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Peripheral T-cell lymphoma (PTCL) is a rare, heterogenous group of mature T-cell

neoplasms that comprise 10–15% of non-Hodgkin lymphoma cases in the United States.

All subtypes of PTCL, except for ALK+ anaplastic T-cell lymphoma, are associated

with poor prognosis, with median overall survival (OS) rates of 1–3 years. The

diagnosis of PTCL is mainly based on clinical presentation, morphologic features, and

immunophenotypes. Recent advances in genome sequencing and gene expression

profiling have given new insights into the pathogenesis and molecular biology of

PTCL. An enhanced understanding of its genomic landscape holds the promise

of refining the diagnosis, prognosis, and management of PTCL. In this review, we

examine recently discovered genetic abnormalities identified by molecular profiling

in 3 of the most common types of PTCL: RHOAG17V and epigenetic regulator

mutations in angioimmunoblastic T-cell lymphoma, ALK expression and JAK/STAT3

pathway mutations in anaplastic T-cell lymphoma, and T-follicular helper phenotype

and GATA3/TBX21 expression in PTCL-not otherwise specified. We also discuss the

implications of these abnormalities for clinical practice, new/potential targeted therapies,

and the role of personalized medicine in the management of PTCL.
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INTRODUCTION

Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of mature T-cell
neoplasms, comprising 10–15% of all cases of non-Hodgkin lymphoma cases in the United States
(1), with at least 29 subtypes recognized by the revised 2016 World Health Organization
classification of lymphoid neoplasms (2). PTCL generally carries a poor prognosis. The complex
pathobiology of these disorders is well-reflected in their heterogeneous clinical, histological, and
immunophenotypic features. Advances in the genome sequencing and gene expression profiling
(GEP) of PTCL have improved our understanding of its molecular pathobiology, and a precise
definition of its molecular background has revealed novel therapeutic targets. In this review, we
focus on the recently discovered somatic genetic abnormalities of and emerging therapies for 3 of
the most common PTCL subtypes: angioimmunoblastic T-cell lymphoma (AITL), anaplastic large
cell lymphoma (ALCL), and PTCL-not otherwise specified (PTCL-NOS) (Supplementary Table 1).
Germline mutations are beyond the scope of this review.
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ANGIOIMMUNOBLASTIC T-CELL
LYMPHOMA AND OTHER NODAL
LYMPHOMAS OF FOLLICULAR T HELPER
CELL ORIGIN

AITL is the one of the most common PTCL entities, accounting
for∼20–30% of all PTCL cases in the United States (3). The AITL
cell originates from CD4+ T follicular helper cells (TFHs) (4).
AITL is associated with B-cell lymphoproliferative disorders and
a constitutively activated immune system (5). The prognosis of
patients with AITL is poor, with a 5-year overall survival (OS)
rate of 33% (5). There has been no significant improvement in
OS in the last 3 decades (6).

Recent advances in next-generation sequencing have led to the
discovery of recurrent mutations in AITL. The most frequently
reported somatic mutations include alterations in epigenetic
regulators; ras homolog family member A (RHOA); and T-cell
receptor (TCR) signaling pathway molecules (Table 1).

Epigenetic Regulators
Tet methylcytosine dioxygenase 2 (TET2), DNA
methyltransferase 3α (DNMT3A), and mitochondrial isocitrate
dehydrogenase 2 (IDH2) genes participate in the regulation
of DNA methylation/hydromethylation. Mutations in TET2
and DNMT3A are associated with hypermethylation and
dysregulated gene expression (11, 32), and the IDH2R172 mutant
confers neo-enzymatic activity, producing oncometabolite
D-2 hydroxyglutarate (D-2-HG). The accumulation of D-2-
HG inhibits both histone lysine demethylase and the DNA
hydroxylase in the TET family (33). Interestingly, the high co-
occurrence of TET2 and IDH2R172 mutations in AITL suggests
a synergistic effect, by which these genes upregulate follicular T
helper–associated genes and downregulate genes associated with
TH1, TH2, and TH17 cells (7, 19).

Epigenetic modulating agents are promising targets for
patients with relapsed AITL. 5-azacytidine, has induced a
sustained response in selected patients with TET2-mutated
relapsed/refractory AITL (34). A similar response is reported
with romidepsin (35).

TCR Signaling Pathway
The RHOAG17V mutation is common in AITL. RHOA is a small
GTPase that mediates T-cell migration, polarity, and thymocyte
development (36). Glycine at RHOA residue 17 is critical for
GTP binding. Thus, the substitution of Valine leads to a loss of
GTPase activity (8). It was initially believed that the RHOAG17V

mutation played an oncogenic role by disrupting the classical
RHOA signaling. However, a recently reported p.K18N mutant
in AITL is associated with higher GTP binding capacity (15).
This phenomenon is explained by the RHOA-VAV1 signaling
pathway. VAV1, a guanine exchange factor protein, functions as
an adaptor to facilitate and activate the TCR proximal signaling
complex. The binding of G17VRHOA toVAV1 augments VAV1’s
adaptor function, resulting in an accelerated TCR signaling. An
isolated VAV1 mutation has also been identified in AITL (37).
Dasatinib blocked accelerated VAV1 phosphorylation and TCR

signaling in vitro and improved the overall survival of the mice
model (37).

In preclinical models, the expression of RHOAG17V

induced TFH cell specification, upregulated the inducible
co-stimulator (ICOS), and increased phosphoinositide 3-kinase
(PI3K) and mitogen-activated protein kinase signaling. PI3K
inhibitors efficiently inhibited TET2-/-RHOA G17V tumor
proliferation (38).

Other TCR-related mutations in AITL include PLCG1,
CD28, and FYN. CD28 is the primary costimulatory receptor
in T cells and induces sustained T-cell proliferation and
cytokine production. The presence of CD28 mutations
correlates with a poor prognosis (16). Cyclosporine A, a
calcineurin inhibitor that blocks TCR signaling, effectively
prevented the progression of AITL (39, 40). Two structural
changes, CTLA4-CD28 (17) and ICOS-CD28 fusion genes
(16), have also been described. Ipilimumab, an anti-CTLA4
immunotherapy, is a potential treatment for the CTLA4-CD28
fusion gene.

Multistep Tumorigenesis Model
To account for the complex genomic landscape of AITL,
a multistep tumorigenesis model was proposed (41–43).
The premalignant hematopoietic progenitor cells harboring
mutations (e.g., TET2 and DNMT3A) are predisposed to
the development of blood cancer, and the acquisition of
second-hit mutations (e.g., RHOAG17V and IDH2R172) in
a subclone of TFH cells eventually leads to AITL. This
model is supported by the detection of TET2 and DNMT3A
mutations in tumor-free peripheral blood cells, bone marrow
cells, and hematopoietic progenitors, whereas RHOA and
IDH mutations are specific to malignant cells from AITL
tumors (13).

Nodal T-Cell Lymphomas With TFH
Phenotype as a Newly Proposed Group of
PTCL
Together with AITL, nodal PTCL with TFH phenotype and
follicular T-cell lymphoma (F-PTCL) belong to a newly
proposed group of PTCL called “nodal T-cell lymphomas
with TFH phenotype,” described in the 2016 revised WHO
classification (2, 44). This change reflects the observation that
a subset of PTCLs expresses TFH-associated markers (45, 46).
Interestingly, this subset shares common genetic abnormalities
with AITL (9, 10, 12, 14, 24, 32). The analysis of 94 cases
of AITL, 5 cases of F-PTCL, and 16 cases of nodal PTCL
with TFH phenotype supported this grouping (13). These
entities shared not only disease severity and prognosis, but
also global and specific gene expression patterns. They had
similar mutation frequencies in TET2, RHOA, DNMT3A, with
the exception of IDH2R172 mutation, which was restricted
to AITL.

We recommend routine screening of any PTCL-NOS for TFH
markers and assigning them to this new category when at least 2
TFHmarkers are simultaneously detected on the neoplastic cells.
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TABLE 1 | Genetic aberrations reported in the 3 most common types of PTCL.

Gene Frequency, % Potential Targets Examples Reference

ANGIOIMMUNOBLASTIC T-CELL LYMPHOMA

RAS super family

RHOAG17V 50–72 Multikinase inhibitors; PI3K inhibitors dasatinib; duvelisib (7–10)

Epigenetic regulators

TET2 47–86 HMAs, HDACis 5-azacytidine;romidepsin* (7, 9, 11, 12)

DNMT3A 20–48 HMAs, HDACis 5-azacytidine; romidepsin* (7, 9–11, 13)

IDH2R172 20–45 HMAs, HDACis 5-azacytidine; romidepsin* (7, 9, 11, 14)

TCR signaling pathway

PLCγ 14 Calcineurin inhibitors cyclosporine A (13)

CD28# 9–11 Calcineurin inhibitors cyclosporine A (15, 16)

FYN 3–4 Calcineurin inhibitors cyclosporine A (10, 15)

VAV1 5 RAC1 inhibitor azathioprine (15)

Structural alteration

CTLA4-CD28 fusion 58 Anti-CTLA4 immunotherapy ipilimumab (17)

ICOS-CD28 fusion 5 (16)

ANAPLASTIC lARGE CELL LYMPHOMA

Transcription factor

STAT3 3 JAK/STAT inhibitors ruxolitinib (18)

JAK1 8 JAK/STAT inhibitors ruxolitinib (18)

JAK1+STAT3 7 JAK/STAT inhibitors ruxolitinib (18)

Epigenetic regulators

TET2 33 HMAs, HDACis 5-azacytidine, romidepsin* (19)

DNMT3A 17 HMAs, HDACis 5-azacytidine, romidepsin*

TCR signal pathway

VAV1 11 RAC1 inhibitors azathioprine (20)

Tumor suppressor

DUSP22 30 (21, 22)

TP53# 42 (21, 22)

PRDM1# 35 (21, 22)

Structural alteration

ROS1 N/A JAK/STAT3 inhibitors ruxolitinib (18)

TYK2 N/A JAK/STAT3 inhibitors ruxolitinib (18)

ERBB4 24 ERB Kinase Inhibitors cetuximab, gefitinib (23)

COL29A1 24 ERB Kinase Inhibitors cetuximab, gefitinib (23)

TP63 rearrangement# 8 (21)

PERIPHERAL T-CELL LYMPHOMA, NOT OTHERWISE SPECIFIED

Epigenetic regulator

TET2 38–49 HMAs, HDACis romidepsin*, belinostat*, azacytidine (9, 12, 24–26)

DNMT3A 5–27 HMAs, HDACis romidepsin*, belinostat*, azacytidine (9, 12, 24–26)

IDH2 0–8 HMAs, HDACis romidepsin*, belinostat*, azacytidine (9, 12, 24–26)

KMT2C

KMT2D

8

2–20

HMAs, HDACis romidepsin*, belinostat*, azacytidine (9, 12, 24–26)

SETD1B

SETD2

KDM6A

CREBBP

5

3–10

1–11

4–16

HMAs, HDACis romidepsin*, belinostat*, azacytidine (9, 12, 24–27)

Tumor suppressor

TP53# 7–16 (25, 28, 29)

ATM 4–16

TCR signaling pathway

RHOAG17V 7–26 Multikinase inhibitors; PI3K inhibitors duvelisib, tenalisib (9, 10, 24–26)

(Continued)
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TABLE 1 | Continued

Gene Frequency, % Potential Targets Examples Reference

FYN 2–3 SYK inhibitors fostamatinib, entospletinib (9, 10, 24–26)

Structural alteration

VAV1 fusion 18 RAC1 inhibitor azathioprine (17, 20, 30, 31)

CTLA4-CD28 fusion 23 Anti-CTLA4 immunotherapy ipilimumab (17, 20, 30, 31)

ITK-SYK fusion 17–18 SYK inhibitors fostamatinib, entospletinib (17, 20, 30, 31)

*denotes FDA approved therapy for PTCL; #denotes poor prognostic indicators.

HDACis, histone deacetylase inhibitors; HMAs, Hypomethylating agents; PI3K, phosphoinositide 3-kinase; SYK, spleen tyrosine kinase.

ALCL

ALCL accounts for∼12% of PTCL cases in the United States (3).
ALCL is characterized by CD30 positivity. The 2016 revision of
WHO classification system for lymphoid neoplasms recognizes
4 subtypes of ALCL: ALK+ ALCL, ALK− ALCL, primary
cutaneous, and breast implant–associated ALCL (44, 47). The
differentiation between ALK+ and ALK− subtypes has formed
the backbone of the current classification system.

ALK+ ALCL
ALK+ ALCL commonly presents in young populations, generally
within the first 3 decades of life and carries a significantly
better prognosis (5-year OS, 70–85%) than ALK− ALCL (5-year
OS, 30–49%) (48). The presence of ALK gene rearrangements
in ALK+ ALCL, most commonly translocation t(2;5)(p23;q35),
results in the fusion of nucleophosmin (NPM1) and ALK (49).
Anti-ALK antibodies can identify the proteins produced by
NPM1/ALK transcripts based on staining patterns. ALK+ ALCL
expressed ALK in nucleus and cytoplasm; conversely, variant
fusions lacked nuclear ALK-staining (50).

ALK gene rearrangements often occur within the intron,
between exons 19 and 20, allowing the intracytoplasmic
domain of ALK to fuse with NPM1. The dimerization domain
auto-phosphorylates the ALK catalytic domain and activates
multiple downstream signaling pathways, including PI3K/AKT,
RAS/ERK, and JAK/STAT (51).

NPM1-ALK cell lines express STAT3 phosphorylated on
serine residue 727 and tyrosine residue 705 and increase
STAT3 expression at the transcriptional level. Although JAK3 is
phosphorylated, its binding is not essential for STAT3 activity.
NPM-ALK fusion transcripts could activate STAT3 directly
(52). This activation is important, as STAT3 is integral to cell
survival by controlling the transcription of numerous apoptosis-
regulating proteins, such as cyclin D1, Bcl-X, Bcl-XL, and c-
Myc (53). Although NPM1/ALK fusion transcripts are the most
common rearrangements in ALK+ALCL, other rearrangements,
such as TPM3 (1q25), ATIC (2q35), TFG (3q21), TPM4
(19p13.1), MYH9 (22q11.2), RNF213 (17q25), TRAF1 (9q33.2),
CLTC (17q23), and MSN (Xq11), have also been reported (54).

ALK− ALCL
ALK– ALCL was upgraded from a provisional to a definite entity
in the revised 2016 WHO classification (55). It is difficult to
differentiate between ALK– ALCL and PTCL-NOS based on

CD30 positivity (20). To better define ALCL from PTCL-NOS,
GEP of PTCL-NOS, and ALCL discovered a unique cluster of
gene transcripts shared by ALK– and ALK+ALCLs (56). We can
also distinguish ALK–ALCL from CD30+ PTCL-NOS through
clinical outcomes (57, 58). CD30+ PTCL-NOS has a poorer
prognosis and requires more aggressive treatment (59, 60). Based
on GEP, a 3-gene model (TNFRSF8, BATF3, and TMOD1) was
developed to separate ALK– ALCL from PTCL-NOS, with 97%
accuracy (61).

Chromosomal Rearrangements of DUSP22 and TP63

as a Differentiating Factor
Two chromosomal rearrangements, DUSP22 and TP63,
subclassify ALK−ALCL into 3 groups: DUSP22-rearranged,
TP63-rearranged, and group without any rearrangement.
DUSP22 rearrangement occurs in 30% of ALK− ALCL
patients and is associated with a 5-year OS rate of 80–90%,
similar to that of ALK+ ALCL (5-year OS, 85%) (62). It is
associated with downregulation of DUSP22, which leads to the
inhibition of TCR signaling and the promotion of apoptosis
(21). Its unique immunogenic molecular signature, such as
DNA hypomethylation, lower expression of PD-1, and higher
expression of costimulatory gene CD58 and HLA Class II
likely contributes to its favorable prognosis (63). Other clinical
predictors, such as IPI risk factors, age, and CD3 positivity, also
impact prognosis despite DUSP22 rearrangement (64, 65).

TP63 rearrangement, the fusion transcript of TBL1XR1/TP63,
has similar structural homology to oncogenic deltaNp63 in
p53 tumor suppressor pathway and is associated with inferior
survival (66).

A third category, defined as triple-negative (ALK−,DUSP22−,
and TP63−), harbors the remaining 62% of ALK− ALCL cases
and has a 5-year OS rate of 42% (67). Although further validation
of this model is needed, DUSP22 and TP63 rearrangements may
serve as useful biomarkers in prognosis and direct therapy for
patients with ALK− ALCL in the future.

Other Genetic Aberrations in ALK−ALCL
As in ALK+ ALCL, the JAK/STAT3 pathway is constitutively
activated in ALK− ALCL (68). Recurrent single or convergent
somatic mutations and translocations in the JAK1 and STAT3
genes are thought to upregulate the STAT3 pathway (18, 19). In
addition, the gene fusions involving ROS1 and TYK2 in some
ALK− ALCLs have led to the activation of STAT3 independent
of JAK1 or STAT3 mutations. RNA sequencing has identified
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the co-expression of truncated ERBB4 and COL29A1 in 24% of
patients with ALK− ALCL (23). These ERBB4-truncated forms
are potentially oncogenic, and ERBB4 inhibition can partially
arrest cell growth and stop disease progression. These transcripts
were not observed in ALK+ ALCL or PTCL-NOS patients. More
recently, losses at 6p21 and 17p13 were identified in ALK−

ALCL using single nucleotide polymorphism arrays (22, 69).
These losses correlated with the losses of TP53 and PRDM1 and
poor prognoses.

PTCL-NOS

PTCL-NOS is the most common subtype of PTCL, accounting
for 30–50% of PTCL cases in the United States (3, 70).
Patients are diagnosed with PTCL-NOS if they do not meet
the diagnostic criteria of other PTCL subtypes as per WHO
2016 revision (2, 70). As a diagnosis of exclusion, PTCL-
NOS comprises a heterogeneous group of diseases with diverse
cells of origin and presents with different cytogenic, molecular,
and morphological phenotypes. This heterogeneity makes
classification and treatment of the disease difficult. With the
standard anthracycline-based chemotherapy, complete response
rates range from 40 to 60%, and 5-year OS rates range from 30 to
40% (71, 72).

GATA3 and TBX21 Expression as a
Differentiating Factor in PTCL-NOS
PTCL-NOS can be categorized based on GATA3 and TBX21
expression and T helper 1 and T helper 2 cell differentiation
regulators (73, 74). PTCL-NOS cases with high expression of
TBX21 have a tumor microenvironment gene signature, whereas
those of GATA3 have a cytotoxic gene signature with poorer
outcomes (75). The greater genomic complexity associated with
GATA3 is characterized by frequent loss of tumor suppressor
genes on the CDKN2A/B-TP3 axis and PTEN-PI3K pathways
as well as genetic gains and amplification of STAT3 and
MYC. Immunohistochemistry (IHC) algorithm can be used to
identified the two subtypes and add in risk stratification for
clinical trials (76).

Watatani’s group studied the relation between PTCL-NOS
with TFH phenotype and GATA3/TBX21 expression using
GEP (25). PTCL-NOS without TFH phenotype often has
mutations in TP53 and/or CDKNA2A genes, which can cause
chromosomal instability and mediate immune escape and
transcriptional regulations. Those mutations potentially explain
the worse outcomes among patients with PTCL-NOS without
TFH phenotype as compared with those with TFH phenotype.
However, there was no difference in GATA3 and TBX21
expression in the TFH-related group and in the TP53/CDKN2A-
altered group.

Other Genetic Aberrations in PTCL-NOS
The FYN gene encodes a tyrosinase kinase involved in T-
cell activation and Src kinase inhibition. Dasatinib targeted the
Src kinase in vitro, and could be a l target for patients with
mutations in FYN genes (10). Recurrent loss at 9p21.3 decreases
the expression of the cyclin-dependent kinase inhibitors 2A and

2B which are associated with a poorer prognosis (28). Guanine
nucleotide exchange factor VAV1 encodes a critical component
of TCR signaling, and recurrent gene fusion of VAV1 has also
been identified (20). Recurrent genetic activating mutations and
translocations of VAV1 gene in PTCL-NOS highlighted its role of
a drive oncogene in catalytic-dependent (MAPK and JNK) and -
independent (NFAT) VAV1 effector pathways (77). Azathioprine
targets cells overexpressing the VAV1-GSS fusion protein (20).
CTLA4-CD28 fusion and mutations in KMT2C and SET1B
(histone methylation) have also been identified (17, 27).

FAT1 tumor suppressor binds to β-catenin and inhibits
nuclear localization, thus inhibiting cell growth. The recurrent
mutations in FAT1 tumor suppressor gene were seen in 39% cases
of PTCL-NOS and is associated with inferior outcome (29).

With new differentiating factors such as TFH phenotype,
GATA3/TBX21 expression, we may expect PTCL-NOS to be
better categorized, which could provide more insight into
defining targetable molecular pathways and developing novel
therapeutic strategies for PTCL-NOS patients.

CLINICAL IMPLICATIONS AND
PERSONALIZED MEDICINE

Recent advances in genome sequencing and GEP have led
to the identification of commonly dysregulated pathways,
especially enhanced T-cell signaling pathways, in all of the 3
most common nodal subtypes of PTCL. Despite similarities
in genomic profiles, the interaction between various pathways
might play a role in determining divergent cell differentiation
and tumorigenesis. For example, some mutations in the
epigenetic modifier genes are similar between AITL and
myeloid neoplasms; however, the mutation patterns are different.
TET2 and IDH2 mutations are mutually exclusive in acute
myeloid leukemia. In contrast, IDH2 mutations often cooccur
with TET2 mutations in AITL (19, 78). These different
mutation patterns suggest that the interaction between IDH2
and TET2 mutations possibly lead to the development of a
TFH phenotype.

The different patterns of molecular signature profiles can
help us to identify and to reclassify AITL and ALCL from
PTCL-NOS in cases that do not meet morphological criteria
(Figure 1). Iqbal et al. reclassified 14% of PTCL-NOS cases
as AITL via GEP using the 3 prominent AITL signatures: B-
cell signature, follicular dendritic-cell signature, and cytokine
signature (79). This reclassification was then confirmed by
the presence of the IDH2R172 mutation. The presence of the
RHOAG17V mutation helped to identify nodal T-cell lymphomas
with TFH phenotype, as this mutation key in TFH cell speciation
and AITL transformation (38). ITK-SYK gene fusion could
potentially differentiate a subset of PTCL-NOS patients with TFH
phenotype from those with AITL (30, 31, 80, 81) (Figure 1).

Agnelli et al. reclassified 11% of PTCL-NOS cases as ALCL
using a 3-gene model (TNFRSF8, BATF3, and TMOD1) with 97%
accuracy (61). Similarly, lack of ERBB4 transcript in other PTCL
subtypes could help to confirm the diagnosis of ALK− ALCL (23)
(Figure 1).
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FIGURE 1 | Unique and shared mutations identified in the 3 most common types of PTCL. The Venn diagram above showed the most frequently encountered

genomic abnormalities in 3 most common types of peripheral T-cell lymphoma: angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma (ALCL),

and peripheral T-cell lymphoma-not otherwise specified (PTCL-NOS). TET2 and DNMT3A mutations are seen in all 3 major subtypes.

Furthermore, many mutations have been associated with
the prognosis of PTCL. The mutations associated with a
poor prognosis include CD28 mutations in AITL (16); TP63
rearrangement (21), loss of TP53, and loss of PRDM1 (22)
in ALK− ALCL; GATA3 (75), TP53, and/or CDKN2A (25) in
ALK− ALCL; and alterations in histone methyltransferase genes
KMT2A, KMT2B, or KDM6A (82) and FAT1 (29) in PTCL-NOS.
The mutations associated with a favorable prognosis include the
presence of DUSP22 in ALK− ALCL (21).

POTENTIAL THERAPEUTIC TARGETS

Most PTCL subgroups have median OS rates of 1–3 years, except
for ALK+ ALCL (3). Only a small portion (20%-40%) of patients
with PTCL achieve long-term survival (6). During the past 3
decades, long-term survival has not been significantly improved
by available therapies (83). Fortunately, a greater understanding
of the pathogenesis of the major PTCL subtypes has led to
the identification of potentially actionable biologic pathways,
especially activating pathways. Novel targeting therapies are now
available for clinical studies (Table 1).

Epigenetic modulators, such as romidepsin (NCT03141203,
NCT00426764), chidamide (NCT03268889), and HBI-8000
(NCT02953652), are currently being investigated in clinical trials
for PTCL, either as a monotherapy or in conjunction with
other therapies.

The T-cell signaling pathway also has multiple candidate
therapies: multikinase inhibitors, such as dasatinib
(NCT01609816, NCT01643603), for PTCL; PI3K inhibitors, such
as duvelisib (NCT03372057) and copanlisib (NCT03052933),
for PTCL; an anti-ICOS monoclonal antibody in ICOS-PI3K
pathways, MEDI−570 (NCT02520791), for the follicular variant
of PTCL-NOS and AITL; and a CTLA-4 inhibitor, such as
ipilimumab, for CLA-CD28 fusion-positive tumors.

The transcription factor NF-κB pathway is differentially
activated in PTCL, especially in the AITL subtype (79).
Bortezomib, a proteasome inhibitor with NF-κB inhibitory
activity, has shown early promise in the treatment of adult T-
cell lymphoma (84). An additional clinical study on bortezomib
is currently underway (NCT04061772), as well as studies on
ixazomib, a drug similar to bortezomib (NCT03547700).

The JAK-STAT3 pathways are sometimes aberrantly
activated in PTCL, especially in ALCL and in some cases
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of PTCL-NOS. JAK inhibitors, such as ruxolitinib, were
previously used extensively for myeloid disorder and are
currently under investigation for treating patients with
PTCL (NCT01431209).

Another promising target is SYK, a receptor-associated
tyrosine kinase expressed in 94% of all PTCL patients (85). The
SYK inhibitor R406 effectively caused apoptosis and inhibited
cell growth in preclinical studies (86). SYK inhibitors, such as
entospletinib, are promising potential agents.

The ALK-1 inhibitor crizotinib was used in patients with
relapsed pediatric ALK+ ALCL, with a complete response rate
of 83% (NCT00939770) (87). For ALK+ ALCL resistant
to crizotinib, platelet-derived growth factor receptor-β
(PDGFRB) blockade is potentially effective. Imatinib, acting
on PDGFRA and PDGFRB blockade, induced a complete
remission in a late stage NPM-ALK+ ALCL patient. As
suggested in murine model, ALK promotes the expression of
activator protein 1 family members JUN and JUNB, which
subsequently promote tumor dissemination through PDGFRB
regulation (88).

Other targeted agents tested in PTCL include BCL2 inhibitors
(e.g., venetoclax [NCT03552692]); monoclonal antibodies
targeting CD2 (e.g., siplizumab [NCT01445535]); CCR4
monoclonal antibodies (e.g., mogalizumab [NCT01611142]);
FYN inhibitors; CD30 antibody drug conjugates (e.g.,
brentuximab [NCT01716806, NCT03496779]); ERB kinase
inhibitors; VGEFR-2 inhibitors (e.g., apatinib [NCT03631862]);
and PD-1 and PD-L1 inhibitors for immune modulation (e.g.,
pembrolizumab [NCT02535247], nivolumab [NCT03586999],
durvalumab [NCT03161223], and avelumab [NCT03046953]).

Currently, novel therapies are being developed rapidly, and
personalized medicine is made possible through commercial
gene sequencing. The genetic heterogeneity in PTCL requires
an individualized therapeutic approach that uses agents that
specifically target genetic abnormalities or oncogenic pathways
found in patients’ tumors. More rationally designed clinical
trials enrolling patients with specific genetic alterations are
needed to provide higher response rates and more sustained
responses. In the context of genome sequencing and GEP,
targeted and personalized therapies will likely provide the best
clinical outcomes in patients with PTCL in the near future.
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