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Cumulating evidence indicates that dysregulation of microRNAs (miRNAs) plays a central
role in the initiation, progression, and drug resistance of cancer cells. However, the
specific miRNAs contributing to drug resistance in ovarian cancer cells have not been fully
elucidated. Aimed to identify potential miRNAs involved in platinum resistance, we
performed a miRNA expression profile in cisplatin-sensitive and cisplatin-resistant
ovarian cancer cells, and we found several differentially abundant miRNAs in the pair of
cell lines. Notably, miR-18a-5p (miR-18a), a member of the oncogenic associated miR-
17-92 cluster, was decreased in cisplatin-resistant as compared with cisplatin-sensitive
cells. Real-time PCR analysis confirmed these findings. We then studied the biological,
molecular, and therapeutic consequences of increasing the miR-18a levels with
oligonucleotide microRNA mimics (OMM). Compared with a negative control OMM,
transient transfection of a miR-18a-OMM reduced cell growth, cell proliferation, and cell
invasion. Intraperitoneal injections of miR-18a-OMM-loaded folate-conjugated liposomes
significantly reduced the tumor weight and the number of nodules in ovarian cancer-
bearing mice when compared with a control-OMM group. Survival analysis using the
Kaplan-Meier plotter database showed that ovarian cancer patients with high miR-18a
levels live longer in comparison to patients with lower miR-18a levels. Bioinformatic
analyses, real-time-PCR, Western blots, and luciferase reporter assays revealed that
Matrix Metalloproteinase-3 (MMP-3) is a direct target of miR-18a. Small-interfering RNA
(siRNA)-mediated silencing of MMP-3 reduced cell viability, cell growth, and the
invasiveness potential of cisplatin-resistant ovarian cancer cells. Our study suggests
that targeting miR-18a is a plausible therapeutic strategy for cisplatin-resistant
ovarian cancer.
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INTRODUCTION

Ovarian cancer is the deadliest gynecological malignancy,
provoking around 239,000 new cases and 152,000 deaths
worldwide annually (1). The standard treatment for women
with ovarian cancer consists of debulking cytoreductive surgery
and platinum/taxane combination chemotherapy (2). Despite
the initial effectiveness of the combined chemotherapy, more
than 70% of ovarian cancer patients relapse and they become
resistant to platinum-based treatment (3). Several mechanisms of
cisplatin resistance have been proposed, including increased drug
efflux, decreased drug internalization, drug inactivation, and
impairment of DNA damage repair mechanisms (4–6). Other
mechanisms of cisplatin resistance include activation of cell
survival pathways, dysregulation of oncogenes, tumor
suppressor genes, long-non-coding RNAs and microRNAs (7).

MicroRNAs (miRNAs) are small non-coding RNAs that
regulate gene expression at the posttranscriptional level.
Evidence indicates that miRNAs potentially regulate more than
60% of the protein-coding genes (8). Mechanistically, miRNAs
bind mainly to the 3′ untranslated region (3′UTR) of their target
messenger RNAs (mRNAs) and induce mRNA degradation or
inhibit translation initiation (9). Dysregulation of miRNAs is a
phenomenon commonly observed in most cancer types (10). In
cancerous cells, miRNAs that are anomalously upregulated are
referred as oncomiRs (11). Conversely, downregulated
microRNAs are named tumor-suppressor miRNAs (11).

Increased levels of members of the miR-200 family, miR-
199a, miR-21, miR-203, and decreased levels of miR-140, miR-
145, and miR-31 have been reported in ovarian cancer cells and
human ovarian cancer samples (12–14). Most of these miRNAs
play a central role in ovarian cancer initiation, progression,
epithelial-to-mesenchymal transition, metastasis, and drug
resistance (13–15). Some of them have been proposed as
diagnostic and/or prognostic markers, and as targets for
ovarian cancer therapy. Nevertheless, the precise miRNAs
contributing to the cisplatin resistance of ovarian cancer cells
remain partially elusive.

Aimed to identify the key miRNAs associated with the
cisplatin resistance of ovarian cancer cells, we performed a
miRNA expression array. A list of 26 miRNAs, including
various members of the miR-17-92 cluster, were differentially
abundant in cisplatin-sensitive and cisplatin-resistant ovarian
cancer cells. Although members of this cluster have been
reported as oncomiRNAs and are upregulated in several
cancers, we observed opposite tendencies, as they were
decreased in cisplatin-resistant in comparison with cisplatin-
sensitive ovarian cancer cells. We used oligonucleotide
microRNA mimics (OMMs) to increase the levels of
downregulated miRNAs and noticed that the OMM of miR-
18a-5p prominently reduced cell proliferation in a clonogenic
assay. Thus, we focused our studies on the biological
consequences of increasing the miR-18a levels in ovarian
cancer cell lines and a xenograft ovarian cancer mouse model.
We conducted a survival analysis using the Kaplan-Meier plotter
database, which revealed that miR-18a is a clinically relevant
target in ovarian cancer. Then, we performed bioinformatic
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analyses, real-time PCR, Western blot analysis, and luciferase
reporter assays to identify the potential miR-18a target genes.
These studies revealed that MMP-3 is a direct target of miR-18a
in ovarian cancer cells. Finally, we used siRNAs to silence MMP-3
and observed a significant reduction in cell growth, cell viability,
and the invasion ability of cisplatin-resistant ovarian cancer cells.
Taken together, this study proposes miR-18a as a promising
therapeutic target in cisplatin-resistant ovarian cancer and
validates MMP-3 as a direct miR-18a target in cisplatin-
resistant ovarian cancer cells.
MATERIALS AND METHODS

Cell Culture
The human epithelial ovarian cancer cells A2780 and A2780CIS
were purchased from the European Collection of Cell Cultures
(ECACC). A2780CP20 cells were kindly gifted by Dr. Anil K. Sood
(MD Anderson Cancer Center, Houston, TX) (16). High-grade
serous ovarian cancer (HGSOC) cells OV-90 and OVCAR3 were
purchased from ATCC (Chicago, IL). Cisplatin-resistant
OV90CIS and OVCAR3CIS were generated by sequential
addition of increasing concentrations of cisplatin to the parental
cell lines (17). The chemosensitivity of the generated cell lines was
assessed by dose-response experiments with cisplatin. The IC50 of
this panel of cells has been reported (17). A2780, A2780CP20, and
A2780CIS cells were maintained in RPMI-1640 (HyClone, Logan,
UT), and OVCAR3 and OVCAR3CIS were maintained in RPMI-
1640 supplemented with 0.01 mg/mL insulin (Sigma-Aldrich, St
Louis, MO). OV-90 and OV-90CIS cells were cultivated on a 1:1
(v/v) ratio of M199 media and MCDB 105 media. All media was
supplemented with 10% FBS and 1% antibiotics. For experiments,
all cells were kept at 37°C and 5% CO2 atmosphere. Experiments
were performed at 60–80% confluency.

RNA Isolation for miRNA Expression
Profiles
Total RNA was isolated from ovarian cancer cells using the
mirVana™ miRNA Isolation Kit (Invitrogen, ThermoFisher
Scientific, Carlsbad, CA) following the manufacturer’s
instructions. Total RNA was eluted with pre-heated water, and
RNA concentration was determined using a Thermo Scientific
NanoDrop spectrophotometer.

miRNA Expression Profiling
Total RNA from A2780, A2780CP20, and A2780CIS ovarian
cancer cells was biotin-labeled following the FlashTag Biotin
HSR RNA labeling kit manufacturer’s instructions (Affymetrix)
and subjected to Affymetrix GeneChip miRNA 2.0 Arrays. Array
hybridization and analysis were performed by the Genomics
Core Facility at Brown University (Providence, RI). MiRNA
arrays were performed in duplicate. Differentially expressed
miRNAs were chosen using a fold change of at least 1.5
between A2780 vs. A2780CIS, and A2780 vs. A2780CP20 with
a P-value of at least 0.05.
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Quantitative Real-Time PCR (qRT-PCR)
Analysis for miRNAs
Total RNA (10 ng) was reverse transcribed and subjected to
TaqMan miRNA assays (Applied Biosystems, ThermoFisher
Scientific, Foster City, CA) in a StepOne plus thermal cycler
system (Applied Biosystems). Briefly, total RNA was combined
with RT Master Mix and gently-mixed. Next, 5X RT primer for
miRNA assay was added into the RT reaction tube, mixed, and
incubated on ice for 5 min. RT reaction protocol for thermal
cycler was as follows: 30 min at 16°C, 30 min at 42°C, and 5 min
at 85°C in a Veriti thermal cycler (Applied Biosystems). For the
qPCR analysis, the cDNA was added to the reaction mix
containing TaqMan® Universal Master Mix II, with UNG, 20X
TaqMan® MicroRNA Assay (primer), and nuclease-free water,
and mixed. qPCR reaction conditions were followed as per
manufacturer instruction. U44 RNA was used as an internal
control. Relative miRNA expression was calculated by the DDCt-
method using the StepOne Software version 2.1 from
Applied Biosystems.
In Vitro miRNA and siRNA Transfection
One day before transfections, cells (3.0 x104 cells/ml) were plated
in 10-cm Petri dishes. Mature miRNA and siRNAs sequences are
shown in Supplementary Table S1. OMMs or siRNAs (Sigma-
Aldrich) (100 nM final concentration) were mixed with
HiPerfect (Qiagen, Germantown, MD) on a 1:2 volume ratio
(siRNA/OMM: HiPerfect) and incubated for 15–20 min in
serum and antibiotic-free Opti-MEM medium at room
temperature. The cell culture media of the cells was replaced
with Opti-MEM, and the transfection mixture was added
dropwise. Transfected cells were incubated overnight, and the
next day cell pellets were collected for subsequent experiments.
Cell Viability, Cell Proliferation,
and Invasion Assays
For cell viability assays, cells (3.0 x 104 cells/mL) were seeded on 96-
well plates. The next day different concentrations of siRNAs were
added to the cells as described above. Twenty-four h after
transfection, fresh media was added to the cells. Seventy-two h
post-transfection, AlamarBlue (ThermoFisher Scientific) was
added, and cells were incubated for 3 h at 37°C. Absorbance
values were obtained spectrophotometrically (570 nm) in a plate
reader (BioRad). Percentages of cell viability were obtained taking
the values of the untreated cells as 100%of viability. Cell growthwas
assessed with clonogenic assays. Briefly, cells were seeded into 6-
well plates, and 24 h later, cells were transfected with 100 nM (final
concentration) OMM or siRNAs as described above. The next day,
transfected cells (1,000 or 2,500) were seeded in 10-cm Petri dishes.
Colonies formed after seven days were stained with 0.5% crystal
violet inmethanol.Coloniesofat least 50 cellswerequantifiedunder
a light microscope (CKX41; Olympus) at 10Xmagnification in five
randomfields. Percentages of clonogenicity were calculated relative
to the control (CNT). For short-term cell proliferation assays, the
CyQUANT®DirectCellProliferation assaykit fromInvitrogenwas
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used according to the manufacturer’s instructions. Briefly,
A2780CP20 cells (3 x 104 cells/mL) were seeded into 6-well
plates. Twenty-four h later, OMMs (50 nM) were added to the
cells. Eighteen h after transfection, 5,000 cells were seeded into 96-
well plates and incubated at 37°C. After 24, 48, and 72 h, RPMI-
1640 medium containing DNA-binding dye and background
suppressor was added to the cells and incubated for 1 h at 37°C.
Fluorescence intensity at 480 nm excitation and 535 nm
emission was measured using a Varioskan Flash reader from
Thermo Scientific. To assess cell invasion, cells (2 x 104 cells/mL)
were seeded in 10-cm Petri-dishes. Twenty-four hrs later, cells
were transfected with OMMs or siRNAs (25 nM final
concentration). The next day, 70,000 cells were seeded into
matrigel-coated transwells. Forty-eight h later, cells were fixed
and stained using the Fisher HealthCare™ PROTOCOL™

Hema 3™ Manual Staining System. The invading cells were
counted at 20X on an Olympus 1X71 microscope equipped with
a digital camera (Olympus DP26). Percentages of invaded cells
were calculated, taking the untransfected cell values as 100% of
cell invasion.

Liposome Preparation, Tumor
Implantation, and Mice Treatment
DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and
cholesterol were purchased from Avanti Polar Lipids (Alabaster,
AL) andDSPE-PEG(2000)-Folic acid (1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[folate(polyethylene glycol)-2000]) was
purchased from Nanocs (New York, NY). To prepare liposomes,
5 µg of OMMs were mixed with DOPC (1:10 w/w, OMM: DOPC),
DSPE-PEG(2000)-FolicAcid (5%mol/molDOPC) and cholesterol
(25% w/w DOPC). The components were diluted and mixed in
excess of tert-butanol, followed by lyophilization. Liophylized
material was resuspended in PBS, vortex-mixed for 5 min, and
sonicated for 15 min before injections. Female athymic nude
mice (NCRNU-F) were purchased from Taconic (Rensselaer,
NY). Mice were intraperitoneally (IP) injected with A2780CP20
(5x105 cells in 0.2 mL PBS), and seven days later, mice were
injected (IP) with 5 µg of either CNT-OMM(N=14) ormiR-18a-
OMM (N=16) liposomes. Treatments were performed twice per
week for three weeks. Two days after the last injection, mice were
euthanized, and the number of nodules (primary tumor +
nodules), and the tumor weight (primary tumor + nodules)
were recorded.

Bioinformatic Analysis for miR-18a-5p
Target Prediction
We used the miRWalk platform to predict the potential miR-
18a-5p targets (18). In miRWalk, we marked the comparison
analysis box to obtain targets predicted by five different
programs: miRDB, miRanda, RNA22, miRWalk, and
TargetScan. We selected the miR-18a target genes predicted by
at least three of these programs. From this list of genes, we
selected the potential genes that were found upregulated (P<0.05
and fold-change > 3) (as miR-18a was reduced) in cisplatin-
resistant ovarian cancer relative to their cisplatin-sensitive
counterparts in a previously published work (15).
December 2020 | Volume 10 | Article 602670
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Quantitative Real-Time PCR (qRT-PCR)
to Validate Predicted miR-18a-5p Targets
We designed a 96-well plate from Bio-Rad containing primers to
each of the selected miR-18a target genes. Cells (3x104 cells/ml)
were plated in 6-well plates, and the next day, cells were
transfected with CNT-OMM or miR-18a-OMM, as described
above. Twenty-four h later, RNA was isolated with the GenElute
Mammalian Total RNA Isolation Kit (Sigma-Aldrich) as per the
manufacturer’s instructions. Complementary DNA (cDNA)
synthesis was performed with the iScript cDNA synthesis kit
(Bio-Rad) using 1 µg of total RNA as starting material. The
cDNA was diluted to a concentration of 10 ng/µL to have a final
amount of 10 ng of cDNA per well in the designed 96-well plate.
SsoAdvanced SYBR Green Supermix (Bio-Rad) was used to
perform quantitative PCR on a StepOnePlus instrument. Fold-
change and Rq values were calculated relative to CNT-OMM
treatment and normalized to b-actin expression.

Western Blot Analysis
Protein extraction, quantification, and western blot was
performed as previously described (19). The membranes were
probed with SLC12A6 (Boster Bio, Pleasanton, CA), MMP-3
(Boster Bio), SSX2IP (Novus Biologicals, Centennial, CO),
TRAIL-R4 (Boster Bio), GBP1 (Novus), GUCY1A3 (Novus) or
TRPC4 (Boster Bio) primary antibodies. Membrane developing
was conducted by enhanced chemiluminescence and
autoradiography in an SRX-101A film processor (Konika
Minolta, Japan). The ImageLab software was used to quantify
the density of bands. All membranes were reprobed with a b-
actin monoclonal antibody (Sigma) as a loading control.

Luciferase Reporter Assays
An MMP-3 cDNA clone (that includes the 3’UTR and the firefly
luciferase reporter gene) was purchased from OriGene (Cat #
SC204366, NM_002422, Rockville, MD) and a renilla vector for
luciferase activity normalization was purchased from Promega
(pGL4.75[hRluc/CMV], Cat #E6931, Madison, WI). A2780CP20
cells (70,000 cells) were seeded into 6-well tissue culture plates and
24-h later, 3’UTR clones or control vector (1.5 ug) were co-
transfected with renilla vector (0.05 µg) using lipofectamine 3000
(ThermoFisher Scientific) on a 1:2.5 (w/v) ratio (DNA:
lipofectamine). Six h after plasmid transfection, OMMs (100 nM)
were transfected overnight, as described above. The next day, fresh
media was added and 48-h after OMM transfection, cells were
collected, and luciferase activity was measured with the Dual-
Luciferase Reporter Assay System (Promega, Madison, WI) as per
manufacturer instructions. Luminescence measurements were
conducted on a GLOMAX 20/20 Luminometer (Promega). A two-
step normalization was performed with the renilla vector and the
3’UTR vectors. Luciferase activity was calculated relative to
CNT-OMM.

Survival Analysis
Kaplan–Meier survival analysis was performed using publicly
available miRNA expression datasets (miRpower for pan-cancer)
in Kaplan–Meier (KM) plotter (www.kmplot.com). By selecting
Frontiers in Oncology | www.frontiersin.org 4
the miR-18a gene symbol, hsa-miR-18a, ovarian cancer patients
were split into high and low expression groups by the best cut-off
values of miRNA expression determined by the best performing
threshold between the lower and upper quartile. KM survival
plot for overall survival (OS) was generated for all ovarian cancer
patients (n=486) without any other restriction (stage, grade, age).
P-values <0.05 were considered to be statistically significant.

Statistical Analysis
Statistical analyses and graphs construction were performed with
the GraphPad Prism software (GraphPad Software Inc, La Jolla,
CA). P-values were calculated by parametric (t-test or ANOVA)
analysis as determined by normality tests. P-values < 0.05 were
considered statistically significant.
RESULTS

Identification of Differentially Abundant
miRNAs in Human Ovarian Cancer Cells
miRNA expression profiles were performed with an Affymetrix
array (GeneChip miRNA 2.0) in cisplatin-resistant cell lines
(A2780CP20 and A2780CIS) and their cisplatin-sensitive
counterpart (A2780). A list of 6,627 miRNAs was initially
identified (data not shown). Those miRNAs that were altered
by at least 1.5-fold and a P-value of at least 0.05 were considered
as potential candidates. With these parameters, we identified 63
miRNAs differentially abundant in A2780CP20 vs. A2780 cells,
and 62 miRNAs differentially abundant in A2780CIS vs. A2780
cells (Supplementary Table S2). Twenty-six miRNAs were
present in both lists (Table 1). In this Table, 14 miRNAs were
upregulated and 12 miRNAs were downregulated in A2780CP20
and A2780CIS cells compared with A2780 parental cells.
Interestingly, several members of the miR-17-92 cluster and its
mammalian paralog miR-106a-363 were downregulated.
Contrastingly, several members of the let-7 family were
upregulated in cisplatin-resistant vs. cisplatin sensitive cells.

Upregulation ofmiR-17-92members anddownregulation of Let-
7 familymembershavebeen reported in several cancer types (20–22).
Interestingly, in our miRNA profiles, we observed the opposite
tendencies. Thus, to further investigate the potential contradictory
roles of thesemiRNAs,we selected themembers of these families and
themiR-106-a-363 cluster (includingmiR-17-5p, miR-18a-5p,miR-
19b-3p,miR-20a-5p,miR-92a-3p,miR-92a-1*-5p,miR-106a-5p, let-
7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, and let-7i-5p) for validation by
TaqMan-based quantitative Real-Time PCR (qRT-PCR). The qRT-
PCR analysis confirmed the miRNA array results, as shown in
Figures 1A, B. Again, the expression of several members of the
miR-17-92 and the miR-106a-363 clusters, which have been
proposed as oncomiRs, were decreased in cisplatin-resistant vs.
cisplatin sensitive cells (Table 1 and Figures 1A, B).

Effect of miRNA OMMs on Cell
Proliferation
Since we observed that the miR-17-92 family members showed
opposite expression patterns to those reported in the literature,
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we explored the biological effects of targeting members of this
miRNA family using miRNA oligonucleotide mimics (OMM) in
a colony formation assay. Compared with a CNT-OMM,
transient transfection of miR-18a or miR-106a OMMs in
A2780CP20 cells significantly reduced the number of colonies
(Figures 2A, B, Supplementary Figure S1). Particularly, the
OMM of miR-18a reduced in more than 70% (***P<0.001) the
number of colonies compared with the CNT-OMM in
A2780CP20 and more than 40% in A2780CIS (Figures 2A, C).
Transient transfection of miR-17, miR-92a-1*, miR-19b, miR-
20a, and miR-92a OMMs in A2780CP20 cells did not reduce the
number of colonies (Supplementary Figure S2). Since the
greatest effect was observed using the miR-18a-OMM, we
focused our studies on the role of this miRNA in the cisplatin
resistance of ovarian cancer cells.

Then, we assessed if the miR-18a-OMM inhibited cell
proliferation in other ovarian cancer cells, including the
HGSOC cell lines OV90CIS and OVCAR3CIS (17). Real-time
PCR showed that these cells expressed lower levels of miR-18a as
compared with their cisplatin-sensitive counterparts (OV90 and
OVCAR3, respectively, Supplementary Figures S3A, B). As
seen with A2780CP20 and A27870CIS, the miR-18a-OMM
reduced cell proliferation in OV90CIS (59% reduction,
**P<0.01, Figure 2D), and OVCAR3CIS (26% reduction,
*P<0.05, Figure 2E) cells as compared to the CNT-OMMs.
Transient transfection of miR-18a OMMs significantly
incremented miR-18a levels in A2780CP20 (***P<0.001),
A2780CIS (***P<0.001), OVCAR3CIS (*P<0.05), and OV-
90CIS (***P<0.001) as compared with the CNT-OMM
(Supplementary Figures S3C–F).
Frontiers in Oncology | www.frontiersin.org 5
Effect of miR-18a OMM in Cell
Proliferation and Invasion
To assess the short-term effect of miR-18a-OMM in the cell
proliferation of cisplatin-resistant ovarian cancer cells we
performed CyQUANT proliferation assays. Cell proliferation
was measured 24, 48, and 72 h post-transfection. Transient
transfection of A2780CP20 cells with miR-18a-OMM resulted
in gradual decreases of cell proliferation when compared with
CNT-OMM. This effect was significant at 72 h post-transfection
(47% reduction, *P<0.05, Figure 2F). Moreover, we tested
whether miR-18a had a role in the invasiveness of A2780CP20
and OVCAR3CIS cells. Upregulation of miR-18a resulted in a
significant reduction in the invasion of A2780CP20 (36%
reduction, **P<0.01, Figure 2G) and OVCAR3CIS cells (23%
reduction, *P<0.05, Figure 2H) compared to CNT-OMM.
Therapeutic Effect of Folate-liposomal
miR-18a-OMMs
We then investigated the therapeutic potential of miR-18a-
OMM in a xenograft mouse model of cisplatin-resistant
ovarian cancer. Evidence indicates that ovarian cancer cells
express higher folate receptor alpha (FRa) compared with
other cells of the body (23). Based on this information, OMMs
were encapsulated in a folate-liposomal formulation. We
inoculated (i.p.) A2780CP20 cells into female nude mice and
administered folate-liposomal formulations (i.p.) containing
miR-18a-OMMs or CNT-OMMs for three weeks twice per
week. We observed a significant reduction of tumor weight
(*P<0.05) in the miR-18a-OMM treated group compared with
TABLE 1 | Dysregulated miRNAs in cisplatin-resistant ovarian cancer (CP20 and CIS) vs. cisplatin-sensitive parental A2780.

Transcript ID P-Value (CIS vs. A2780) Fold-Change (CIS vs. A2780) P-Value (CP20 vs. A2780) Fold-Change (CP20 vs. A2780)

hsa-miR-200c-3p 0.0003 12.6 0.0000 160.4
hsa-let-7b-5p 0.0001 149.7 0.0001 124.7
hsa-miR-132-3p 0.0068 11.7 0.0032 24.7
hsa-let-7d-5p 0.0001 48 0.0001 22.5
hsa-let-7a-5p 0.0000 24.2 0.0000 11.7
hsa-miR-183-5p 0.0024 8.8 0.0029 7.6
hsa-miR-182-5p 0.0161 3.2 0.0044 6.3
hsa-let-7c-5p 0.0008 9.2 0.0020 4.9
hsa-miR-4429 0.0420 1.9 0.0137 2.6
hsa-miR-185-5p 0.0286 2.5 0.0271 2.5
hsa-let-7e-5p 0.0542 1.9 0.0322 2.3
hsa-miR-23b-3p 0.0013 2.9 0.0032 2.2
hsa-miR-4776-3p 0.0112 1.5 0.0064 1.6
hsa-let-7i-5p 0.0006 5.4 0.0321 1.5
hsa-miR-450a-1-3p 0.0103 −1.6 0.0152 −1.5
hsa-miR-4786-3p 0.0060 −1.7 0.0060 −1.7
hsa-miR-619-3p 0.0252 −1.5 0.0087 −1.8
hsa-miR-92a-3p 0.0044 −6.5 0.0499 −2.1
hsa-miR-335-5p 0.0144 −1.7 0.0062 −2.1
hsa-miR-17-5p 0.0000 −6.3 0.0002 −2.7
hsa-miR-106a-5p 0.0009 −7.2 0.0062 −2.7
hsa-miR-18a-5p 0.0000 −8.5 0.0003 −3.1
hsa-miR-20a-5p 0.0005 −7.4 0.0018 −3.8
hsa-miR-92a-1-5p 0.0066 −14.8 0.0380 −4.1
hsa-miR-19b-3p 0.0095 −12.2 0.0105 −11.2
hsa-miR-221-3p 0.0162 −7.4 0.0084 −12.7
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the CNT-OMM treated group (Figure 3A). In addition, the
number of nodules was significantly lower (*P<0.05) in the miR-
18a-OMM group in comparison with the CNT-OMM group
(Figure 3B). These results suggest that folate-targeting liposomes
loaded with miR-18a-OMM induced positive therapeutic effects
in an ovarian cancer mouse model.

Expression of miR-18a in Human Ovarian
Cancer Patients
To assess the clinical relevance of miR-18a in ovarian cancer, we
performed Kaplan-Meier analysis using the KM-plotter online
tool. Kaplan-Meier curves (Figure 3C) showed that high levels of
miR-18a significantly (P<0.0381) increased the Overall Survival
(OS) in ovarian cancer patients (41.97 months vs. 48.37 months).
These results indicate that miR-18a is associated with the
survival time of ovarian cancer patients.

Identification of miR-18a-5p Target Genes
in Cisplatin-Resistant Ovarian Cancer
To further identify themiR-18a-5pdownstreameffectors in ovarian
cancer cells, we investigated the potential miR-18a target genes. An
initial bioinformatic analysis using the miRWalk miRNA target
Frontiers in Oncology | www.frontiersin.org 6
prediction comparison tool revealed 1,646 potential miR-18a-
targets identified by at least three of the five target prediction
programs (data not shown). Since we were interested in targets
that may contribute to cisplatin resistance in ovarian cancer, we
merged the 1,646 predicted targets with a previously published
expression array of cisplatin-resistant and cisplatin-sensitive
ovarian cancer cells (15). A total 37 out of 1,646 miR-18a
predicted genes were upregulated in cisplatin-resistant relative to
cisplatin-sensitive cells (P<0.05, Fold-Change > 3). Based on a
literature search, fold-changes, and P-values, the list was reduced
to 18 potential miR-18a targets (Supplementary Table S3). To
confirmexperimentally that these genes are realmiR-18a targets,we
transiently transfected A2780CP20 cells with miR-18a-OMM or
CNT-OMM. Real-time PCR with total RNA isolated from the
transfected cells revealed seven downregulated genes (fold-change
less than -1.2) inmiR-18a-OMM cells compared with CNT-OMM
cells (Figure 4A). Therefore, we selected these genes for further
validation byWestern blot analysis. Western blots showed that the
protein levels of SSX2IP, GBP1,GUCY1A3, SLC12A6, TRPC4, and
TRAIL-R4 remained unaltered in miR-18a OMM vs. CNT-OMM
(Figures 4B, C). However, following the transfection of miR-18a
OMM, MMP-3 protein levels were prominently reduced (60%,
p<0.05) as compared with CNT-OMM, suggesting MMP-3 as a
potential miR-18a target gene. To confirm these findings, we
performed dual-Luciferase Reporter Assays, which measures the
direct binding of miR-18a to the MMP-3 3’UTR mRNA region.
Supplemenary Figure S4A shows the potential binding region
sequence of miR-18a to MMP-3 as predicted by RNAhybrid
(https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid). Transient
transfection of miR-18a OMM in A2780CP20 cells reduced the
luciferase activity compared to CNT-OMM (P<0.05), indicating
that miR-18a binds directly to the 3’UTR region of the MMP-3
mRNA(Figure4D). Together these results suggest thatMMP-3 is a
direct target of miR-18a in ovarian cancer cells.

Effect of MMP-3 Silencing on Cell Viability,
Proliferation, and Invasion
As we found that MMP-3 is a direct target of miR-18a-5p, we
further assessed the biological effects of targeting MMP-3 in
cisplatin-resistant ovarian cancer. First, we measured the MMP-
3 protein levels in a panel of ovarian cancer cells and observed
higher levels of this protein in cisplatin-resistant compared with
cisplatin-sensitive cells (Figure 4E). Next, we assessed the effect
of siRNA-mediated MMP-3 silencing on cell viability, cell
proliferation, and cell invasion. The Western blots showed in
Figures 5A, B indicate that transient transfection of MMP-3-
targeted siRNAs (siMMP3) in A2780CP20 or OVCAR3CIS cells
significantly reduced the MMP-3 protein levels in comparison
with a CNT-siRNA. Supplementary Figures S4B, C shows the
densitometric analysis of the band intensities. A dose-response
experiment with MMP-3 siRNAs showed a significant decrease
in cell viability at concentrations of 100 (**P<0.01), 50 (**P<0.01)
and 25 nM (*P<0.05) of the siMMP3(1) compared to CNT-
siRNA (Figure 5C). Similar results were observed in the
OVCAR3CIS cells (Figure 5D). In a colony formation assay,
we observed a reduction of about 50% on cell growth in both
A

B

FIGURE 1 | MiRNA expression levels in ovarian cancer cells. RNA was
isolated from ovarian cancer cells (A2780CP20, A2780CIS and A2780)
followed by TaqMan-based qRT-PCR to validate the microRNA expression
array results. (A) Upregulated and (B) downregulated miRNAs in cisplatin-
resistant (A2780CP20 and A2780CIS) vs. cisplatin sensitive cells (A2780CIS).
Results are shown as Mean ± SEM of triplicate experiments (*P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001).
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A2780CP20 and OVCAR3CIS cells transfected with siMMP3(1)
(*P<0.05) and siMMP3(3) (*P<0.05) relative to CNT-siRNA
transfected cells (Figures 5E, F). Transient transfection of the
siMMP3(1) reduced the proliferation of A2780CP20 cells at
concentrations as low as 25 nM (Supplementary Figure S4D).
We did not observe any significant changes in cell viability or
colony formation assays when cells were transfected with the
siMMP3(2). Since the most significant effects were observed with
the siRNA(1), we used this siRNA for invasion assays. As it is
shown in Figures 5G, H, siRNA-mediated MMP-3 targeting
Frontiers in Oncology | www.frontiersin.org 7
significantly reduced the number of invaded cells in A2780CP20
(****P<0.0001) and OVCAR3CIS (*P<0.05) in comparison with
the CNT-siRNA.
DISCUSSION

In this study, we found that miR-18a-5p has a tumor-suppressive
role in cisplatin-resistant ovarian cancer cells. The increased
levels of miR-18a with OMM decreased in vitro cell proliferation
A B

D

E F

G
H

C

FIGURE 2 | Effect of OMMs in the proliferation and invasion of cisplatin-resistant ovarian cancer cells. Colony formation assay was performed 18 h post-OMM
transfection in A2780CP20 cells. (A) miR-18a-OMM and (B) miR-106-a-OMM. The same trend was observed with (C) miR-18a-OMM in A2780CIS cells. Colony
formation in (D) OV90CIS and (E) OVCAR3CIS cells after transfection with miR-18a-OMMs. Percent of clonogenicity was calculated relative to CNT-OMM. (F) Cell
proliferation was measured by fluorescence using the CyQuant Proliferation kit in A2780CP20 cells 24, 48 and 72 h after transfection with OMMs. Fluorescence was
calculated relative to the fluorescence at 24 h post-transfection. Cell invasion was performed after OMMs transfection in (G) A2780CP20 cells and (H) OVCAR3CIS
cells. Untransfected cells were taken as 100% invasion. Experiments were performed in triplicates. All graphs represent mean ± SEM (*P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001).
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and invasion; and the abrogation of tumor growth in a xenograft
model of ovarian cancer. Moreover, high levels of miR-18a were
associated with a better OS in ovarian cancer patients, suggesting
a clinical relevance for this miRNA in this malignancy. Another
new finding was that we identified MMP-3 as a novel bonafide
target of miR-18a in ovarian cancer cells.

Our miRNA expression profile revealed the dysregulation of
several members of the miR-17-92 cluster in cisplatin-resistant
vs. cisplatin sensitive cells. The miR-17-92 cluster is one of the
best studied miRNA family composed of several polycistronic
miRNA genes that code for six different mature miRNAs: MiR-
17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1 (20).
Members of this cluster have been traditionally associated with
oncogenic roles that inhibit apoptosis and promote cell cycle
progression (24). Several studies have shown upregulation of the
miR-17-92 cluster in different types of cancers, including lung,
liver, and thyroid tumors (20, 25, 26). However, we observed
reduced expression of various miR-17-92 members in cisplatin-
resistant compared with cisplatin-sensitive ovarian cancer cells.
In particular, we observed that miR-18a could have a tumor-
suppressive role in ovarian cancer as increased expression of this
miRNA reduced cell growth, proliferation, invasion, and
inhibited tumor growth in vivo. These results confirmed
previous studies of Liu et al. reporting that miR-18a reduced
cell viability and inhibited cell growth in ovarian cancer cells and
Frontiers in Oncology | www.frontiersin.org 8
tumor growth in vivo (27).Moreover,Humphreys et al. reported that
miR-18a upregulation inhibited cancer progression in gastric and
colorectal cancers (28). Contrarily, increased levels of circulating
miR-18a were observed in plasma and/or serum of patients with
pancreatic, colorectal, esophageal, and hepatocellular cancer
compared to healthy patients (29, 30). Similarly, miR-18a-5p (miR-
18a) upregulation promoted the progression of nasopharyngeal,
hepatocellular and breast carcinoma cell lines (31–33). A possible
explanation to these contrasting reports regarding the expression and
biological role of miR-18a is that depending on the tumor cell type,
miR-18a regulates a particular group of genes, some with oncogenic
roles and others with tumor-suppressive capabilities. For example,
Huang et al. observed that Smad2, a downstreameffector of theTGF-
b signaling and a potent tumor suppressor in several cancers, is a
major target of miR-18a in oral squamous cell carcinoma (34). The
tumor suppressor genes PTEN and IRF2 have also been reported as
direct targets of miR-18a in osteosarcoma (35, 36). Another
possibility is that while in tumor cells miR-18a could act as a tumor
suppressor; in cells of the tumor microenvironment, miR-18a could
have an oncogenic role. For instance, Mitra et al. found
downregulation of miR-214 in cancer-associated fibroblasts (CAF),
contrasting to the oncogenic role and upregulation of thismiRNA in
tumor cells (37). Therefore, the precise expression patterns of miR-
18a in ovarian tumor and its tumor microenvironment should be
further investigated.
A B

C

FIGURE 3 | Therapeutic effect of targeting miR-18a in vivo and miR-18a clinical relevance. Folate liposomal miR-18a-OMM (miR-18a-LF, N= 16) or CNT-OMM
(CNT-LF, N=14) were administered twice a week in intraperitoneal xenograft mouse models of ovarian cancer. (A) tumor weight (B) number of nodules. Mean ± SEM
is shown (*P < 0.05). (C) Kaplan-Meier (KM) plot shows that the OS is increased for ovarian cancer patients with higher miR-18a expression levels. Plot was
generated using the Kaplan–Meier (KM) plotter (www.kmplot.com).
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Regarding the miR-18a downstream effectors, Liu et al.
identified TRIAP1 and IPMK as direct targets of miR-18a in
epithelial ovarian cancer cells (27). Our approach to identify the
miR-18a targets included bioinformatic analyses followed by
qPCR, Western blots, and dual-luciferase reporter assays.
Starting with several potential target genes, we confirmed only
MMP-3 as a direct miR-18a target in ovarian cancer cells. MMP-
3, also known as stromelysin-1, is part of the family of proteins
categorized as matrix metalloproteinases (MMPs). MMPs are
involved in the degradation of components of the extracellular
Frontiers in Oncology | www.frontiersin.org 9
matrix (ECM) and therefore play a significant role in processes
involving cellular remodeling such as cell migration, invasion
and epithelial-to-mesenchymal transition (EMT) (38).
Moreover, MMPs levels are elevated on a large number of
malignancies, and high expression of MMP has been correlated
with poor prognosis in several cancers (39). Due to their central
role as regulators of the ECM structure, a required step for cancer
cell migration and metastasis, MMP inhibitors were widely
considered as targets for cancer therapy even in clinical trials
(40). However, these studies were abandoned due to the overt
A

B

D E

C

FIGURE 4 | Identification of miR-18a target genes in cisplatin-resistant ovarian cancer. (A) qRT-PCR was performed with total RNA extracted from miR-18a-OMM or CNT-
OMM transfected A2780CP20 cells. Rq (relative expression) values were calculated relative to CNT-OMM samples. (B)Western blot analysis was performed with protein
extracts (50 µg) of OMM transfected cells. (C) Densitometric analysis of band intensities was performed and relative values were calculated using the intensity of b-actin as
control (**P < 0.01). (D) Dual-luciferase assay was performed to assess the binding of miR-18a to the 3’UTR region of MMP-3. Experiments were performed in triplicates.
Mean ± SEM is shown (*P < 0.05). (E)Western blot analysis was conducted for MMP-3 with protein extracts of ovarian cancer cell lines.
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toxicities resulting from the non-specific profile of these
synthetic and natural MMP inhibitors (41). Here, we showed
that siRNA-mediated MMP-3 silencing reduced cell viability, cell
growth, and invasion of cisplatin-resistant ovarian cancer. These
findings open a new therapeutic opportunity using siRNA-
related approaches, avoiding in this way the limitations
observed with the MMPs small inhibitors. Nonetheless,
therapeutic experiments are needed before proposing MMP-3
as a therapeutic target for ovarian cancer treatment.
Frontiers in Oncology | www.frontiersin.org 10
AlthoughMMP-3 has been studied in several cancers (42, 43),
there are limited reports of the role of MMP-3 in ovarian cancer.
However, using RNA-Seq and TCGA data, researchers found
MMP-3 overexpression in high-stage and high-grade ovarian
tumors compared to lower stages tumors (44). In this study, we
explored the biological function of MMP-3 in cisplatin-resistant
ovarian cancer. Nevertheless, critical questions remain
unanswered. For example, what is the molecular mechanism
connecting MMP-3, a protein of the ECM, with intracellular
A B

D

E F

G H

C

FIGURE 5 | Effect of MMP-3 silencing on cell viability, cell growth and invasion. MMP-3 silencing in (A) A2780CP20 and (B) OVCAR3CIS was assessed by Western
blot analysis of cells collected 24 h after transfection with siRNAs. Cell viability was assessed in (C) A2780CP20 and (D) OVCAR3CIS with AlamarBlue dye 72 h after
siRNA transfection (*P < 0.05, **P < 0.01). Colony formation assay was performed after siRNA transfection in (E) A2780CP20 and (F) OVCAR3CIS. % of
clonogenicity was calculated relative to CNT-siRNA-transfected cells (*P < 0.05). Invasion assay was performed after siRNA (25 nM siRNA, final concentration)
transfection in (G) A2780CP20 and (H) OVCAR3CIS cells. Untransfected cells were taken as 100% invasion. Images of invaded cells were taken with a light
microscope on 20X magnification lenses. Mean ± SEM is shown as a result of three independent experiments (*P < 0.05, ****P < 0.0001).
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proteins involved in cisplatin resistance. In this regard, Bissell
and co-workers performed a proteomic screening of MMP-3-
binding partners in mouse mammary epithelial cells and found
that the intracellular chaperone heat-shock protein 90b
(HSP90b) interacts extracellularly with the hemopexin domain
of MMP-3 (45). This interaction was necessary for the invasion
of mammary epithelial cells. Likewise, Werb and co-workers
reported that MMP-3 regulates the Wnt pathway by interacting
with the ligand Wnt5b in the mammary stem cell activity (46).
Also, Si-Tayeb et al. and Eguchi et al. observed MMP-3 in the
nucleus of cells (47, 48). This portion of MMP-3 could promote
the activation of genes involved in the drug resistance of ovarian
cancer cells. Besides the posttranscriptional regulation of MMP-3
by miR-18a, transcriptional regulation is possible. For instance,
in lung cancer, IL-6 regulates the expression of MMP-3 through
ATM phosphorylation, a potential factor associated with drug
resistance in this cancer type (49). These hypotheses should be
addressed in the future.

The transcriptional regulation of the miR-17-92 cluster occurs
mainly by the c-MYC oncogene. N-MYC and the Notch signaling
pathway may also transcriptionally regulate the expression of the
miR-17-92 cluster (50, 51). However, c-MYC is also increased in
cisplatin-resistant ovarian cancer cells (19), which would result in
the upregulation of the miR-17-92 cluster, including miR-18a.
Therefore, mechanisms inhibiting the expression of the miR-17-
92, even at the posttranscriptional level, must occur in cisplatin-
resistant ovarian cancer cells. For example, there has been reports of
long non-coding RNAs (lncRNA) counteracting the oncogenic
action of the miR-17-92 cluster (52, 53). In retinoblastoma, for
instance, the lncRNAH19 binds on seven regions to themiR-17-92
cluster members miR-17, miR-18a, miR-19a, miR-19b, and miR-
20a suppressing their activity, and inhibiting cancer progression
(53).Additionally, genome-wide analysis has showndeletion of this
cluster in almost 17% of ovarian tumors (54). The molecular
mechanisms leading to miR-18a downregulation in cisplatin-
resistant ovarian cancer cells should be further investigated.
CONCLUSIONS

This study provides evidence that cisplatin-resistant ovarian
cancer cells express lower levels of miR-18a compared with
their cisplatin-sensitive counterparts. Targeting miR-18a with
OMM-loaded folate-liposomes has therapeutic potential for
women diagnosed with cisplatin-resistant ovarian cancer. As
Frontiers in Oncology | www.frontiersin.org 11
MMP-3 is a direct miR-18a-regulated gene in ovarian cancer,
MMP-3 is also a promising target for siRNA-based therapies in
ovarian cancer and other malignancies.
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