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Purpose: Dosimetric predictors of toxicity after Stereotactic Body Radiation Therapy

(SBRT) are not well-established. We sought to develop a multivariate model that predicts

Common Terminology Criteria for Adverse Events (CTCAE) late grade 2 or greater

genitourinary (GU) toxicity by interrogating the entire dose-volume histogram (DVH) from

a large cohort of prostate cancer patients treated with SBRT on prospective trials.

Methods: Three hundred and thirty-nine patients with late CTCAE toxicity data treated

with prostate SBRT were identified and analyzed. All patients received 40Gy in five

fractions, every other day, using volumetric modulated arc therapy. For each patient, we

examined 910 candidate dosimetric features including maximum dose, volumes of each

organ [CTV, organs at risk (OARs)], V100%, and other granular volumetric/dosimetric

indices at varying volumetric/dosimetric values from the entire DVH as well as ADT use

to model and predict toxicity from SBRT. Training and validation subsets were generated

with 90 and 10% of the patients in our cohort, respectively. Predictive accuracy was

assessed by calculating the area under the receiver operating curve (AROC). Univariate

analysis with student t-test was first performed on each candidate DVH feature. We

subsequently performed advanced machine-learning multivariate analyses including

classification and regression tree (CART), random forest, boosted tree, and multilayer

neural network.

Results: Median follow-up time was 32.3months (range 3–98.9months). Late grade≥2

GU toxicity occurred in 20.1% of patients in our series. No single dosimetric parameter

had an AROC for predicting late grade ≥2 GU toxicity on univariate analysis that

exceeded 0.599. Optimized CART modestly improved prediction accuracy, with an

AROC of 0.601, whereas other machine learning approaches did not improve upon

univariate analyses.
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Conclusions: CART-based machine learning multivariate analyses drawing from 910

dosimetric features and ADT use modestly improves upon clinical prediction of late GU

toxicity alone, yielding an AROC of 0.601. Biologic predictors may enhance predictive

models for identifying patients at risk for late toxicity after SBRT.

Keywords: dose volume histogram (DVH), prostate cancer,multivariate, predictionmodel, late toxicity, stereotactic

body radiation therapy, machine learning

INTRODUCTION

The recently published HYPO-RT-PC trial provides level I
evidence that ultrahypofractionated radiotherapy for prostate
cancer offers similar 5-year biochemical control and toxicity
rates compared with conventionally fractionated radiotherapy
(1). Additional pooled data from phase II trials (2) as well
as a large meta-analysis (3) support the specific use of
stereotactic body radiotherapy (SBRT), wherein five or fewer
fractions of radiotherapy are delivered, generally with the
utilization of intensity modulated radiotherapy and image-
guided radiotherapy technologies. While the rates of long-term
severe toxicity [i.e., grade 3 or greater on the Radiation Therapy
Oncology Group (RTOG) or Common Terminology Criteria
for Adverse Events (CTCAE) scales] are low, they still occur,
and lower grade toxicities—which may not require intervention
but can nonetheless degrade quality of life—may occur in a
notable minority of patients. These toxicities are likely dose-
dependent, and in fact two recently published prospective studies
have suggested a toxicity dose-response for prostate SBRT (4, 5).
Both studies, along with a large multi-institutional analysis (6),
have also implied increased efficacy of prostate cancer ablation
with higher doses. As such, doses of up to 40Gy in five fractions
may become increasingly utilized.

Dosimetric predictors of grade 2 or greater toxicity at ablative
doses of radiation are not well-established. In fact, most SBRT
constraints have been derived based on radiobiological theory
(α/β or BED equivalence calculations made after adjustments for
longer courses) and post-hoc analyses of relatively small cohorts
(7). Existing models (8) are limited by low patient numbers, low
numbers of events, treatment delivery with an empty bladder, and
evaluation of arbitrary dose cut-points rather than evaluation of
the entire dose-volume histogram (DVH).

Since 2010, our institution has routinely prescribed 40Gy
using gantry-based SBRT in prospective studies for low- and
intermediate-risk disease (NCT01059513) as well as high-risk
disease (NCT02296229). As we have consistently used the
same planning criteria, treatment delivery techniques, and
image guidance protocols, we had the novel opportunity to
comprehensively interrogate the entirety DVH in addition to
ADT use from a large cohort of prospectively treated patients to
identify and validate potential predictors of toxicity.

METHODS AND MATERIALS

Three hundred and thirty-nine patients treated with SBRT at
our tertiary academic institution from 2010 to 2017 with late
CTCAE toxicity data were identified and included in our analysis.

All patients were instructed to have a full bladder and empty
rectum at the time of computed tomography (CT) simulation
with 1.5mm slice thickness; three fiducial markers were placed
transperineally under ultrasound guidance prior to simulation.
The clinical target volume (CTV) was the prostate alone and
a planning target volume (PTV) was generated by using 5mm
isotropic margins. All patients received 40Gy in five fractions,
every other day, using volumetric modulated arc therapy with
four co-planar half-arcs. Ninety-five percent of the PTV was
required to receive 40Gy. A cone beam CT was obtained prior to
each fraction to verify stable anatomy, and planar X-ray imaging
was obtained before each half-arc with rigid registration to the
implanted fiducials. Planning constraints for organs-at-risk have
been described previously (9) and the median and interquartile
ranges for bladder and rectum dosimetry achieved in the 339
patients are depicted in Table 1. Grade ≥2 late toxicity was
assessed according to the GU domain of the CTCAE, version 4.03
and was defined as the worst CTCAE grade scored.

Late grade ≥2 GU toxicity was selected for this analysis
due to the high event rate of 20.1% (68/339) in our series
(Supplemental Figure 1) compared to toxicity event rates for
acute GU toxicity (15/343, 4.4%), acute GI toxicity (7/343, 2.0%),
and late GI toxicity (17/339, 5.0%).

We examined 910 candidate dosimetric features including
maximum dose (Dmax), V100%, volumes of each organ [CTV,
organs at risk (OARs)] and other granular volumetric/dosimetric
indices at varying volumetric/dosimetric values from the DVH
to differentiate between patients with and without toxicity from
SBRT. As ADT has been shown to influence late GU toxicity, this
was also included in our model.

For all analyses, 90% of the patients were included in a training
subset, whereas the remaining 10% were used in the validation
subset. Imbalances between the two groups of patients were
addressed by imposing either uniform prior or weighted cost

TABLE 1 | Median and interquartile range of prostate SBRT planning dosimetry.

PTV goal

V40Gy = 95% (95–95%)

Rectal constraints

V20Gy = 19.8% (15.6–24.5%)

V36Gy = 2.9cc (2.3–3.8cc)

V40Gy = 1.1cc (0.6–1.5cc)

Bladder constraints

V20Gy = 14.5% (9.3–20.6%)

V40Gy = 6.9% (4.3–9.9%)

cc, cubic centimeters.
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in the toxicity classifier optimization. A 10-fold cross validation
was also performed for the purpose of selecting structural
hyper-parameters corresponding to model complexity. Once
the model structure was fixed, a leave-one-out procedure was
used to generate classification scores of each sample in the
whole cohort, allowing for subsequent calculation of a receiver
operating curve (ROC). In addition to the area under ROC
(AROC), we also report the specificity and sensitivity at the
given dosimetric threshold, corresponding to the maximum
Youden’s index.We also visualize the full ROC curve to provide a
complete characterization of model accuracy beyond the optimal
operating point.

Univariate analysis with student t-test was first performed
on each candidate DVH feature to identify differences between
presence vs. absence of toxicity. The strength of each feature as
a stand-alone classifier was also assessed to determine the 10
variables with the highest AROC.

We then used several multivariate analysis methods to assess
whether toxicity prediction could be improved, ranging from
the most commonly accepted multivariate logistic regression to
the more flexible ensemble trees. First, in order to establish
baseline multivariate performance, we performed multivariate
logistic regression with Least Absolute Shrinkage and Selection
Operator (LASSO) regularization. Next, in order to train a
toxicity tree for enhanced stability during cross-validation, an
optimized classification and regression tree (CART) analysis was
performed. Predictor importance was estimated by summing the
changes in performance due to optimal splits in the tree.

To further explore methodologies that would improve our
predictive capabilities, we then utilized two classes of multivariate
ensemble approaches. In the random forest approach, we trained
multiple deep decision trees in parallel, each with a randomly
drawn (with replacement) subset of covariates and observation
from the complete cohort. We optimized the number of trees and
random degrees of predictor selection during cross-validation.
In order to achieve representation such that high variance
was aligned to coordinates where tree decision boundaries lie
perpendicular to coordinates of high variance, we added principal
component analysis (PCA) preprocessing to the random forest.
Original dimensionality was maintained and we allowed the
random forest to cope by random sampling of the predictors
in each tree component. In the boosted tree approach, we used
adaptive boosting to assemble shallow tree learners. Once again,
themaximum number of splits and learning rates were optimized
during the cross validation process.

Finally, we used amultilayer neural network perceptionmodel
in attempt to improve accuracy of our toxicity prediction. Two
hidden layers were used and the number of nodes in each
layer was optimized in the cross validation process to control
model complexity.

RESULTS

Patient characteristics from our cohort are summarized in
Table 2. Median follow-up time was 32.3 months (range
3–98.9 months).

TABLE 2 | Patient and treatment characteristics.

Age

Mean (standard deviation), years 69.6 (7.6)

Median (range), years 71 (45–92)

NCCN risk group

Low risk 71 (21.0%)

Favorable intermediate risk 107 (31.6%)

Unfavorable intermediate risk 123 (36.3%)

High risk 38 (11.2%)

Pretreatment PSA

Mean (standard deviation), ng/ml 7.7 (4.8)

Median (range), ng/ml 6.6 (0.05–47)

Gleason grade group

I 88 (26.0%)

II 108 (31.9%)

III 107 (31.5%)

IV 22 (6.5%)

V 14 (4.1%)

T-stage

T1c 252 (74.3%)

T2a 69 (20.4%)

T2b 11 (3.2%)

T2c 4 (1.2%)

T3a 2 (0.6%)

T3b 0

T4 0

Prostate gland size

Mean (standard deviation), cc 46.28 (26.9)

Median (range), cc 40 (8.04–263)

TURP prior to SBRT

Yes 11 (3.2%)

Dose in 5 fractions

Mean (standard deviation), Gy 40 (0)

Median (range), Gy 40 (40–40)

ADT use

All patients 43 (12.5%)

Favorable intermediate risk patients 5 (11.6%)

Unfavorable intermediate risk patients 14 (11.2%)

High risk patients 24 (63.2%)

Duration of ADT with SBRT

Mean (standard deviation), months 7.4 (2.5)

Median (range), months 9 (3-12)

NCCN, National Comprehensive Cancer Network; PSA, Prostate Specific Antigen; TURP,

Trans-Urethral Resection of Prostate; SBRT, Stereotactic Body Radiation Therapy; ADT,

Androgen Deprivation Therapy.

Considering the candidate dosimetric features in isolation,
the top 10 features for predicting acute grade 2 or greater
GU toxicity, ranked by AROC, are presented in Table 3.
The top dosimetric features were all related to the rectum,
albeit in an inverse fashion, correlating lower rectal dose
with higher incidence of late GU toxicity. For example, in
the cohort of patients experiencing toxicity, the average rectal
V41.3Gy for all patients was 0.303cc whereas the rectal V41.3Gy
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was 0.43cc in the cohort not experiencing toxicity. However,
even the top features identified by univariate analysis poorly
discriminated between patients who developed toxicity and
patients who did not, with no univariate predictor AROC values
exceeding 0.599.

In order to improve on the predictive power of our model,
we employed advanced methods, including machine learning, to
refine the predictor set with the goal of increasing AROC. The
sensitivity, specificity, and AROC for these methods are shown
in Table 4. Only the optimized CART model provided a higher
AROC than the univariate analyses alone, with an AROC of
0.601 (optimized tree can be found in Supplemental Figure 1).
ROC curves for all six advanced methodologies are represented
in Figure 1.

DISCUSSION

We report an attempt at identifying robust dosimetric metrics
for predicting grade ≥2 late GU toxicity in a cohort of
339 patients treated with SBRT on prospective trials. To
our knowledge, this is the first study to examine candidate
features from the entire DVHs of the bladder, rectum, and
prostate with a machine learning approach to identify potential
dosimetric parameters of importance, with the aim of providing
useful information on the dosimetric limitations for mitigating
toxicity in patients undergoing SBRT for prostate cancer. We
incorporated ADT use in our toxicity prediction model as well.
It is highly unique to have 910 individual dosimetric features
available for analysis, and even in this context, our study did
not identify any high-performing predictors after considering
singular DVH parameters or ADT use in isolation. Even after
employing sophisticated multivariate machine learning methods
that combined weak classifiers to enhance inference power, only
the optimized CART model was able to improve predictive
power over the univariate analyses alone. That model provided
a specificity of 0.433, a sensitivity of 0.769, and an AROC of
0.601; which only modestly improves upon the sensitivity of
univariate models but improves significantly upon the sensitivity

of a clinical prediction alone, where the sensitivity of toxicity
prediction amounts to a mere 20%.

Influential task groups have established the need for
innovative methods to inform normal tissue dose limits for SBRT
while cautioning against direct extrapolation from conventional
radiotherapy data (7). However, there is a paucity of data
for guiding clinicians in this new space, other than binary
dose/volume criteria routinely employed on prospective trials.
Other groups have suggested there may be more complexity
involved in predicting toxicity after SBRT (10), spurring
the creation of “complementary critical volume constraints”
(specifying a volume of parallel tissue that is allowed to receive a
pre-specified threshold dose or less), which have routinely been
integrated in SBRT trials within the NRG (11). This in turn
prompted the hypothesis that the entire DVH might contain a
wealth of useful information informing toxicity that may have
previously gone underutilized.

An important finding of this study is that information
taken from the entire bladder, rectal, and prostate DVHs, in
conjunction with ADT use, can improve toxicity prediction over
clinical models alone, but even advanced multivariate machine
learning methods encountered a ceiling in terms of their ability
to predict toxicity. This likely has several explanations. First,

TABLE 4 | Performance metrics for advanced multivariate prediction methods.

Method Specificity Sensitivity AROC

Baseline multivariate analysis 0.746 0.299 0.511

Optimal CART 0.433 0.769 0.601

Random forest 0.530 0.537 0.547

Principal component analysis +

random forest

0.500 0.522 0.500

Boosted tree 0.552 0.522 0.518

Multilayer neural network 0.597 0.597 0.572

AROC, Area under the receiver operating characteristic curve. CART, Classification and

Regression Tree.

TABLE 3 | Top 10 AUCs on univariate analysis.

Parameter Threshold (cc) Mean cc (SD) in

toxicity group

Mean cc (SD) in

No toxicity group

p-value (t-test) Specificity Sensitivity AROC

Rectum V41.3Gy 0.205 0.303 (0.372) 0.430 (0.453) 0.034 0.559 0.605 0.599

Rectum V41.4Gy 0.155 0.263 (0.343) 0.379 (0.422) 0.038 0.544 0.601 0.596

Rectum V41.2Gy 0.255 0.348 (0.398) 0.483 (0.482) 0.034 0.574 0.609 0.596

Rectum V41.5Gy 0.125 0.22 (0.314) 0.331 (0.391) 0.042 0.574 0.579 0.594

Rectum V41.7Gy 0.025 0.164 (0.258) 0.246 (0.327) 0.056 0.471 0.716 0.594

Rectum V41.1Gy 0.305 0.397 (0.425) 0.539 (0.510) 0.035 0.574 0.620 0.594

Rectum V41.6Gy 0.045 0.194 (0.286) 0.287 (0.359) 0.049 0.471 0.701 0.593

Rectum V41.9Gy 0.015 0.113 (0.207) 0.173 (0.260) 0.076 0.529 0.620 0.593

Rectum V0.8Gy 62.94 67.29 (32.93) 82.48 (126.5) 0.327 0.618 0.594 0.590

Rectum V0.9Gy 62.75 66.38 (31.58) 81.83 (126.5) 0.319 0.632 0.579 0.590

SD, Standard deviation; AROC, Area under the receiver operating characteristic curve; cc, cubic centimeters.
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FIGURE 1 | Receiver operating characteristic curves for (A) baseline multivariate analysis, (B) optimal Classification and Regression Tree (CART), (C) Random Forest,

(D) Principal Component Analysis + Random Forest, (E) Boosted Tree, and (F) Neural Network methods. Area under the receiver operating characteristic curves

(AROC) appears in cyan. The optimal operating point is denoted with a circular red target.

since all patients were required to meet institutional constraints
shown in Table 1 prior to plan approval, DVH features were
already uniform among our cohort of patients, making the
identification of predictors within small deviations among a
relatively homogenous subset of DVH features challenging
and susceptible to noise. It is entirely possible that a similar
analysis in a cohort of patients with more heterogeneous
planning metrics may have led to a disparate conclusion. An
alternative, non-mutually exclusive explanation is that dosimetric
features alone are not the primary drivers of toxicity beyond
a certain threshold. This, in turn, suggests that a patient’s
biological features, including genomic signatures known to
regulate radiation response in normal tissues (12, 13), may
play an important role in predicting toxicity after radiotherapy.
While monogenic associations between germline mutations in
key genes such as ATM have been associated with severe toxicity
(14), suchmutations are rare and are unlikely to explain observed
rates of grade 2 or higher toxicity which approach 20%. A recently
published genome-wide single nucleotide polymorphism study
was able to identify a predictive model for a weak urinary stream
in a similarly sized cohort of men treated with brachytherapy
with or without external beam radiotherapy, but the AROC
was still limited at 0.70 (15). It is possible that utilizing both
dosimetric and biological variables may allow the construction

of a highly predictive model. Alternatively, the ability to create
such a model may require the addition of other genetic and
dosimetric variables, not currently captured in the platforms used
in these studies.

Notably, 8 of the top 10 candidate dosimetric features for
predicting grade ≥2 late GU toxicity (ranked by AROC) were
all high dose rectal parameters, and the other two were low dose
rectal parameters. This likely reflects the collinearity of individual
dosimetric parameters. However, it is also possible that, by
minimizing hot spots in the rectum, there will be a commensurate
increase in dose to bladder or urethral subvolumes. While higher
doses in bladder subvolumes should have been captured in the
present analyses, the urethra is not universally contoured in our
workflow, and urethral overdosing might not have been detected.
Additionally, certain bladder regions may be more susceptible
than others, and these tradeoffs might not have been captured
in our analysis.

Limitations of our study include its single-institution nature,
which invites the potential for selection bias. Our outcomes
are also physician-reported rather than patient-reported, which
could have precluded patient entry into our model due
to underestimation (16) of actual grade 2 toxicity. Our
dosimetric study also did not capture all potential predictors of
increased toxicity, and patient-specific variables such as baseline
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International Prostate Symptom (IPSS) score (17), patient age
(18), or history of trans-urethral resection of the prostate, which
have all been thought to increase the likelihood of toxicity
following SBRT, were not considered in this study due to
limitations in our data set. However, the true importance of
these issues remains an open question, as a recent propensity
score-matched study demonstrated no increase in the rate of
acute and late GU toxicity in patients who had undergone prior
TURP, for example (19). Importantly, size of the prostate gland,
which has been implicated in increasing toxicity at the arbitrary
cutoff of 50cc in some series (17) but not in others (20), was
examined, and did not emerge as an important component in
predicting late GU toxicity at volumes >50cc. We were unable to
evaluate dosimetry for structures not routinely contoured at our
institution, such as the urethra and the rectal wall (as opposed to
the total rectum structure). As all of our plans are homogeneous
and intra-prostatic “hot spots” are small in volume, we did not
evaluate structures such as the volume of the prostate receiving
>40Gy. Strengths of our approach include our ability to sample
information from the entire DVH rather than arbitrary cut points
as well as the novelty of applying advanced methodologies rooted
in machine learning. In conventional multivariate analyses,
variables of interest are designated a priori, whereas more
complex modeling allowed us to control potential confounding
factors that could not be identified prospectively. While our
sample size was relatively small for “big data” modeling strategies,
oversampling was not a concern in our analysis, given the
negative findings.

CONCLUSIONS

New technologies for increasing tumor control, such as SBRT,
must be accompanied by similarly innovative approaches
for understanding and mitigating toxicity, especially in
the immature space of normal tissue dose limits during
hypofractionation. We confirm through multiple iterative
machine-learned models that there is a ceiling beyond which
data from the entire DVH cannot predict late GU toxicity.
We postulate that a more formal understanding of biological,
rather than dosimetric features will allow us to maximize the
therapeutic ratio by predicting and mitigating toxicity associated
with SBRT.
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