tumor molecular subtypes, which may
provide more choices for therapy.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board
of Harbin Medical University Cancer Hospital. Because of its
retrospective nature, the study was exempt from obtaining
informed consent from patients.

Datasets
We obtained original ultrasound images for the training and
testing datasets from the breast image database of HarbinMedical
University Cancer Hospital (a total of 17,226 images from
2,542 patients). All patients underwent surgical treatment with
definitive pathological results. The cohort selection flowchart is
shown in Figure 1. Patients in the external test set were enrolled
from The First Affiliated Hospital of Harbin Medical University
and were selected with the same criteria as those for the training
and test sets. Exclusion criteria for the datasets are described in
the Supplementary Material.

We selected ultrasound images of breast cancer patients with
corresponding pathological results. We excluded tumors with
incomplete immunohistochemistry results and then separated
the tumors into molecular subtypes. Data on estrogen receptor
(ER) and progesterone receptor (PR) expression were collected.
Patients with positivity for either or both receptors were defined
as being HR positive. According to the expression of two
indicators, HR and HER2, we regrouped patients into three
molecular subtypes: HER2 (+) subtype, HR (+) subtype and
triple-negative subtype. HER2 (+) subtype = HR (+) HER2 (+)
or HR (–) HER2 (+); HR (+) subtype = HR (+) HER2 (–);
triple-negative subtype=HR (–) HER2 (–).

In Figure 2, we listed some samples of breast ultrasound
images from the datasets, which were presented by classification
of benign and malignant tumors and molecular subtypes.

The training and test sets were formed by a random sampling
method at a ratio of 4:1. The compositions of these sets are shown
in Figure 1. It is noteworthy that within the training set, we
redivided it into a new training set and a validation set for model
tuning and training at a ratio of 4:1. The optimal model obtained
was tested with the test set and the external test set.

Development of the DLM
All images in the datasets were 8-bit and 3-channel images, so
they could be used as training set and test set images to fine-
tune the deep convolutional neural network (DCNN) directly.
Supplementary Figure 1 shows the whole process of breast
ultrasound image analysis.
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FIGURE 1 | Cohort selection flowchart and the composition of the training, test and external test sets. The black rectangles represent the process of data selection.

The orange rectangles represent the composition of datasets for the diagnosis of breast tumors. The blue rectangles represent the composition of datasets used to

predict the molecular classification of breast cancer. n, the number of images; N, the number of patients; M, malignant; B, benign; HER2, human epidermal growth

factor receptor 2; HR, hormone receptor.

To obtain a better deep learning effect, the necessary image
preprocessing algorithm was used to improve the image quality.
In the image preprocessing of the Supplementary Material, we
specifically described how to carry out preprocessing of breast
ultrasound images.

Considering the amount of data compared with the
depth of deep learning, we used data enhancement to
enhance the diversity and generalization of the data.
We used data enhancement in the Keras model, which
could enhance the real-time data with the help of a
central processing unit (CPU) during training. Due to
the particularity of the ultrasound image data, we used
four kinds of random operations to enhance the data:

vertical rotation, horizontal rotation, center rotation, and
scale reduction.

Because the data had enough high-quality samples after
preprocessing and expansion, we used the deep learning Keras
framework to transfer and fine-tune the Xception network,
making it a network that could extract features for breast
ultrasound images (21). The Xception convolution neural
network (CNN) has trained more than 1.2 million images from
the ImageNet large-scale vision recognition challenge (ILSVRC)
knowledge base.

The structure of the Xception model mainly consisted of a
convolutional layer and a fully connected classification layer.
Figure 3 shows the structure diagram of our model training,
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FIGURE 2 | Some samples of breast ultrasound images from the datasets. In the first column, the samples were divided according to the diagnosis results of the

tumor, which were benign and malignant; in the second column, the samples were classified according to molecular subtypes, which were divided into images of HR

(+) subtype, HER2 (+) subtype, and triple-negative subtype. HR, hormone receptor; HER2, human epidermal growth factor receptor 2.

which mainly adopted the transfer learning method to train the
model. CNN-1 represented the training model on the ImageNet
dataset and outputted 1,000 classification results. The CNN-2
model was obtained through transfer learning of the CNN-1
model and used for the classification of benign and malignant
breast tumors by ultrasound images. The specific model training
methodwas to freeze the convolutional layer parameters of CNN-
2 and then train the fully connected layer of the CNN-2 model.
After the training was stable, we defrosted the convolutional
layer for retraining to achieve the best effect. CNN-3 was a
classification model of molecular subtypes, which was acquired
from the transfer learning of the CNN-2 model. Two specific
training parameters are shown in the Supplementary Material.

Statistical Analysis
Evaluation of the DLM was performed with R version 3.5.1. For
binary classification in discriminating breast cancer patients from
controls, a classification matrix (caret version 6.0–80) and the
receiver operating characteristic (ROC) curve (pROC version
1.13.0) were generated to visualize the diagnostic ability of the
DLM. For the triple classification of the three molecular subtypes,
a classification matrix and the ROC curve using a one-vs-all
approach (multiROC version 1.1.1) were generated. The area
under the curve (AUC), accuracy, sensitivity, and specificity were
calculated to compare the predictive performance between the
DLM and BI-RADS classification systems in the test and external
test sets. P < 0.05 was considered to indicate a statistically
significant difference. Moreover, the calculation of sample size is
shown in the Supplementary Material.

RESULTS

Cohort Composition
Wedivided the ultrasound images collected fromHarbinMedical
University Cancer Hospital into two sets (Figure 1). The training
set was composed of 2,822 images, including 1,786 images from
1,217 patients with malignant tumors and 1,036 images from
603 patients with benign tumors. The test set was composed
of 707 images, including 447 images from 392 patients with
malignant tumors and 260 images from 228 patients with benign
tumors. After applying the same exclusion criteria, external test
set images were collected from The First Affiliated Hospital of
Harbin Medical University, including 93 images from 38 patients
with malignant tumors and 117 images from 45 patients with
benign tumors.

Two datasets were used for molecular subtype prediction
(Figure 1). The training set consisted of 212 images from 149
HER2 (+) subtype patients, 588 images from 417 HR (+)
subtype patients and 186 images from 118 triple-negative subtype
patients. The test set comprised 54 images from 47 HER2 (+)
subtype patients, 148 images from 135 HR (+) subtype patients
and 47 images from 40 triple-negative subtype patients.

Performance in Diagnosis
The DLM was more accurate (0.897, 95% CI: 0.872–0.918) than
ultrasound doctors (0.856, 95% CI: 0.828–0.881) (P = 0.024)
(Tables 1, 2). The doctors used the malignant probability and
BI-RADS system to determine positive ultrasound findings. For
sensitivities, 91.3 and 98.7% (P < 0.001) were achieved for
the DLM and BI-RADS systems, respectively. However, the
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FIGURE 3 | Structural diagram of the transfer learning model for breast cancer ultrasound images. CNN-1 represents the classification model trained on the ImageNet

dataset, which is divided into 1,000 categories of natural images. CNN-2 is the benign and malignant tumor diagnostic model obtained by model transfer and

retraining on the basis of the CNN-1 model, and CNN-3 is the classification model of tumor molecular subtypes obtained by model transfer and retraining on the basis

of the CNN-2 model. CNN, convolution neural network.

specificity of the DLM (86.9%) was significantly higher than
that of BI-RADS (63.1%) (P < 0.001). This result indicates that
the DLM may reduce the unnecessary biopsy of false positive
findings with the BI-RADS system. For the test set, the AUC was
0.96. For the external test set, the AUCwas 0.90 (Figure 4). These
results suggest that the DLM has good performance in breast
cancer diagnosis.

Reducing Unnecessary Biopsy
Each ultrasound image had corresponding BI-RADS, DLM, and
pathological results. The proportion of all patients with BI-
RADS 4a judged as benign (70.76%) by the DLM was greater
than that judged as malignant (29.24%) (Figure 5A). This result
indicated that 70.76% of BI-RADS 4a patients did not need
surgery when diagnosed using the DLM. The diagnostic accuracy
for BI-RADS 4a patients reached 92.86%, and unnecessary

TABLE 1 | Confusion matrices of the test set and external test set.

Pathology

Test set External test set

+ − + −

BI-RADS + 441 96 – –

– 6 164 – –

DLM + 408 34 76 18

– 39 226 17 99

+, malignant; –, benign; BI-RADS, Breast Imaging Reporting and Data System; DLM,

deep learning model.

biopsy was reduced by 67.86%, with a false negative rate of
10.4% for the DLM (Figure 5B). These findings suggest that
the DLM can greatly reduce the incidence of unnecessary
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biopsy, especially for BI-RADS 4a patients with a low false
negative rate.

Molecular Subtype Prediction
The DLM can be used not only in the diagnosis of breast cancer
but also in the prediction of molecular subtypes. From the results
of the triple classification, the triple-negative subtype reached the
highest AUC of 0.864. The AUC of the HER2 (+) subtype was
0.811, and the AUC of the HR (+) subtype was 0.837 (Figure 6).
Accuracy of theHR (+) subtype (85.14%)was significantly higher
than that of the HER2 (+) subtype (50%) and triple-negative
subtype (53.19%) (Supplementary Table 1).

TABLE 2 | Identification performance of BI-RADS and the DLM on the test set

and external test set.

Test set External test set

BI-RADS DLM P-value* BI-RADS DLM

Accuracy 0.856 0.897 0.024 – 0.833

Sensitivity 0.987 0.913 <0.001 – 0.817

Specificity 0.631 0.869 <0.001 – 0.846

Positive predictive value 0.821 0.923 <0.001 – 0.809

Negative predictive value 0.965 0.853 <0.001 – 0.853

Kappa 0.666 0.779 – – 0.663

BI-RADS, Breast Imaging Reporting and Data System; DLM, deep learning model;

*chi-square test.

DISCUSSION

We successfully established a DLM for breast cancer diagnosis
and molecular subtype prediction based on ultrasound images.
The accuracy of the DLM in the diagnosis of breast cancer was
higher than that of BI-RADS, and the DLM performed well in
both the test set and external test set. The DLM can apparently
reduce unnecessary biopsy for patients with BI-RADS 4a. In the
predictive results of the DLM for themolecular subtypes of breast
cancer, we could see that its performance for various subtypes was
ideal, and there were no significant disparities among them.

In many studies of cancer diagnosis, the accuracy of DLMs is
higher than that of radiologists. Li et al. successfully developed a
DCNNmodel for the diagnosis of thyroid cancer with ultrasound
images. The accuracy was 89.8% with the DCNNmodel vs. 78.8%
with radiologists (22). To classify invasive adenocarcinomas from
preinvasive lesions, Wang et al. (23) developed a CNN model.
The accuracy of the model (84%) was higher than that of
three radiologists (radiologist 1: 80.2%; radiologist 2: 80.7%; and
radiologist 3: 81.7%). He et al. used a CNN to predict the local
recurrence of giant cell bone tumors. The accuracy of the CNN
model was 75.0%, while the accuracy of radiologists was 64.3%
(24). Our study had similar results. The DLM was more accurate
(0.897, 95% CI: 0.872–0.918) than radiologists (0.856, 95% CI:
0.828–0.881) (P = 0.024). In summary, the DLM performed
well and has the potential to provide better diagnostic results
than radiologists.

At present, there are few studies on the diagnosis of breast
cancer with DLMs based on ultrasound images. In recent studies,
researchers used different DLMs to diagnose breast tumors on
ultrasound images, and the one that performed best was selected

FIGURE 4 | Identification performance of the DLM on the test set (A) and external test set (B). The blue dot on the left ROC curve indicates the performance of

BI-RADS. DLM, deep learning model; ROC, receiver operating characteristic; BI-RADS, Breast Imaging Reporting and Data System; AUC, area under the curve.
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FIGURE 5 | Diagnostic results of the DLM for breast tumors with different BI-RADS categorizations compared with the definitive pathological results. (A) The width of

the extended branches corresponds to the size of the data; 70.76% represents the percentage of BI-RADS 4a patients diagnosed as benign by the DLM; 29.24%

represents the percentage of BI-RADS 4a patients diagnosed as malignant by the DLM. (B) The numbers in this graph represent the number of images; 92.86%

represents the diagnostic accuracy of BI-RADS 4a patients with the DLM; 67.86% represents the reduction rate of unnecessary biopsy in BI-RADS 4a patients with

the DLM; 10.4% represents the false negative rate of BI-RADS 4a patients with the DLM. Negative means the diagnosis of the DLM is benign. Positive means the

diagnosis of the DLM is malignant. DLM, deep learning model; BI-RADS, Breast Imaging Reporting and Data System.

FIGURE 6 | Performance of the DLM in identifying different molecular

subtypes with triple classification on the test set. HER2 (+) subtype = HR (+)

HER2 (+) or HR (–) HER2 (+); HR (+) subtype = HR (+) HER2 (–);

triple-negative subtype = HR (–) HER2 (–). DLM, deep learning model; HER2,

human epidermal growth factor receptor 2; HR, hormone receptor.

after comparison. The purpose of these studies was to develop
only a DLM for the classification of malignant and benign masses
(25–29). In our study, we sought to develop a DLM not only
for classifying masses but also for reducing unnecessary biopsy.
Unnecessary biopsy was theoretically reduced by 67.86% with
the DLM in BI-RADS 4a patients. Zhu et al. (30) developed a
DLMbased on breastMRIs that showed some predictive value for
molecular subtypes. However, these researchers only considered
the distinction between the luminal A subtype and all other
subtypes. Unlike their model, our model can differentiate each
molecular subtype and guide individualized treatment. To the
best of our knowledge, this is the first study to apply a DLM to
the prediction of molecular subtypes using ultrasound images.

The DLM is better than traditional methods in identifying
benign and malignant breast tumors. It performs well with high
AUC values and other indicators and reduces the burden of
radiologists (31). DLMs do not require time-consuming tumor
boundary labeling, which is a necessary step for traditional
methods. In addition, the DLM can make better use of the
hidden information around the tumor, which is ignored by
traditional methods.

Currently, most studies use statistical analysis to obtain low-
dimensional features of breast ultrasound images for molecular
classification. These low-dimensional features are easily affected
by the number and quality of the samples collected, making it
difficult to mine and quantify the relationships between images
and subtypes (32). However, deep learning methods can extract
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abstract features. All extracted features are high-dimensional
features related to molecular classification. Although difficult to
visualize, molecular classification is important and can greatly
improve recognition accuracy.

There are limitations in our study. First, the training set
data came from one hospital, and we did not summarize the
basic information on patients and tumors. Second, regardless
of the training, test or external test sets, the sample size was
small. Thus, these results need to be validated with a larger
cohort to determine the value of our model in clinical practice.
Third, because the study was retrospective, all patients underwent
surgical treatment. However, there are many women who have
a BI-RADS categorization with certain malignant potential who
choose observation instead of surgical treatment. This factor
may be one of the reasons why our study did not achieve a
better result.

CONCLUSION

We demonstrated that our DLM can recognize breast tumors
and predict molecular subtypes with high accuracy based solely
on ultrasound images, which may make DLM an effective
alternative to clinical biopsy. It is necessary to cooperate with
other institutions to expand the dataset to better confirm our
model and make it an important decision-making tool with great
potential in clinical application.
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