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Bladder cancer is a fatal cancer that happens in the genitourinary tract with quite high

morbidity and mortality annually. The high level of recurrence rate ranging from 50 to

80% makes bladder cancer one of the most challenging and costly diseases to manage.

Faced with various problems in existing methods, a recently emerging concept for

the measurement of imaging biomarkers and extraction of quantitative features called

“radiomics” shows great potential in the application of detection, grading, and follow-up

management of bladder cancer. Furthermore, machine-learning (ML) algorithms on the

basis of “big data” are fueling the powers of radiomics for bladder cancermonitoring in the

era of precision medicine. Currently, the usefulness of the novel combination of radiomics

and ML has been demonstrated by a large number of successful cases. It possesses

outstanding strengths including non-invasiveness, low cost, and high efficiency, which

may serve as a revolution to tumor assessment and emancipate workforce. However,

for the extensive clinical application in the future, more efforts should be made to break

down the limitations caused by technology deficiencies, inherent problems during the

process of radiomic analysis, as well as the quality of present studies.

Keywords: radiomics, machine learning, bladder cancer, full-cycle management, precision medicine

INTRODUCTION

Bladder cancer ranks ninth of the most common malignancies and the 13th most common
predisposing cause of cancer-related mortality all over the world, with over 357,000 new cases and
over 130,000 deaths annually (1). Bladder cancer is more likely to develop in patients over 65 years
old, which has a high recurrence rate ranging from 50 to 80% (2).

Clinical decision and follow-up management of bladder cancer predominantly depend on the
presence or absence of muscle invasion and accurate grade of malignancy and also take specific
pathological types into consideration (3, 4).

However, all aspects in the management of bladder cancer including tumor staging, diagnosis,
treatment, and prognostic evaluation have still been limited by various factors. The gold standard
nowadays for bladder cancer detection is telescopic checking of the bladder (cystoscopy) (5).
Considering the high recurrence rate, cystoscopy examinations are required to be performed every
3–6 months to monitor bladder cancer patients for recurrence or progression to a more advanced
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stage. However, the expensive and invasive characteristics restrict
the frequent use of cystoscopy and further cause significant
economic and psychological pressure to patients. Furthermore,
cystoscopy has still quite limited accuracy for the detection of
tumors in low grade, with the sensitivity of 61% (6), nor the
muscle-invasive depth. Another universally applied approach
in condition detection is biopsy but it can be restricted by
an inability to sample every part of the tumor at any point
in time. Moreover, heterogeneous disease spectrums as bladder
cancer processes, it can always confound correct classification
and staging (5), and then influences the choice of treatment plans
and finally makes the risk of undertreatment or overtreatment
increase. To simplify the detection process of bladder cancer, the
concept of urinary biomarkers has been put forward recently.
However, no studies have proposed molecular markers with
sufficient sensitivity and specificity to replace cystoscopy (1).
Furthermore, this method is unable to determine the extent of
surrounding tissue invasion andmetastasis, which blocks the way
of non-invasive bladder cancer detection.

Apart from the difficulties in accurate tumor detection and
clinical grading, the prediction of treatment efficacy is also a
major obstacle in the management of bladder cancer. It has
been widely accepted that patients with nonmuscle-invasive
bladder cancer (NMIBC, stage ≤T1) are mostly at early stage
and are advised to be treated with TURBT followed by treatment
applying Bacillus Calmette-Guérin (BCG) (7), whereas muscle-
invasive bladder cancer (MIBC, stage ≥T2) patients usually have
a poorer prognosis and the treatment plan for these patients is
supposed to be radical cystectomy (RC) (8). Despite appropriate
cancer control in local lesions, over 50% of patients who have
undergone RC meet the disturbance of tumor metastasis in no
more than 2 years after cystectomy and thus fail to survive
(9). Neoadjuvant chemotherapy ahead of cystectomy has been
demonstrated to reducing the odds of developing extravesical
lesions when compared to taking RC alone, afterward improves
the overall survival (OS) of bladder cancer patients (10, 11).
However, there is still short of a reliable method to predict the
posttreatment response of a specific individual to whether BCG
or neoadjuvant chemotherapy currently. Thus, some patients
who receive inappropriate therapies tend to suffer from adverse
reactions. Worse, these patients are likely to miss the best time to
make an adjustment on the strategies of therapy, consequently
pose damage to their physical condition and increase the
difficulty of cancer management.

Confronting the above problems and limitations, a novel
concept of radiomics has emerged for solving the issues of
the generalization of precision medicine and how it can
be applied in the field of bladder cancer monitoring. It is
a high-throughout quantitative feature extraction method to
mine the information contained in the multimodality medical
images including computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging (MRI), and
ultrasonography (US) (12), then comprehensively analyze these
massive images to extract phenotypic features (also known as
radiomics biomarkers) and explore the associations between
patients’ prognosis and these extracted features and improve
the decision-making process. ML algorithms on the basis

of “big data” are fueling the powers of radiomics in three
main tasks related to bladder cancer imaging: initial detection
of the existence and localization of volume; pretreatment
characterization including the diagnosis, grading, and staging
of tumor; posttreatment monitoring by predicting prognosis or
factors irrelevant to treatment plans, such as OS, recurrence,
and pathological subtypes (13, 14). Therefore, radiomicsmethods
in combination with an optimal ML method may potentially
extend the practical use of precision medicine approaches in
radiotherapy by providing a non-invasive, high-efficiency, but
low-cost way to predict clinical outcomes (15).

In this paper, we review the present studies in association with
our topic and discuss the promising usages and hidden challenges
of this novel method adapting acute imaging analysis, combining
radiomics with ML in the precise management of bladder cancer.
This review paper considers and discusses the issues as follows:

1. The concept of radiomics and its significance
2. Workflow of radiomics
3. Clinical applications of the combination of radiomics withML

in bladder cancer management
4. Challenges and future directions.

THE CONCEPT OF RADIOMICS AND ITS
SIGNIFICANCE

The meaning of “precision medicine” indicates that the
reasonable strategies of treatment are singled out according
to the characteristics of different subtypes. It has substantially
changed the treatment strategies in the recent 10 years. To
make a precise treatment for an individual, accurate detection,
characterization, and monitoring after treatment are very
important. Unfortunately, the current tumor assessment is far
from our expectation because of variable technology deficiency.
One important problem is that radiologists usually use subjective,
qualitative features to make tumor assessment, which make the
results less reproducible and more unstable. Besides, with the
rapid development of gene therapy and immunotherapy, gene
expression signature and immune phenotype are also essential
parts for a comprehensive tumor assessment. Current evaluation
for gene expression and immune phenotype is most based on
the biopsy, which is invasive and expensive, let alone the result
is confused because of intratumoral heterogeneity. Thus, the
demand for a non-invasive, cheap, and stable method to assess
and monitor tumor has never been greater.

The computationalmedical imaging, also known as radiomics,
was first invented by Lambin in 2012 (16, 17). It was based
on the underlying hypothesis that medical imaging contains
much more information than we have already utilized, even
including cellular and molecular information of target tissue
(18). The aim of radiomics is to analyze and translate medical
images into quantitative data and provide an image-based
biomarker to aid clinical decisions. Compared with biopsy,
radiomics biomarker is invasive, reproducible, and has the
ability to make an evaluation of tumors’ microenvironment,
spatial heterogeneity, and longitudinal assessment for disease
progression. In recent years, several studies have presented the
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potential usage of radiomics in the development of precision
medicine. Among all, many pieces of research demonstrated the
immense application value of radiomics in combination with ML
algorithms to overcome the drawbacks of precision medicine in
the diagnosis and treatment of non-small-cell lung cancer (19).
Since the breakthrough in the intelligent management of lung
cancer, researches on the application of this new technology to
other cancers have been carried out one after another with great
advances among them. The characteristics of bladder cancer itself
and the need for enhanced imaging analysis technology make it
one of the major research hot spots.

WORKFLOW OF RADIOMICS

Radiomics is a multidisciplinary-based technology. There are
four main steps to complete a radiomics program (Figure 1):

(1) Image acquisition and preprocessing
(2) Volumes of interest (VOIs) segmentation
(3) Feature extraction and quantization
(4) Model building.

Image Acquisition
Image acquisition is the first and an important step in radiomics.

There are two common formats of the image data recorded,
including Picture Archiving and Communication System (PACS)
and the Digital Imaging and Communication in Medicine
(DICOM), and they are used in most of the medical institutions,
which provide a great convenience for the radiology study.

The accuracy and reproducibility of the final radiomics
model lie on the quality of image acquisition. However, there
is no guideline nor consensus on image acquisition. As a
result, the acquisition strategies in different research teams
can be distinctive, which can cause heterogeneity among
separate studies. Meanwhile, it is difficult for researchers to
take labeling, annotation, segmentation, and quality assurance
seriously. Because these processes require well training, wasting
both time and money.

Various imaging modalities such as modern CT, MRI, PET,
and US scanners allow for acquisition and image reconstruction
in wide variations (20). The radiological images applied for
radiomic analysis are obtained from different hospitals or
institutions using divided parameters and protocols. Thus,
they are supposed to be preprocessed to ensure consistency
and comparability.

VOIs Segmentation
The region for image data capture is defined as “The Volume of
Interest” (VOI). VOIs segmentation is the core step of radiomics
study because it determines which volume is analyzed within a
medical image.

The ideal VOI includes the complete information for the
target lesions, nothing more nor less. Unfortunately, usually, it
is hard for the radiologists to make it because many tumors
have indistinct borders (21). Besides, the microenvironment
around the lesions also provides useful information of the
lesions, but there is no guideline in VOIs segmentation for how

much microenvironment should be put in radiomics model. For
instance, in a recent radiomics study, the research team use
2-mm peripheral ring on each side of the lesions to involve
microenvironment of the lesions while another team use 1-mm
peripheral ring (22).

VOIs can be created manually, automatically, or
semiautomatically. In the past 5 years, most current radiomics
study created VOIs manually. However, it is time-consuming
and laborious when utilizing big data in radiomics study. Thus,
many pieces of research try to create VOI automatically. There
are lots of algorithms on VOI creation. A common segmentation
algorithm is the “seed method.” The radiologist will place some
seeds in VOI, and the computer will create VOI automatically
(23). Unfortunately, it only works well when the lesion is
uniform. There are many other methods used in radiomics
study, such as Graph-Cut Methods (24), Level-Set Methods (25),
and Active Contour Algorithms (26). In summary, all algorithms
have their own deficiencies and need manual correction.
Therefore, there is a great demand for algorithms with maximum
automation, minimal human intervention, high time efficiency,
and repeatability.

Feature Extraction
Feature extraction is the next step after a VOI is reasonably
segmented, which is the essence in the workflow of radiomics.
It mainly performs the extraction of high-throughput data of
quantitative imaging features to identify VOIs and the selection
of useful information to aid in the discrimination of normal and
abnormal images.

The quantitative data usually can be classified into four types:

(1) Shape characteristics: Description of the shape and
geometric features of target lesions. For example, the volume
of VOI, maximum diameter along with different orthogonal
directions, maximum surface area, tumor compactness
and sphericity.

(2) First-order statistical characteristics: Description of the
distribution of individual but do not describe its spatial
arrangement, including the mean, median, maximum and
minimum of voxel intensity, skewness (asymmetry), kurtosis
(flatness), uniformity, and randomness (entropy).

(3) Second-order statistical characteristics: Also known as
texture features. It is calculated from a statistical correlation
between adjacent voxels, usually by Gray-Level Co-
Occurrence Matrix (GLCM) (27). Texture features provide
heterogeneity information among the lesions.

(4) High-order statistical characteristics: Quantitative data
from the filter or mathematical transformation on images,
including fragment analysis, Minkowski function, wavelet
transform, and Laplace transform of gaussian filtered image.
The aim of filer and mathematical transformation is to
identify repetitive or non-repetitive patterns, suppress noise,
or highlight details.

Model Building
To conclude, the building of radiomics model involves three
main aspects, including the selection of radiomic features, choice
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FIGURE 1 | A typical workflow of radiomics in bladder cancer.

of ML methods, and final validation of the developed model.
Image analysis software can provide many features, so it is vital
to select essential features for further study. At the same time,
model selection is as important as feature selection. Selecting
a suitable model can help obtain a reliable and stable result,
which is very important for clinical decision making. Complete
radiomics analysis should include validation, and both internal
validation and external validation are indispensable.

Feature Selection
There are two common processes for determining radiomic
parameters. One is to make a preliminary analysis of captured
features and select most repeatable and reproducible ones (28).
Another method is based on features’ mathematical definitions.
It makes a priori selection of features on those definitions and
selects targeted parameters (29). In the formal process of analysis,
different kinds of image analysis software may output a variety
of features ranging from hundreds to thousands (30, 31). The
inclusion of all features without selection in the development of
radiomics model could cause the result in overfitting inevitably,
since some of them might have a high degree of correlation (32).
Hence, the inclusion of appropriate features, which are strongly
linked to the aiming task but not redundant, is highlighted for
improved value for specific clinical applications.

Modeling Methodology
ML is commonly used in radiomics model development, which
can be hypothetically defined as a branch of artificial intelligence
(AI) (33), which is actually an algorithm trained by inferences
from data sets and then helps establish prediction models with
high precision and efficiency on the basis of radiomic analysis.
As a result, radiomics with ML may improve the clinician
decision-making process as it is able to encompass many greater
quantities of parameters than manual work and make these
various parameters extracted in the workflow of radiomics
into comprehensive utilization. With regard to the choice
of appropriate radiomic methodology, the identification and
application of optimal MLmethods for radiomic applications are
very crucial steps toward the achievement of clinical relevance.
Thus, appropriateML algorithms should be employed (34) to fuel

the detective, diagnostic, and prognostic powers of radiomics in
the field of bladder cancer.

Model Validation
Model validation is a dispensable step in model building,
which serves as a useful tool to assess the performance and
applicability of the developed radiomics model. To make sure
that the model is effective for all of the targeted patients, not
only the patients selected in the model building process, the
internal and/or external validation should be tested. Typically,
model performance is measured according to its discrimination,
which can be expressed in the form of the receiver operating
characteristic (ROC) curve or be calculated as the area under
the ROC curve (AUC) in a quantitative way. ROC curve can
easily display the ability of disease recognition at any threshold.
When comparing two or more models, the ROC curves can draw
each model in the same coordinate to identify advantages and
disadvantages visually.

CLINICAL APPLICATIONS OF RADIOMICS
WITH ML IN BLADDER CANCER
MANAGEMENT

Accurate Cancer Staging and Grading
Accurate grading is of vital importance in the follow-up
management of bladder cancer and serves as the starting point
of radiomics applied in bladder cancer as shown in Table 1.
Reading radiographic images produced by CT, MRI, PET, or
US is essentially a matter of identifying complex patterns, in
which computers can be trained to process efficiently, repeatedly,
and rapidly. In the recent 5 years, ML techniques have shown
latent capacity in accurate grading of bladder cancer. Confronted
with the great significance of precise staging in the decision
of appropriate treatment plan, Garapati et al. (35) developed
a predictive model to serve as a classification tool for layering
bladder cancer into two different grading categories and chose
T2 as the critical point. They created a data set containing 84
bladder cancer lesions from 76 CT urography (CTU) cases and
found that the morphological features, as well as texture features
were helpful to stage the lesions of bladder cancer. In this study,
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TABLE 1 | Present studies that combined radiomics and machine learning (ML) in bladder cancer.

References Study type Application Cases

number

Data

modality

ML

algorithm

Type of

validation

Results

Garapati et al. (35) Retrospective

study

Bladder cancer

staging

76 CTU LDA, NN,

SVM, RAF

Two-fold cross

validation

Four types of classifier showed equal

promise in bladder cancer staging

Zhang et al. (36) Retrospective

study

Bladder cancer

grading

61 MRI SVM-RFE Single-center

validation

The SVM classifier adapting the optimal

feature subset performed best (AUC =

0.861; accuracy 82.9%; sensitivity 78.4%;

specificity 87.1%)

Wang et al. (37) Retrospective

study

Bladder cancer

grading

70 MRI LASSO

algorithm

Ten-fold cross

validation

Joint-Model performed best (AUC =

0.9276)

Zheng et al. (38) Retrospective

study

Differentiation of

NMIBC and MIBC

199 MRI LASSO

logistic

regression

algorithm

Single-center

validation

The radiomic-clinical nomogram

developed on the basis of

three-dimensional features showed

favorable usage (AUC 0.922)

Wang et al. (39) Retrospective

study

Prediction of

mortality after

radical cystectomy

117 Clinical

data

BPN, RBFN,

ELM, RELM,

SVM, NB,

and KNN

Ten-fold cross

validation

The models with RELM and ELM achieved

the highest sensitivity and specificity (over

0.8)

Xu et al. (40) Retrospective

study

Recurrence

stratification of

bladder cancer

71 MRI SVM-RFE,

LASSO

algorithm

Five-fold cross

validation

The radiomic clinical nomogram achieved

more benefits than the radiomics or clinical

model alone

Lin et al. (41) Retrospective

study

Prediction of

progression-free

interval

62 CECT LASSO

algorithm

Single-center

validation

Radiomics risk model (AUC 0.956) and

transcriptomics risk model (AUC 0.948)

showed independent prognostic role to

determine the progression

Cha et al. (42) Retrospective

study

Assessment of

therapy response

62 CT DL-CNN Leave-one-case-

out cross

validation

DL-CNN has the potential to assist in the

treatment response

Cha et al. (43) Retrospective

study

Assessment of

treatment

response

123 CT DL-CNN Single-center

validation

The radiomics-based system is advisable

to serve as a second option to assist in

therapy evaluation

Chalkidou et al.

(44)

Retrospective

study

Evaluation of

sensitivity to

neoadjuvant

chemotherapy

123 CT DL-CNN Single-center

validation

The improvement of the physicians’

performance was statistically significant (P

<.05)

LDA, linear discriminant analysis; NN, neural network; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; RFE, recursive feature elimination; BPN, back-propagation neural network; RBFN, radial basis function; ELM,

extreme learning machine; RELM, regularized ELM; NB, naive Bayes; KNN, k-nearest neighbor; DL-CNN, deep-learning convolution neural network; MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer.
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the data were divided into two subsets for further two-fold cross
validation. As a result, all of the linear discriminant analysis
(LDA), neural network (NN), support vector machine (SVM),
and random forest (RAF) classifiers included in this study led
to relatively unanimous results in their staging accuracy, which
effectively demonstrated that ML method can be a promising
way to reduce the inaccuracy rate of bladder cancer staging
by up to 50% (45) and aid to the implementation in daily
care. To achieve better grading of bladder cancer for the
sake of appropriate clinical decision, a recent study proposed
textural features from diffusion-weighted imaging (DWI) and
apparent diffusion coefficient (ADC) maps to distinguish low-
grade bladder cancers from high-grade ones and recommended
an optimal feature subset selected by SVM with recursive feature
elimination (SVM-RFE) for cancer grading using histogram
and gray-level co-occurrence matrix (GLCM)-based radiomic
features (36). Sixty-one patients with bladder cancer were
included in this study to prove that the grading performance in
bladder cancer was improved through the candidate or extraction
of optimal features, with accuracy, sensitivity, specificity, and
AUC achieving 82.9, 78.4, 87.1, and 0.861, respectively.

Recently, there have also been notable advances in
MRI technology. Wang et al. (37) built and validated a
multiparametric MRI-based radiomic analysis model for the
preoperative grading of bladder cancer tumors. This study
enrolled 70 bladder cancer patients and applied five radiomic
models including T2-weighted imaging (T2WI), DWI, ADC,
Max-out, and Joint models, then assessed by ROC curve analysis.
By comparing AUC values, the performance in terms of the
accuracy, sensitivity, and specificity of the Joint_model in the
validation set was obviously superior to that of the other four
single-modality models, achieving an AUC of 0.9233 according
to the training cohort and 0.9276 in the validation one. As
the first study considering pathological grading of bladder
cancer applying radiomics, it showed encouraging feasibility
for avoiding subjectivity and promote extended future usage in
preoperative grade assessment of bladder cancer.

Tumor Classification and Prognosis
Prediction
Undoubtedly, clear discrimination between NMIBC and
MIBC is crucial for pretreatment decision, posttreatment
prognosis, and lasting period consequent management of
bladder cancer patients. Considering the large percentage
of diagnostic errors caused by conventional cystoscopic
examination (36), researches proposed a new radiomics
scheme that combined histogram features, co-occurrence
matrix (CM) features, and run-length matrix (RLM) features.
Based on the novel developed model (4), they assessed the
performance of tumor classification based on multiparametric
MRI radiomic features for accurate differentiation between
NMIBC and MIBC preoperatively in searching for management
of bladder cancer patients and finally got a positive result
with the AUC and Youden index improving to 0.8610 and
0.7192, respectively.

With regard to the reflection on the heterogeneity of cancer
caused by analyzing radiomic features extracted from the whole
tumor tissue, Zheng et al. (38) suggested a hypothesis that the
radiomics features of the basal part can be used for determining
the degree of muscle invasiveness more conclusively. To further
validate their assumption, they first developed a radiomic-
clinical nomogram incorporating the radiomic signature and
extract three-dimensional features for subsequent analysis. The
usefulness of this novel nomogram in discriminatingNMIBC and
MIBC was favored, with an AUC of 0.922 in the training set, and
was also confirmed with an AUC of 0.876 in the validation set.
By overthrowing existing views, this study came up with a new
idea in the extraction of radiomic features and demonstrated the
latent capacity of the radiomic-clinical nomogram to serve as an
auxiliary tool for bladder cancer classification.

Realizing the high risk of metastasis and mortality of MIBC
that is in need of immediate treatment to improve the living
quality of patients while faced with the various kinds of ML
models emerging, researchers have begun to seek for the urgently
needed strategy. A confirmative research was conducted for
selection in which seven models including radial basis function
(RBFN), back-propagation neural network (BPN), extreme
learning machine (ELM), regularized ELM (RELM), SVM, naive
Bayes (NB) classifier, and k-nearest neighbor (KNN) were ever
explored and compared to predict the 5-year mortality of 117
MIBC patients who had undergone RC (39). The eventual
results indicated that the algorithm on the basis of RELM and
ELM presented higher mean sensitivity and specificity (over 0.8)
relatively in the prediction of mortality in MIBC patients after
RC, with an ideally fast learning speed.

Regarding the importance of preoperative prediction of the
risk of bladder cancer recurrence, Xu et al. (40) developed
a radiomic nomogram for personalized prediction of the
first 2 years (TFTY) risk in tumor recurrence. This study
took the important baseline variations involving gender, age,
cancer grading, MIS of the lesions, size, and the number of
the tumor, as well as the recording of previous operations
into consideration to ensure the accuracy of the developed
model. This multiparametric model finally showed excellent
performance in both the validation and training cohorts. The
decisive curve exhibited the threshold of risk was more than 0.3;
more benefits and higher accuracy were observed by applying the
radiomic nomogram than using either the radiomics or clinical
model separately.

All of these studies showed the great potential of radiomics
aided by ML in the improvement of tumor classification and
prognosis prediction of bladder cancer, overcoming the defects
traditionally and obviously improved the living quality of bladder
cancer patients. Great progression as radiomics made in the
prognosis of bladder cancer, the correlations between the imaging
features and genomic signatures have rarely been explored up to
now in the field of bladder cancer management. Confronting the
blank of related researches, Lin et al. (41) put forward a successful
case that integrated radiomics and transcriptomics to predict
the progression-free interval (PFI) of bladder cancer patients. In
this study, both of the radiomics risk model (AUC 0.956) and
transcriptomics risk model (AUC 0.948) showed independent
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prognostic roles to determine the progression of the bladder
tumor, which first provided a novel insight into the microscopic
mechanisms of bladder cancer.

Evaluation of Individual Therapy
Responses
Once a definite diagnosis is made and the tumor subtype is
identified, early evaluation of therapeutic efficacy and response
can aid in clinicians’decision on whether to discontinue
chemotherapy at an optimal phase. In the research conducted
by Cha et al. (42), the feasibility of a radiomics-based
prognostic model using CT images obtained before or after
treatment in distinguishing bladder cancers with chemotherapy
responses or not was explored, which applied deep-learning
convolution neural network (DL-CNN) for accurate bladder
lesion segmentation. This study indicated that the computerized
assessment on the basis of radiomics information extracted
from CT images of pretreatment or posttreatment bladder
cancer patients had the possibility to aid in the evaluation of
therapy response, with the prediction accuracy estimated by
AUCs improving by 0.03 in comparison with manual contours.
Previously, one of the reasons for optimization has been
demonstrated that the complicated tumor size change in response
to treatment can be better reflected by the computerized three-
dimensional (3-D) segmentation rather than traditional criteria
(46). Recognizing the important role played by radiomics and
ML in the evaluation of individual therapy response, another
feasibility study adopted three radiomics predictive models in
the assessment of chemotherapy response and finally reached an
agreement among all these models and two expert radiologists’
prediction. Instead of replacing artificial analysis, researchers are
more supportive to consider the computer-aided system as a
second option to assist in the evaluation process. However, the
final decision still relies on the judgment of radiologists on the
basis of advice given by radiomics-aided models (43).

Regarding the aggressiveness of MIBC, studies were
conducted to assess whether a CT-based decision-support system
could improve identification of patients who have complete or
partial response to neoadjuvant chemotherapy (47). This study
investigated 123 subjects, and the AUCwas estimated. Compared
to the accuracy of the assessment of doctors alone (AUC 0.74),
the decision-support system (AUC 0.80) showed statistically
significant improvement of therapeutic evaluation.

CHALLENGES AND FUTURE DIRECTIONS

Up to now, there has been a large number of studies to illustrate
the rapid development of radiomics and ML algorithms, as
well as the effectiveness of their combination in the full-cycle
management of bladder cancer, but we also need to realize the
limitations when applied in actual use comprehensively.

First, the defects in the aspect of inherent technologies
should be recognized. Usefulness as quantitative features based
on medical images show in the management of bladder
cancer patients, their tendency of causing significant errors and
overestimation has also been reported (44). It is prevalent to

see that the number of radiological features examined is much
larger than the number of patients included in retrospective
studies, which may lead to bias in feature selection and even high
false-positive result. Furthermore, results obtained from different
studies might be hard to compare and evaluate because of the lack
of standardized methods for analysis. Larue et al. (48) conducted
an overview and put forward a thought-provoking conclusion
that there still exist various kinds of challenges to overcome in
the whole process of radiomics. In terms of ML, although specific
algorithms can improve the accuracy of the prediction with the
usage of regression models by extracting complex features in the
data set, no amount of algorithm skills or computing power can
extrude unwanted information (49).

Second, limitations mentioned in current articles that have
already been published should be highlighted and overcome.
Quite a large percent of studies are conducted in a single
institution, and the sample size is too small to be convincing.
Apart from that, some studies lack external validation for model
development. For the extensive clinical application, the studies
should be designed in a much more comprehensive and delicate
way to raise the reliability of research results. To achieve future
optimization of this novel method, more investigations should
be carried out to test the potential of optimizing the predictive
model by the combination of imaging biomarkers with other
non-imaging biomarkers.

Third, it has been a long-lasting debate whether such AI-
supported systems are much smarter than clinical practitioners
(50, 51). However, what we should do is to take the best
advantages of the new adjuvant imaging techniques and apply
radiomics together with ML to bladder cancer monitoring.
Combining all of these imaging analysis methods with the
experience of experts will make assurance for the delivery
of medical care that outperforms what either of them can
achieve alone. Since no code is shared in most papers
involving radiomics application, it is impossible to exactly
assess the validity of the results up to now. Thus, another
direction for future improvement is to achieve the validity of
predictive results based on the public full code and imaging
data sets and optimize the model performance in a more
scientific way.

Moreover, the application of radiomics in bladder cancer
remains at themacroscopic level. Althoughwe have witnessed the
breakthrough of various researches from basic tumor detection
to accurate grading, even recent studies have moved toward
the prediction of treatment outcomes. However, gene therapy
and immunotherapy, which involve gene expression signature
and immune phenotype, have been introduced as revolutionary
tools for comprehensive tumor assessment and divert our
attention to the microscopic level. A novel concept named
“radiogenomics” perfectly presents the integration of genomics
with radiomics and serves as an alternative to the invasive biopsy
(52). Tremendous value as this research spot shows in several
common diseases (53, 54), few studies are conducted to further
validate its clinical uses in bladder cancer, which highlights
that the combination of radiogenomics and bladder cancer full-
cycle management can be an essential breakthrough point for
future research.
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