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The improved knowledge of pathogenetic mechanisms underlying lymphomagenesis

and the discovery of the critical role of tumor microenvironments have enabled the design

of new drugs against cell targets and pathways. The Food and Drug Administration

(FDA) has approved several monoclonal antibodies (mAbs) and small molecule inhibitors

(SMIs) for targeted therapy in hematology. This review focuses on the efficacy results

of the currently available targeted agents and recaps the main ongoing trials in the

setting of mature B-Cell non-Hodgkin lymphomas. The objective is to summarize the

different classes of novel agents approved for mature B-cell lymphomas, to describe

in synoptic tables the results they achieved and, finally, to draw future scenarios as

we glimpse through the ongoing clinical trials. Characteristics and therapeutic efficacy

are summarized for the currently approved mAbs [i.e., anti-Cluster of differentiation

(CD) mAbs, immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell

therapy, and bispecific antibodies] as well as for SMIs i.e., inhibitors of B-cell receptor

signaling, proteasome, mTOR BCL-2 HDAC pathways. The biological disease profiling

of B-cell lymphoma subtypes may foster the discovery of innovative drug strategies for

improving survival outcome in lymphoid neoplasms, as well as the trade-offs between

efficacy and toxicity. The hope for clinical advantages should carefully be coupled with

mindful awareness of the potential pitfalls and the occurrence of uneven, sometimes

severe, toxicities.

Keywords: anticancer mAbs, tyrosine kinase inhibitors, tailored therapy, personalized medicine, NHL

INTRODUCTION

Non-Hodgkin lymphomas (NHL) encompass malignant tumors of the lymphoid tissues variously
resulting from the clonal growth of B cells, T cells, natural killer cells, or originators of these
cells. They derive from cells at varying stages of maturation, and many of the biologic features
of these malignant cells reflect their normal counterparts. B cell lymphomas may arise at any
stage of normal B cell development, but most are derived from cells that have been exposed to
the germinal center reaction (1). The recent World Health Organization (WHO) classification
categorizes B-cell lymphomas by morphology, immunophenotype, and genetic findings. These
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histological subtypes of B-cell Lymphomas recognized by the
WHO present different and somehow specific profiles of clinical
aggressiveness and prognosis. Despite, the WHO classification
does not explicitly order B-cell lymphomas on the basis of
their aggressiveness, also given the significant patient-to-patient
variability in the natural history of these neoplasms. Both in
real life practice and in the vast majority of clinical trials
histological subtypes have been roughly segregated into indolent,
aggressive and very aggressive groups, according to their usual
clinical behavior. Indolent B-cell lymphomas represent 35 to 40
percent of the non-Hodgkin lymphomas (NHL), and survival is
generally measured in years. The most common subtypes include
follicular lymphoma (FL), chronic lymphocytic leukemia/small
lymphocytic lymphoma (CLL/SLL), a fraction of mantle cell
lymphoma (MCL) cases, extramedullary, nodal and splenic
marginal zone lymphoma (MZL), and lymphoplasmacytic
lymphoma (LPL) (1, 2). Aggressive subtypes if left untreated
survive a few months but if adequately treated may achieve
definitive remissions and cure in a significant fraction of
patients. Themost common subtypes are large B-cell lymphomas,
including anaplastic and primary mediastinal lymphoma, and
various kinds of diffuse large B cell lymphoma (DLBCL). The
highly aggressive subtypes represent about 5 percent of the
NHL and survival may be measured in only a few weeks if left
untreated. Curing is possible if vigorously treated with high-
intensity chemotherapy protocols.

Chemotherapy, radiotherapy, and immunotherapy have been
used, alone or in combination, in the last decades to treat B-
cell NHL. Therapeutic outcomes may vary according to clinical
behavior, whether indolent or aggressive, and patients may
suffer various patterns of recurrence requiring subsequent lines
of rescue therapies. Dismal prognosis still affects a significant
fraction of patients with mature B-cell lymphomas, and new
treatment strategies should be conceived to improve both
objective response and survival (3–9).

In the last decade, the remarkable and exponential
understanding of intracellular processes that are deregulated
during lymphomagenesis, such as signal transduction pathways,
transcriptional and translational regulation, protein stability and
degradation, cell cycle regulation, and mitosis and apoptosis,
as well as the study of the microenvironment have led to the
discovery and progress of new targeted therapies (10–16).

These novel biological therapies include monoclonal
antibodies (mAbs), small molecule inhibitors (SMIs) (i.e., growth
factors or their receptors), vaccines, and genetic therapies. They
may complement or replace conventional chemotherapies (with
their burden of systemic toxicities) ensuring novel mechanisms
of “targeted” tumor cell kill and proliferation control while,
hopefully, lessening iatrogenic adverse events.

Additionally, the role of the immune system in the
pathogenesis and development of hematological neoplasms has
long been known, but especially in recent years we have seen a
significant change in knowledge in this area, such as new open
therapeutic perspectives. Using the immunologic mechanism to
treat cancer is an old and well-known concept, and it consists
in activating the immune system to hit the tumor rather than
directly hitting the cancer cell. This approach represents a real

change in the treatment paradigm (3, 8, 11, 14, 17–20). Tumor
immunotherapy has undergone a new phase of development,
in particular linked to the development of T-cell checkpoint
inhibitors and the development of CAR T cell therapy, a
personalized treatment involving the use of genetically modified
T lymphocytes to attack the cancer cells (21–24).

This review is intended to provide an overview of all Food and
Drug Administration (FDA)-approved novel drugs and therapies
for “targeting” mature B-cell neoplasms. Immunotherapy agent
treatments [i.e., anti-Cluster of differentiation (CD) mAbs,
immune checkpoint inhibitors, chimeric antigen receptor (CAR)
T-cell therapy, and bispecific antibodies] as well as for SMIs (i.e.,
inhibitors of B-cell receptor signaling, proteasome and mTOR
BCL-2 HDAC pathways) are summarized in their mechanisms
of action (Figure 1)—the results they achieved in mature B-cell
lymphomas are described in synoptic tables and the ongoing
clinical trials are detailed to draw, at a glance, a glimpse on
future scenarios.

METHODS

To assess the actual understanding of targeted drugs for
NHL, a search on the Cochrane Library and PubMed were
performed crossing the keywords “Targeted Therapy” AND “B-
Cell Neoplasm.” In the second step “indolent” and “aggressive
and very aggressive” were singularly added, limited to the
English literature but with no restriction on time. “Monoclonal
antibodies” and “Small molecule Inhibitors” restricted the search.
The authors examined the titles of the 2090 papers retrieved; 521
of them met the call for monoclonal antibodies while 183 were
relevant to SMIs. Most of them were cited in the manuscript.

Papers that did not include anticancer inhibitor series and
appeared redundant were excluded. A search for abstracts or
full text led to the exclusion of other non-pertinent papers. For
studies conducted by the same research institute at different
times, the most recent and complete one was included unless
different methods, endpoints, or specific issues had been
addressed. Papers whose full text or at least abstract were
not available were excluded as well. The reference sections of
pertinent papers were searched for other relevant articles. Here,
we considered novel agents to be the mAbs and SMIs that are in
ongoing clinical trials or were in trials that have been completed
in the last 2 years.

The Clinicaltrial.gov database was queried regarding the
terms of each novel agent and therapy in combination with
B-cell lymphoma.

MONOCLONAL ANTIBODIES (mABs)

The therapeutic antibodies targeting cell surface receptors have
been employed in the standard care treatments for most cancers,
both solid tumors and hematological neoplasms. Therapeutic
mABs target specific antigen molecules, such as extracellular
growth factors and transmembrane receptors. In some cases,
mABs are conjugated with radioisotopes or toxins to allow the
specific delivery of these cytotoxic agents to the tumor cell target.
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FIGURE 1 | Overview of different target therapies in clinical or pre-clinical use for the treatment of B-cell lymphomas. In the figure these are represented by mABs,

BiTE, SMIs, and immune checkpoint inhibitors for an adaptative immunotherapy. The different drugs are shown as family groups based on their different mechanisms

of actions.

In general, the mechanisms that allow therapeutic antibodies
to inhibit growth or kill cancer cells fall into two categories:
immune-mediated mechanisms as antibody-dependent cell
cytotoxicity (ADCC), and complementary cytotoxicity (CDC),
andmechanisms that interfere with tumorigenesis pathways (e.g.,
triggering apoptosis, inhibiting cell proliferation or blocking of
angiogenesis) (25).

Herein, for the currently approved mAbs for Lymphomas
(Table 1) we recap in four groups the efficacy of (i) anti-Cluster
of differentiation (CD) mAbs; (ii) immune checkpoint inhibitors;
(iii) chimeric antigen receptor (CAR) T-cell therapy; and (iv)
bispecific antibodies.

Anti-CD mAbs
In this category are the Anti-CD20 Rituximab and the anti-
CD52 Alemtuzumab, the forefathers of the mAbs designed for
lymphocyte blocking activities. Both are two chimeric (murine-
human) antibodies. The success of rituximab has elicited interest
in the development of new agents for other surface antigens
on malignant B cells. A new generation of anti-CD20 mABs,
including ofatumumab, obinutuzumab, and ublituximab, has

been designed with features, distinctive from rituximab, that
realize an improvement of ADCC and CDC (26).

Alemtuzumab is an anti-CD52 antibody effective in CLL.
Currently, it is only accessible on a compassionate use
basis (27, 28).

Brentuximab vedotin (SGN-35) is a conjugated antibody
consisting of a chimeric monoclonal anti-CD30 antibody linked
to the strong microtubule inhibitor monomethyl auristatin E

(MMAE). After CD30 binding, SGN-35 is internalized, and

the MMAE is released by the action of lysosomal enzymes
on the valine-citrulline linker. The antineoplastic mechanism

of the brentuximab vedotin exerts is still not entirely clear.
Dissemination of MMAE in the tumor microenvironment and

cytotoxic effects on “spectator cells” may partly explain its action

(29). On 2011, it was approved by the FDA for the treatment of
Hodgkin lymphoma (HL) patients, but it may also be adopted
in cases of ALK-positive large B-cell lymphoma (LBCL) and
Primary Effusion LBCL (30–34).

Camidanlumab Tesirine (ADCT-301) is a
pyrrolobenzodiazepine (PBD) Dimer-containing ADC anti-
CD25 (the alpha chain of the IL-2 receptor) (35). CD25 is present
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TABLE 1 | Targeted drugs for immunotherapy and signal transduction inhibitors (SMIs) with indications for mature B-cell Lymphomas.

Drug class Drug (brand name) Target Indication

IMMUNOTHERAPY (mAbs and CAR-T)

Anti-CD mAbs Alemtuzumab (Lemtrada) CD52 CLL/SLL

Brentuximab vedotin (Adcetris) CD30 LBCL-ALK+, DLBCL

Camidanlumab Tesirine (ADC-301) CD25 DLBCL

Dacetuzumab CD40 B-NHL

Lucatumumab CD40 CLL/SLL

Obinutuzumab (Gazyva) CD20 B-NHL

Ofatumumab (Arzerra) CD20 FL B-NHL

Polatuzumab Vedotin (DCDS4501A) CD79b FL, DLBCL, B-NHL

Rituximab (Mabthera) CD20 CLL/SLL, LPL,FL, MZL, MCL,

DLBCL, HG-BCL

Ublituximab (TG-1101) CD20 B-NHL

Immune Checkpoint

inhibitors

Atezolizumab (Tecentriq) PD-L1 FL DLCBL

Durvalumab PD-L1 B-NHL, DLBCL

Ipilimumab (Yervoy) CTLA-4 B-NHL, FL

Nivolumab (Opdivo) PD-1 DLBCL,FL

Pembrolizumab (Keytruda) PD-1 DLBCL

Pidilizumab (MEDI4736) PD-1 DLBCL

Urelumab CD137 CLL/SLL

Chimeric Antigen receptor

(CAR) T-Cell Therapy

Axicabtagene ciloleucel CAR T-4-1BB DLBCL

Tsagenlecleucel (CTL019) CAR T-4-1BB HG-BCL

Bispecific antibodies AFM13 CD30/CD16A DLBCL

Blinatumomab (Blincyto) CD19/CD3 DLBCL

DART CD19/CD3 DLBCL

Mosunetuzumab (BTCT4465A) CD20/CD3 CLL/SLL, iNHL

SIGNAL TRANSDUCTION PATHWAY INHIBITHORS

BCR Inhibitors Acalabrutinib (Calquence) BTK CLL/SLL

Ibrutinib (Imbruvica) BTK CLL/SLL, DLBCL, MCL MZL,

Buparlisib (BKM120) PI3K DLBCL, B-NHL

Copanlisib (Aliqopa) PI3K γ DLBCL, MCL

Idelalisib (Zydelig) PI3K δ CLL/SLL, DLBCL, FL

Cerdulatinib (PRT062070) SYK JAK 1-2 FL

Entospletinib (GS-9973) SYK CLL/SLL

Fostamatinib (Tavalisse) SYK DLBCL

TAK659 SYK/FLT3 DLBCL

Proteasome inhibitors Bortezomib (Velcade) PIs FL, MCL, MZL,

Carfilzomib (Kyprolis) PIs B-NHL

Ixazomib (Ninlaro) PIs 20S subunit NHL DLBCL

mTor inhibitors Everolimus (Afinitor) CLL/SLL, DLBCL

Temsirolimus (Torisel) DLBCL, MCL

BCL2 Inhibitor Venetoclax (Venclexta) BH3 domain DLBCL CLL/SLL

HDAC Inhibitors CUDC-907 Class I and II+ PI3K DLBCL

Mocetinostat (MGCD0103) Class I and IV DLBCL, FL

Panobinostat (Farydak) Class I, II and IV DLBCL

Vorinostat (Zolinza) Class I and II FL

B-NHL, B-NHL not otherwise specified; CLL/SLL, Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia; DLBCL, Diffuse Large B cell Lymphoma; FL, Follicular Lymphoma;

HG-BCL, High Grade B-cell lymphoma; iNHL, indolent NHL; LBCL, Large B-cell lymphoma; MCL, Mantle Cell Lymphoma; MZL, Marginal Zone Lymphoma.
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on the cell surface in B-cell lymphomas such as DLBCL, further
than several T-cell lymphoma subtypes (36, 37).

Dacetuzumab is a monoclonal anti-CD40 antibody. A specific
gene signature may be predictive of sensitivity to dacetuzumab in
patients with DLBCL. It has shown effectiveness as monotherapy
in a phase I study of 50 B-cell NHL patients. Almost 33% of
patients had a reduction in tumor bulk with an 8 mg/kg/week
dose for 4 weeks. In one case a complete response was observed,
and five cases showed partial responses (38, 39).

Lucatumumab is anothermonoclonal anti-CD40 antibody. In
relapsing CLL, results of the phase I reported that the dosages
were well-tolerated in a cohort of 26 patients; 1 patient had a
partial response, in 17 cases the disease was stable (40, 41).

Obinutuzumab is another humanized anti-CD20-IgG2 class
of monoclonal antibody. It retains better ADCC than rituximab,
with less CDC than ofatumumab. It has a unique feature in CD20
cross-link, resulting in increased direct cell death. FDA approved
obinutuzumab for the treatment of CLL. Also, this mAB has been
tested for R/R NHL. A phase III study compared alkylating agent
(bendamustine) alone vs. obinutuzumab plus bendamustine
followed bymaintenance therapy with obinutuzumab in indolent
NHL patients refractory to rituximab. The outcomes reported
a significantly longer PFS in the of obinutuzumab plus
bendamustine arm (24, 42).

Ofatumumab is a human mAb direct against a new CD20
epitope. In preclinical models compared with rituximab,
ofatumumab has demonstrated a closer linkage with
the B-cell surface and enhanced complement-dependent
cytotoxicity (43–45).

Polatuzumab vedotin is a first-in-class anti-CD79b antibody-
drug conjugate (ADC) currently being investigated for the
treatment of different NHLs (46, 47). CD79b protein is highly
specific and expressed in most of B-cell malignancies (48).
To date, some ongoing studies are assessing the safety and
effectiveness of polatuzumab vedotin for several types of NHL,
including trials exploring combinations with obinutuzumab,
rituximab, venetoclax, and atezolizumab (46, 47, 49–51).

Rituximab is still the most widely used antibody for treating
mature B-cell lymphoma NHL B cells, also including CLL/SLL.
Rituximab is an IgG1 chimeric antibody binding to CD20, a
B-lymphocyte antigen transmembrane, which is present on the
surface of both non-neoplastic (pre, immature, mature, and
activated B cells) and malignant B cells (52, 53). The antibody
was first approved in 1997 for NHL and subsequently, in 2009, for
CLL. After that, rituximab has become an ordinary component of
the treatment of FL, DLBCL, and MCL (25).

Ublituximab (TG-1101) targets an exclusive epitope on the
CD20 and has been engineered to improve affinity for all variants
of FcγRIIIa receptors, with better ADCC than ofatumumab and
rituximab (54).

Commonly Anti-CD mAbs Toxicities
Due to the presence of the entire range of murine
immunoglobulins (Igs), mAbs retain a high antigenic potential to
humans, therefore carrying a risk for hypersensitivity reactions
upon parenteral administration. Indeed, infusional reactions
take place quite commonly during or after mAbs administration.

Tumor lysis syndromemay occur in patients carrying an elevated
number of circulating neoplastic cells. Infusion-related adverse
events are equally frequent and may be severe as well, seen
also with the new-generation anti-CD20 mAbs ofatumumab
and obinutuzumab. The toxicity profile of the Brentuximab
vedotin is manageable, though the peripheral neuropathy is an
important clinical feature hampering prolonged administration
of the drug (29). Patients treated with these new drugs often
may form anti-mouse immunoglobulin antibodies, which
could counteract the therapeutic effect. To limit these adverse
effects, the more recently developed chimeric mAbs contain an
increased proportion of human Ig components (about 65%) and
a reduced portion of murine Ig components while humanized
mAbs account for 95% of the human component (55). Their
co-administration with vaccines should be avoided.

Immune Checkpoint Inhibitors (ICIs)
Immunotherapy has reformed the treatment of solid tumors and
hematological neoplasms over the past decade with numerous
agents approved by the FDA in recent years. While various
approaches are used to modify the antitumor immunity of
the host, perhaps the most commonly studied and used is the
checkpoint block (15, 56–59). The motivation for adopting ICIs
in the treatment of lymphoma relies on the existence in such
malignancies of mechanisms that escape immune surveillance
due to genetic variance. These agents may re-educate cells in the
microenvironment, restoring chemokine and cytokine signaling
as well as expression of checkpoint proteins (56, 60–66). They
are able to block the cytotoxic T lymphocyte-associated antigen
4 (CTLA-4) and programmed death 1 (PD-1) pathways. PD-1 is
an important receptor of the immune checkpoint expressed on
activated T cells (67). In recent years, interest in the inhibition
of PD-1 in combination with other therapies has increased in
the hope of generating a synergistic anti-tumor effect. CTLA-4
is a co-inhibitory receptor expressed primarily in the cytoplasm
of inactive naïve T cells. Upon antigen stimulus, CTLA-4 is
mobilized to the T cell surface and binds with its ligands CD86
and CD80, causing down-regulation of T cell activation (68–71).

In lymphomas, blocking the checkpoint and harnessing the
immune system as antineoplastic therapy is an active area of
clinical study. Monoclonal antibodies directed against PD-1 and
CTLA-4 are being designed to reduce the down-regulation of T-
cell responses against malignant cells (68). Through diminished
inhibitory signals, the immune response is improved and able to
destroy the malignant cells. The results of the anti-PD-1/PD-L1
block are very exciting in lymphomas with 9p24.1 aberrations
such as LBCL primary mediastinal (PMBCL), primary b-Cell
testicular and cerebral lymphomas. Less encouraging results are
reported for CLL/SLL and most of DLBCL (72). The currently
used immune checkpoint inhibitors are the anti-PD-1 mABs
Nivolumab, Pembrolizumab, and Pidilizumab, the anti-PDL-1
mAbs Durvalumab, Urelumab, and Atezolizumab, and the anti-
CTLA-4 mAb Ipilimumab (73).

The profile of PD-L1 expression by immunochemistry has
been lately proposed to retain prognostic and diagnostic
significance (24).
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Atezolizumab (MPDL3280A), is a humanized IgG1 anti
PD-L1. It is sustained for use against several hematologic
malignancies. Still little is known on the expression of CTLA-
4 in human tissue. So far it has been reported that CD80 and
CD86, physiological ligands for the expression of CTLA-4, can be
observed in T-cell lymphoma patients, in the cells of the dendritic
system, and in a subgroup of B-cells of the germinal center and
B-immunoblasts in lymphomas (74).

Durvalumab (MEDI4736) is a high-affinity human IgG1mAb
that selectively inactivates PD-L1 by binding PD-1 and CD80.
It has shown preliminary evidence of antitumor activity across
multiple tumor types (68, 75).

Ipilimumab is a wholly humanized IgG1 mAb against the
CTLA-4. Ipilimumab plus lenalidomide has been reported as
well-tolerated after both autologous and allogeneic stem cell
transplantation in a phase 2 study achieving a significant
proportion of complete responses (76).

Nivolumab, a completely humanized IgG4 anti-PD-1
mAB, is now approved for melanoma, non-small cell lung
cancer (NSCLC) and renal cell carcinoma. The activity of
nivolumab in lymphoid malignancies has also been widely tested
(60, 61, 66, 68, 77). Patients with recurrent B-cell NHL were
treated at the identical schedule with dose escalation of 1–3
mg/kg of nivolumab. Furthermore, nivolumab as a single agent is
undergoing a trial in patients with FL and is currently in phase II
studies (NCT02038946). Many ongoing studies also are assessing
the effectiveness of nivolumab either in polychemotherapy
and/or in combination with other targeted drugs such as
ibrutinib (NCT02329847), ipilimumab (NCT01896999),
urelumab (NCT02253992), and indoleamine 2,3-dioxygenase 1
(IDO1) inhibitor (NCT02327078). Combinations with ibrutinib
or IDO1 are particularly striking in enhancing antitumor
T-cell immune responses mechanism (68). Phase 2 trials with
nivolumab in patients with DLBCL (CHECKMATE 139,
NCT02038933) have mature results. No response was observed
in a cohort of MCL patients who receive nivolumab (78).

Pembrolizumab (alias lambrolizumab) is a humanized IgG4
antagonistic anti-PD-1 mAb. The usage of IgG4 restricts Fc
receptor engagement; this produces the loss of ADCC activity of
PD-1- cells, thus enhancing the antitumor immune response. A
correlation with a distinctive genetic signature has been described
in large B-cell lymphomas also containing alterations and
translocations in the number of copies (i.e., 9p24.1/PD-L1/PD-
L2) (72). However, several studies on lambrolizumab, either as
a single agent (NCT02576990, NCT02362997, NCT02453594,
NCT02684292, NCT02535247) and/or in combination with
rituximab (NCT02446457), SMIs such as ibrutinib, idelalisib,
and IDO1 (NCT02332980, NCT02178722), or conventional
chemotherapy (NCT02541565), are ongoing for DLBCL and
PMBCL as well as FL and other B cell lymphomas with indolent
behavior (56, 74, 79, 80).

Pidilizumab was the first humanized IgG1 mAb anti PD-1 to
be tested in lymphoid malignancies (56, 68, 74). It is noteworthy
that CLL/SLL neoplastic cells show weak PD-1 expression (57),
and low numbers of lymphocytes infiltrate PD-1 positive tumors
(80). There is evidence of PD-L1 and 2 expressions in a subgroup
of NHL, making this pathway a promising target (81).

Urelumab is a wholly humanized IgG4 mAb direct against
CD137. CD137 (alias 4-1BB or TNFRSF9 receptor) is a member
of the growth factor family receptors. CD137 is usually present
on the activated T and B cells and monocytes. Although it
is not part of the CTLA-4 or PD-1 pathways, its potential
to immunostimulatory activities has gained an interest in the
clinical development of this mAb. It has been assessed in terms
of efficacy and safety in combination with nivolumab and/or
rituximab against different subtypes of mature B-cell lymphomas
(NCT02253992, NCT02420938) (68).

Immune Checkpoint Inhibitors-Toxicities
ICIs are tempting due to their moderately low toxicity profile.
The Phase I study in solid tumors reported that 41% of patients
treated with nivolumab had an adverse event, and, of them,
only 6% were grade 3 or above. The investigators also reported
that 71% of patients who received pembrolizumab had adverse
events, with 9.5% grade 3 or higher. The main toxicity profile
of CTLA-4 and PD-1 inhibitors is associated with its activity
in boosting the immune response. Researches on solid tumors
report hepatitis, pneumonia, colitis, thyroiditis, hypophysitis,
and other inflammatory reactions. Patients receiving therapies
with checkpoint inhibitors should regularly be checked for
thyroid function and ACTH/cortisol levels if they experience
symptoms such as fatigue or hyponatremia (58, 59, 74).

Chimeric Antigen Receptor (CAR)
T-Cell Therapy
It is known that lymphomas are highly susceptible to cellular
therapies, including allogeneic stem cell transplantation and the
adoptive relocation of specific EBV T cells, which could be
seen as the predecessor of the CAR T cells (82). CAR T cells
are autologous T lymphocytes genetically modified to bind to
specific antigens present on cancer cells. As a result of the
binding of CAR T cells to a neoplastic cell, the signaling domains
stimulate cytokine secretion, cytolysis of the tumor cell, and
T cell proliferation. CAR T cells are created by apheresis of
the mononuclear cells from peripheral blood. Successively, the
isolated T cells are then transduced in vitro with a retroviral or
lentiviral vector with a CAR complex including a single-chain
variable fragment of antibodies (scFv) or a peptide (21, 22, 24).
The later generation (second and third) of CAR cells integrate
an additional domain such as CD28 into the construct, which
provides a co-stimulator signal. After the expansion of treated T
cells, they are ready for infusion into the patient for 1–2 days.
Before CAR T cell infusion, patients receive chemotherapy that
reduces lymphoma. Ideally, the target antigen of CAR T cells
must be absent on healthy cells but present on cancer cells only
(24). To date, for hematological malignancies, several CART
therapies have received FDA approval. The first was approved
was in August 2017 for the treatment of patients aged up to
25 years carrying B-cell precursor acute lymphoblastic leukemia
(ALL) to CD19 cell therapy CART-4-1BB (tsagenlecleucel
CTL019, Kymriah, Novartis, Basel, Switzerland) (20, 83, 84).
In October 2017, the FDA granted regular approval to CD19
CAR T therapy axicabtagene ciloleucel (Yescarta, Kite Pharma,
Inc.) for large B-cell lymphoma adult patients relapsed or
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refractory after two extra lines of conventional therapy. They
include high-grade B-cell lymphoma, DLBCL NOS, PMBCL,
and DLBCL arising from FL (82, 85–87). However, despite
the early efficacy observed in the procedure of CAR-T in the
treatment of CLL, the initial trials in other NHLs were less
promising than the response rates observed in patients with
ALL. With improved induction chemotherapy, which has been
demonstrated to trigger the patient for rapid expansion of T cells
to adoptive transfer, CAR T cells are now showing a more likely
response. There have been two reports from an ongoing study of
CAR T cells carrying CD19 receptor composed of a recognition
ectodomain ScFv and stimulant endodomain 4-1BB (CTL019)
that demonstrate the effectiveness both in DLBCL and FCL (82).
In the DLBCL cohort as part of an ongoing phase II study, 40
cases were evaluable for assessing the response at the time of data
blocking (NCT03761056).

The lymphodepletion regimen before CAR T cell infusion
is dependent on the organization of the institution. Moreover,
the protocols for the design of CAR T cells growing and
producing lentivirus or retrovirus for cell transduction also
differ between studies. The timing of infusion of CAR T cells
either after chemotherapy alone or immediately after autologous
transplantation need to be standardized. Additional multicenter
studies are needed to optimize CAR T cell protocols.

Two CAR-T therapies targeting CD19 on B cell malignancies,
Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel, were both
effective against multiply recurrent DLBCL. In ZUMA-1, axi-
cel resulted in a median duration of response, PFS and OS of
11, 6, and >27 months, respectively (88). In JULIET, relapse-
free survival with tisagenlecleucel 1 year after initial response
was 65 percent (89). Both agents are associated with serious
complications (e.g., fatal neurologic events and cytokine release
syndrome), but no new toxicities were identified with longer
follow-up. Axi-cel and tisagenlecleucel are approved for use at
certified institutions by the US FDA in adults with RR DLBCL
after≥2 lines of systemic therapy.

Several studies report some cases that remain resistant to
CAR T cells. The resistance can partly be due to the failure
of the CAR T cell to overcome the inhibition created by the
neoplastic cells. Therefore, studies are ongoing that combine
CAR T cell therapy with inhibitors of the mAB control
immune system. One trial being conducted at the University
of Pennsylvania is exploring pembrolizumab following CAR
T cells (NCT02650999). Another trial at Baylor College of
Medicine (Houston, TX, USA) combines ipilimumab with CAR
T cells (NCT00586391). An alternative mechanism of CAR T cell
deficiency is the absence of perseverance of genetically modified
CAR T cells. Research is underway to assess whether cytokine co-
administration can improve the clonal expansion of CAR T cells
(NCT00968760) (24).

CAR T Cells-Toxicities
Cytokine release syndrome (CRS) is possibly one of the leading
adverse events of CAR T cell therapy. CRS is related to an
elevated number of different cytokines, comprising interleukin-
6 (IL-6) and interferon γ. CRS is shown by cumulative adverse
events including fever, hypoxia and hypotension. Also, several

blood values are altered, such as elevated C-Reactive Protein
(CRP), low fibrinogen and highly elevated ferritin. By CAR
T cell therapy, the beginning of symptoms correlates with
the expansion of T cells, and it is usually evident within
days or a few weeks (23). The percentages and severity of
CRS therapy in patients with lymphoma are less recurrent
than those with high levels of systemic disease such as ALL.
The ability of CAR T cells to cross the blood-brain barrier
(BBB) and deliver neurological toxicity to the CNS has been
documented. A clinical study detected neurological toxicity
with CAR T-cell infusion, 3/20 patients presented neurologic
toxicity including delirium and 1/20 encephalopathy. The
worst of the neurological adverse events are attenuated by the
administration of dexamethasone, which also enters the BBB.
Due to the exhaustion of non-malignant CD 19 lymphocytes,
B cell aplasia is an additional adverse event. Finally, other
major adverse events for patients are opportunistic infections
due to hypogammaglobulinemia. Hypogammaglobulinemia has
efficaciously contrasted with IV immunoglobulin administration
after CAR T cell infusion (24, 90–94).

Bispecific Antibodies
Bispecific antibodies (bs-mAbs) are engineered antibodies able to
bind two antibodies in a unique molecule and gain the capacity to
target diverse epitopes simultaneously. The Bs-mAbs mechanism
is analogous to the CAR-T cells, but unlike the latter, the bs-
mAbs are “ready to use” drugs (68, 95–98). The identification
of the tumor-specific antigen and straight involving T cells can
increase the effectiveness of antibody therapy and minimize the
toxicity. A BiTE R© (Bispecific T-cell engager) antibody complex
consists of a single fusion polypeptide (50–60 kDa) able to link
two variable fragments of single chain antibodies (scFv) (99). It
carries two specific binding sites, one for a link to specific B cell
markers (i.e., CD19) and another that targets a co-stimulator on T
cells (i.e., CD3) (24). This simultaneously activity results in T cell
activation, proliferation, and T cell-induced target cell lysis (100).
Differently to the “living” and self-expandable T cells, bsAbs
have a short persistence limit in the patient and low objective in
strongly immunosuppressed patients. A fusion of both principles
can be themodification of immune or tumor cells to permanently
express bispecific molecules (101).

AFM13 is a bi-specific, tetravalent chimeric antibody
construct (TandAb) designed to recruit natural killer (NK)
cells via CD16A as immune effector cells to CD30-expressing
malignancies. AFM13 will be tried in a larger phase II
trial in HL (NCT02321592) in a study with CD30-positive
cutaneous lymphoma (NCT03192202) and in combination with
pembrolizumab (NCT02665650) (98, 102).

Blinatumomab (MT103) is the earliest bispecific construct
CD19/CD3 approved by the FDA and the EMA for the cure of
R/R ALL. Blinatumomab showed high response rates at very low
doses in patients with NHL and ALL B precursor. Blinatumomab
contains an anti-CD3 arm and an anti-CD19 arm, allowing the
junction of CD3 + T cells with the CD19 + B tumor cells. This
mechanism determines the lysis of target cells and resembles
T-cell-mediated killing (103, 104).
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DART proteins (dual affinity retargeting) with a mechanism
similar to BiTE R© interact with CD3 and CD19. The DART is a
new bispecific antibody engineered to overwhelm the mechanical
limits of BiTE R© to increase stability. DART is composed of
diabody-like molecules that have the heavy variable chain (VH)
region linked to the variable light (VL) of the second binder, and
the VH of the second variable region linked to the VL of the
first (96). Early on, DART was revealed to induce cytotoxicity
in in vitro experiments, exhibited potent activity in several
relevant tumors and showed more power than the BiTE R© format
(105). DART was also revealed to be reliably more effective in
eradicating CD19-positive B cells. Notably, without engagement
with targeted CD19-positive cells, no activation of T-cells by
the DART molecule was observed. Also, in vivo in a xenograft
mouse model, a DARTmolecule targeting CD19 assembled using
an exclusive anti-T cell receptor antibody portion showed an
activity virtually identical to that of the CD19 x CD3 DART
molecule (106, 107). The DART setup is mostly attractive for
clinical practice since it has been confirmed to have comparable
pharmacokinetics with other mAbs. The earliest study on a
DART CD19xCD3 was in patients with R/R NHL (96).

Mosunetuzumab is a full-length bispecific CD20/CD3
antibody that redirects endogenous T-cells to kill neoplastic B-
cells by concomitantly binding to CD3 on T cells and CD20 on B
cells. An ongoing multicenter Phase I/IB study (NCT02500407)
is evaluating mosunetuzumab in R/R B cell NHL patients. The
interim analysis shows that mosunetuzumab monotherapy is
clinically active in this cohort of NHL, thus it is showing
promising and durable efficacy in FCL and DLBCL.

BiTE-Toxicities
Accepting the risk of neurotoxicity and CRS, blinatumomab
and other BiTE would be given gradually and with weekly
progressive doses (24, 108). A phase I/II study of blinatumomab
reported several adverse events including CRS, neurological
toxicity (aphasia, ataxia, convulsions, headache, tremor), and
leukopenia/neutropenia. Also, in the blinatumomab phase study,
<10% of NHL patients have been grade 3 CRS or higher. Instead,
in the phase II study, “early” prophylactic dexamethasone was
used for each initiation, and an increased daily blinatumomab
infusion dose for 2 days after the start reported no adverse events
with CRS (109).

SMALL MOLECULES INHIBITORS (SMIs)

Although monoclonal antibodies and other immunotherapies
have led to dramatic advances in the treatment of lymphoma
patients, the parallel development of small molecule inhibitors
has been equally exciting. These SMIs have reformed the
therapeutic model for different subtypes of NHL. Many SMIs
have been approved by the FDA, and others are still under
evaluation. Several SMIs are administered orally, are moderately
well-tolerated and offer patients unprecedented response rates.
Their small size (≤500 Daltons) allows for interchange through
the plasma membrane, enabling the interaction with intracellular
signaling molecules and the cytoplasmic domain of cell surface
receptors. These SMIs inhibit signal transduction pathways

by targeting proteins involved in transcriptional/translational
regulation, protein stability, cell cycle regulation of mitosis and
apoptosis. These new agents are a heterogeneous group of drugs
with different mechanisms of action: (i) B cell receptor signaling
Inhibitors like TKI, BKI, Aurora Kinase Inhibitors (AKI), and
SYK; (ii) proteasome inhibitors and; (iii) HDAC inhibitors
(Table 1). The SMIs are not free from toxicity, especially when
combined with other drugs. Therefore, we will provide advice
on the relevant toxicity profiles, because these promising new
treatments could hide pitfalls for the treatment of patients
with NHL. In clinical practice, these new agents generate a
multifaceted step in pharmacokinetics (PK), which does not
encompass broad individual PK variability and unpredictable
outcomes according to the pharmacogenetic profile of the patient
(e.g., cytochrome P450 enzyme) (10, 17, 110, 111).

B Cell Receptor Signaling Inhibitors
Signalingmediated by B cell receptors (BCR) plays a fundamental
role in the expansion of B cell neoplasms. Antigenic stimulation
of the BCR extracellular domain starts a signaling cascade
accountable for several B cell functions and proliferation.
This signal leads to the enrollment of CD79a and CD79b,
leading to activation of the spleen tyrosine kinase (SYK)
and the LYN kinase. SYK and LYN phosphorylated tyrosine-
based immunoreceptor activators activate Bruton tyrosine kinase
(BTK) and inositol phosphatidyl three kinase δ (PI3Kδ) (111–
115). Inhibitors of BTK, PI3Kδ, and the SYK have been designed
to block kinases in this way (17).

BTK Inhibitors
Ibrutinib (PCI-32765) is an irreversible oral inhibitor of BTK
that binds the active site cysteine-481 (Cys481) of the BTK
enzyme. BTK is mainly expressed on—but not limited to—B
cells, and ITK is mainly expressed on T cells (111–113). Though
chemoimmunotherapy is the standard of care for patients eligible
with CLL, its toxicity and risk of infection exclude its use in
frail patients (elderly and those with co-morbidities). Another
restriction to the treatment group consists of patients carrying
17p aberrations of the TP53 gene as poorly endowed with
ordinary chemoimmunotherapy (116, 117). The combination
of ibrutinib with mAbs also led to high response rates, with
ORRs of 95% with rituximab, 71–100% with oratituumab, and
88% with ublituximab (118, 119). However, there was abrogation
of induced lymphocytosis from therapy although it is not yet
clear how meaningfully the combination affects the deepness
and duration of the response (DOR) equated only to ibrutinib
(17). Ibrutinib has been tried in combination with rituximab,
ifosfamide, carboplatin, and etoposide (R-ICE). It is also used, as
well as rituximab, gemcitabine, dexamethasone, and cisplatin (R-
GDP), in the second line rescue therapy for R/R DLBCL patients.
Ibrutinib was evaluated in R/R FCL and R/R MCL in several
clinical trials as monotherapy and combinations.

The second generation BTK inhibitors include acalabrutinib
(ACP-196) and underdevelopment ONO-4059 (GS-4059), BGB-
311, and CC-292. Acalabrutinib is an irreversible BTK inhibitor
with a shorter pharmacokinetics t1/2. It does not inhibit EGFR
and other TK receptors. In a phase I study, 95% of patients with
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R/R CLL carrying the 17p alteration accounted for the median at
a follow-up of 14 months. A common adverse event was diarrhea
and bleeding, but no atrial fibrillation was reported (120). It is
improbable that ACP-196 is effective in patients with ibrutinib
resistance (120). But its use in intolerance to ibrutinib patients
is now under investigation (NCT02717611). Other second-
generation BTK inhibitors have accounted for effectiveness (121–
123). It remains to be understood whether these molecules will
have a noteworthy effect compared to ibrutinib.

BTK-Toxicities
The most common adverse effects were non-hematologic
toxicities, including muscle spasms, nausea, fatigue, diarrhea,
skin rash, and arthralgia. Hematologic toxicities were
less common and included several grades of neutropenia,
thrombocytopenia, and anemia (124).

PI3K Inhibitors
More downstream from BTK is PI3K. Ubiquitous PI3K fits a
highly conserved family of kinases with specific tissue isoforms
α, β,γ, and δ. The isoform δ is present on leukocytes and is,
therefore, a target of interest. The γ isoform has been associated
with the growth and signaling of T cells. The inhibition of p110δ
has been revealed to reduce the downstream signaling of the
BCR, CXC 4 receptor (CXCR4), and 5 (CXCR5) chemokines.
In preclinical studies, it resulted in decreased protein kinase
B (AKT) activation, a molecular target of rapamycin (mTOR)
and other pathways (111). The PI3K inhibitors currently in use
and under investigation in lymphomas are Idelalisib, Copanlisib,
Buparlisib, andUmbralisib. Overall, PI3K inhibitors seem to have
low response rates in patients with R/R DLBCL when used as
monotherapy. It should be studied in combination with other
new agents with carefulness to minimize latent toxicity (125).

Buparlisib is a strong PI3K oral inhibitor that has confirmed
effects in in vitro and in vivo models of hematologic
malignancies (126–128).

Copanlisib is an intravenous class I directed against isoforms
PI3K-γ and PI3Kδ (129). To assess the effectiveness of
copanlisib in DLBCL, patients were treated with 60mg (130).
Copanlisib was evaluated in both indolent and aggressive
lymphomas (130–133).

Idelalisib (CAL-101) is a potent and highly specific inhibitor
of the PI3K δ isoform. It is approved for refractory indolent
lymphoma (134, 135). Idelalisib has shown activity either as a
single agent and/or in combinationwithmAbs in R/RCLL in FCL
and HL (136–142).

Duvalisib is an oral inhibitor of PI3K δ and γ isoforms
showing activity in the small non-randomized study of patients
with multiply relapsed FL. It is approved by the FDA as a single
agent for the treatment of relapsed FL patients who received
at least two previous conventional therapies. In this study, CRs
are quite uncommon although ∼40% of patients achieve a PR.
More recently, a small single-arm multicenter trial (DYNAMO)
of duvelisib in multi-relapsed patients with CLL/SLL, MZL, and
FL reported response rates over 40 percent with an estimated
median duration of response of 9.5 months. CLL/SLL patients
had a better outcome than the other subtypes (143). Fatal

and/or serious toxicities could be seen, including opportunistic
pneumonitis from P. jirovecii pneumonia, diarrhea or colitis, and
cutaneous reactions.

Umbralisib is the latest oral inhibitor of both PI3Kγ and
casein kinase 1ε (CK1ε).

PI3K Inhibitor Toxicities
PI3K inhibitors have a distinctive toxicity profile, including
severe diarrhea/colitis. Grade 3 or higher toxicity has been
reported with an incidence of around 15%. In addition,
opportunistic infections including pneumocystis jirovecii
pneumonia (PJP) and cytomegalovirus (CMV) have been
recognized in patients treated with idelalisib (144–146).

SYK Inhibitors
Other components of BCR signaling are potential targets include
LYN and SYK as described above (20). SYK is an SH2 domain-
containing tyrosine kinase activity. Constitutive activation by
SYK leads the development of NHL. It is noted that DLBCL tissue
overexpresses the components of the BCR signaling pathway,
including SYK. Inhibition of SYK remains a promising goal, but
it should be combined with other drugs to produce lasting and
meaningful responses (147).

Cerdulatinib (PRT062070) is an oral kinase dual inhibitor
of JAK 1/3 and SYK and has been revealed in in vitro
experiments to have a specific inhibitory action in a subgroup
of B-cell lymphoma cell lines (148). Cerdulatinib inhibited B-
cell activation in a murine model of chronic BCR stimulus.
In DLBCL cell lines, cerdulatinib induced apoptosis, blocking
cell-cycle, BCR and JAK/STAT signaling (149). It has been
described as having synergistic action of cerdulatinib and
venetoclax in primary a CLL primary cell line (150). Remarkably,
cerdulatinib showed better inhibition of cell duplication than
ibrutinib in the ibrutinib-resistant CLL cells and BTKC481S-
transfected/ibrutinib-resistant lymphoma cells (147, 151, 152).
This double SYK/JAK inhibitor was also evaluated in patients
with different R/R B Cell malignancies (153, 154).

Entospletinib (GS-9973) is an oral drug that selectively
inhibits SYK (155). This 2nd generation molecule showed
increased in vitro and in vivo selectivity for JAK-2, c-KIT, FMS-
like tyrosine kinase 3 (FLT 3), VEGFR2, and RET compared
to fostamatinib (155). In a multicenter study on subjects with
R/R CLL and NHL, entelospletinib showed a promising toxicity
profile (147). Moreover, in the latest phase II study entospletinib
was shown to have low clinical activity in 39 patients with R/R
MCL (147, 156).

Fostamatinib is an oral Syk inhibitor leading to a reduction
in cell survival (157). In this light, good preliminary results
were obtained from a double-blind, randomized study
enrolling patients with R/R DLBCL who were not suitable
for HSCT (158–160).

TAK659 is a promising selective, reversible SYK and FLT3
inhibitor demonstrated in both in vitro and in vivo models
(161). Inhibition of SYK remains a promising goal, but it should
probably be joined with other antineoplastic drugs to harvest
lasting and significant responses (111).
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SYK Inhibitors Toxicities
The most frequent toxicities observed with SYK
Inhibitors are diarrhea, nausea, hypertension and fatigue.
Hematological common adverse events are neutropenia and
thrombocytopenia (147).

Proteasome Inhibitors (PIs)
The ubiquitin-proteasome pathway is a multifaceted complex
responsible for the regulation of proteins involved in neoplastic
activity, such as cyclin-dependent kinases (CDK), BCL-2, and
NFκB complex (162, 163). The role of the proteasome is
upregulation of these key pathways, making it a promising
antineoplastic target (10, 164–168). Finding that PIs lead to cell
cycle inhibition and apoptosis in tumor cells has pushed them
to be developed as antineoplastic agents. The studies revealed
a complex system of ubiquitin ligases and related proteins that
orchestrate the delicate balance of longevity of proteins within
cancer cells. It is thought that the constellation of proteins
whose degradation is inhibited by PI interrupts intracellular
processes crucial for the survival of tumor cells. Some examples
are (1) cell cycle interruption by inhibiting the degradation of
CDK such as p21 and p27; (2) inhibition of the nuclear signal
transduction pathway of the κB factor (which typically inhibits
apoptosis) through the accumulation of the I-κB inhibitory
protein; and (3) promoting apoptosis prolonging the function
of the pro-apoptotic members of the Bcl-2 proteins, such as
Noxa (10, 164–168).

Bortezomib was the first of this class of drugs to undergo
clinical development. The first phase 1 study of hematological
malignancies showed signs of activity in multiple myeloma
(MM), FCL, MCL, and MALT lymphoma (169, 170). It is FDA
approved for use in naive and R/R multiple myeloma (MM).

Bortezomib’s success has triggered the evolution of 2nd
generation PIs, looking to improve on the activity but to
minimize the toxicities (primarily peripheral neuropathy) not
only for MM but also as therapeutic alternatives in other
diseases, including lymphomas and systemic amyloidosis. The
development of carfilzomib has shown noteworthy advancement
to being effective and less neurotoxic for patients with
relapsed or R/R MM who failed ≥1 preceding line of therapy.
Unlike carfilzomib, bortezomib has demonstrated irreversible
inhibitory kinetics.

Ixazomib is a second-generation inhibitor of the 20S
proteasome that is supplied in both IV and oral drug
formulations. Ixazomib has shown efficacy in preclinical
lymphoma models (171, 172). This PI has a modest single-agent
activity, although so far combination with other drugs has not
been shown to increase overall results (111, 173).

Proteasome Inhibitors Toxicities
Proteasome Inhibitors showed a significant toxicity
profile: serious neurotoxic side effects, cardiovascular and
gastrointestinal toxicities, peripheral neuropathy and cytopenias

(174–176). Other symptoms include herpetic zoster reactivation

lymphopenia, thrombocytopenia, and persistent fatigue. In
addition, although rare a minor proportion of subjects showing

cardiac failure was recorded with the 1st generation of PIs (177).

Mammalian Target of Rapamycin-mTOR
Inhibitors (mTOR)
mTOR is a keyway in the regulation of trans-membrane
trafficking, protein degradation, ribosome biogenesis, protein
kinase C signaling, and DNA transcription (178, 179). Thus,
triggering of the PI3K/AKT pathway and mTOR signaling
is essential in lymphomagenesis. Inhibition of this pathway
revealed the blocking of cell duplication (180–182).

Everolimus is an oral mTOR inhibitor (183). The primary
studies examined this agent in R/RDLBCL, and afterward for R/R
CLL/SLL and R/R HL (184–190).

Temsirolimus is an FDA-approved IV mTOR inhibitor in
metastatic renal cell carcinoma (191). The EMA in Europe
approved Temsirolimus for MCL, too (192), and temsirolimus
was also added to the list of rescue regimens for R/R NHL
patients (193, 194).

mTOR Inhibitor Toxicities
mTOR inhibitors are attractive agents since they are well-
tolerated as single agents and in combination with other drugs.
They have also demonstrated synergism with PIs, leading to
the study of combination therapy (10). The side effects include
a variety of metabolic, hematological, respiratory, renal, and
dermatological toxicities. The tolerability scale of mTORIs, even
at the same dosage and for the same application, ranges from
excellent to debilitating (e.g., buccal aphthous), can sometimes
be fatal (pneumonitis) and may occur at different time points
(from days to years) after the initiation of rapalog therapy.
Surprisingly, the rate of some side effects, such as pneumonitis
or mucocutaneous effects, seems to increase with the dosage of
the drug, whereas mTOR is inhibited at the nanomolar range
by rapalogs. Alternatively, the majority of these side effects are
idiosyncratic and unpredictable (195–197).

BCL2 Inhibitor
Several neoplasms seem to be mainly dependent on a specific
balance of Bcl-2 family expression for their survival, and
Bcl-2 overexpression can lead to both de novo and acquired
chemoresistance (10). The overexpression of the anti-apoptotic
BCL-2 protein is frequent in several NHL subtypes, including
30% of the DLBCL (198–201). Inhibition of BCL-2 has become
an important treatment strategy because of increasing apoptosis.
BCL2 inhibitors were applied primarily for the treatment of CLL
patients (111, 202, 203).

Venetoclax is an oral formulation. In preclinical study, it has
been shown to have powerful selective “BH3-mimetic” activity
independent of BCR signaling (apoptosis free of p53) (204–
207). In xenotransplantation models, venetoclax has shown
greater efficacy when combined with chemoimmunotherapy.
Despite the recurrent overexpression of BCL2, monocomponent
venetoclax did not have an equally robust response as expected
in the DLBCL, while it seems to be well-tolerated (206,
208). Forthcoming studies focus on multiple combinations of
venetoclax to increase responses. The European Commission of
Medicines (EMA) has approved the combination of venetoclax
plus rituximab (V + R) for the treatment of R/R CLL patients
previously treated by other therapies (209–211). EMA approval
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is established on the published results of the Phase 3 MURANO
randomized trial (210, 212, 213). This trial compared the
BCL2 inhibitor venetoclax administered up to a maximum
of 2 years, associated in the first 6 months of R treatment,
with the classic chemo-immunotherapy regimen bendamustine
and rituximab (BR) administered for six cycles every 4
months (210, 213).

BCL2 Inhibitor Toxicities
Nausea, diarrhea, anemia, lymphopenia, neutropenia, and
thrombocytopenia are the most frequent AEs, with a minor—
although enough to grab attention—incidence of tumor-lysis
syndrome (214–216).

HDAC Inhibitors (HDIs)
Histone deacetylases (HDAC) are enzymes designed against
both the histone and non-histone proteins. To date, 18 HDAC
enzymes were identified based on their homology with yeast
deacetylases. Human HDACs were categorized into four classes:
class I includes HDAC 1, 2, 3, and 8, which are located
in the nucleus. Class II comprises HDAC 4, 5, 6, 7, 9,
and 10, which have a mutable cellular location; class III
contains the NAD-dependent yeast homologs, SIRT 1-7, which
are not targeted by the currently available HDAC inhibitors
(HDACI). Finally, class IV includes HDAC 11 (217, 218). HDIs
have been shown to activate cell cycle checkpoints, promote
apoptosis, induce cell differentiation, suppress angiogenesis,
and improve immune surveillance. HDAC inhibitors (HDI)
include a class of synthetic or natural chemical compounds
that inhibit the enzymatic activity of HDAC. Several HDIs have
been studied in lymphomas, demonstrating only modest clinical
benefit, and other HDIs are currently studied in preclinical
studies (218, 219).

CUDC-907 is a class I-II oral double-inhibitor of HDAC and
PI3K (α, β, γ) enzymes (111, 220, 220–222).

Mocetinostat is an oral HDI that inhibits class I and
IV, specifically HDAC isoforms 1, 2, 3, and 11 (223, 224).
Mocetinostat was evaluated in a phase II study in R/R DLBCL
patients (18, 111, 223–225).

Panobinostat is a potent pan-HDAC inhibitor with low
dosage achievement against class I, II, and IV HDAC and is FDA
approved for DLBCL (225).

Vorinostat is one of the first HDAC inhibitors with
activity against HDAC class I and II. It has synergistic
antineoplastic action when combined with topoisomerase II
inhibitors (111, 226–228).

HDAC-toxicities
Even though the HDAC family contains several chemical
compounds with selectivity for different HDAC isoforms,
they unexpectedly have analogous toxicity profiles. Generally,
common non-hematologic AEs are diarrhea, nausea, vomiting,
fatigue, anorexia, weight loss, and asthenia. Most common
hematologic AEs are thrombocytopenia, anemia, and
neutropenia (229).

NOVEL AGENTS IN MATURE B-CELL
LYMPHOMA SUBTYPES WITH
INDOLENT BEHAVIOR

Patients suffering mature B-cell lymphoma with histological
subtypes associated with an indolent behavior such as CLL/SLL,
FL, MZL, LPL, and a fraction of those with MCL are generally
highly responsive to chemotherapy regimens conventionally
based on purine analogs, alkylators with or without the inclusion
of anthracyclines. However, they remain still incurable and
suffer subsequent relapses and a high risk of histological
transformation toward a “large cell” histology. Targeted agents
have redefined treatment paradigms in this setting of recurrent
patients (Table 2). Most patients with FL experience serial
relapse and will be treated with many available agents at
some point during their disease course. A preferred order
for their use has not been established. Novel agents such as
idelalisib, copanlinib, or duvelisib and radioimmunotherapy may
be used for multiply relapsed indolent B cell lymphomas. The
efficacy and safety of novel agents may quietly differ among
different subtypes. As an example, Ibrutinib, which achieves
high response rates in MCL, accounts for only 21 and 38
percent ORRs in patients with R/R FL, respectively. Results
in the setting of recurrent patients have prompted some of
these agents, targeting either cell surface antigens, intracellular
pathways or the microenvironment, as a possible front-line
option (Table 4).

NOVEL AGENTS IN MATURE B-CELL
LYMPHOMA SUBTYPES WITH
AGGRESSIVE AND VERY
AGGRESSIVE BEHAVIOR

Due to the high failure rate produced by excessive toxicity and
low response rates to conventional chemotherapies (or both),
subtypes with aggressive behavior such as DLBCL, the majority
of MCL, transformed FCL and Burkitt lymphoma still represent
a burning problem and an unmet need in the setting of mature-B
cell lymphoma.

The myriad of novel agents under development,
targeting the new pathways fundamental to aggressive B
cell growth is expected to offer added clinical benefit to
patients with aggressive B cell NHL. Furthermore, these
novel agents characterize sustained advancement in the
planning for individualized therapies, as single modality
treatment, or combined with chemotherapy or other targeted
agents (Table 3).

The anti-PD-1 and anti-PD-L1 treatment approaches, coupled
with other agents have produced somewhat disappointing results
for recurrent DLBCL (74). Currently, inhibition of PD-1/PD-L1
is used in the clinical trial in combination CAR T cell therapy
(NCT02926833 and NCT02706405) or recurrence after CAR-T
cell therapy (NCT02650999).

CAR T therapies that target CD19 on B cell malignancies were
effective against multiply relapsed DLBCL in initial trials and
have confirmed their effectiveness at longer-term follow-up.
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TABLE 2 | Overview of the efficacy of select novel therapies in Mature B-Cell neoplasms: indolent histology.

Authors Drug Target Phase Setting N◦ of pts ORR%

(CR %)

PFS%

(y)

PFS median

(mo.s)

*AEs

CLL/SLL Byrd et al. (121) Acalabrutinib BTK I R/R with 17p alteration 61 95% NR 14.3 Dyarrhea

CLL/SLL Byrd et al. (121) Ublintuximab CD20 II Naïve. Two arms of 1 g/day and 2 g/day 80 67% NR 20.3 12%

neutropenia in

2 g/day arm

CLL/SLL Nastoupil et al.

(230)

Ublintuximab CD20 I Dose escalation. Post-Rituximab. In

combination with umbralisib, and

ibrutinib

46 84% NR NR 24%

CLL/SLL/ Ding et al. (83) Pembrolizumab PD-1 II R/R carrying 17p alteration and IGHV

unmutated

16 44% NR NR ND

CLL/SLL Gopal et al. (139) Idelalisib PI3K II R/R. In combination to Brivatinib 125 57%

(6%)

12% (2 y) 11 ND

CLL/SLL Liu et al. (147) Entospletinib Syk II R/R. dosing 1,6 g/daily 41 61% NR 13.8 ND

CLL/SLL Seymour et al.

(210)

Venetoclax BCL2 II R/R. 17p deletion In combination to

Rituximab

49 86% 82% (2 y) NR 67%

CLL/SLL Jaglosky et al.

(119)

Ibrutinib BTK 1b/II R/R with 17p deletion. Dosing

420mg/day. In combination to

Ofatumumab

71 83%

(1.5%)

83% (1 y) NR 11% led

discontinuation

CLL/SLL Rosenthal et al.

(18)

Ibrutinib BTK III R/R. In combination to Bendamustine

and Rituximab

ND 93%

40%

96% (1 y) NR ND

FL Younes et al. (231) Nivolumab PD1 I R/R in combination to ibrutinib 40 36% NR 5 13% anemia

FL Ganjo et al. (232) Ocaratuzumab CD20 FcγRIIIa I/II R/R with low affinity genotype FcγRIIIa 50 30% NR 9.2 ND

FL Czuczuman et al.

(233)

Ofatumumab CD20 I/II R/R. Dosing 500 mg/day 27 22% NR 5.8 Neutropenia

FL Westin et al. (234) Pidilizumab PD1 II. R/R. Dosing 3 mg/kg IV every 4 weeks.

In combination to Rituximab

32 52% NR 15.4 No AEs grade

>2

FL Westin et al. (234) Pidilizumab PD-1 II R/R combined with Rituximab 29 66% NR 18.8 No AEs grade

>2

FL Gopal et al. (141) Idelalisib PI3Kd II R/R. Dosing 150mg twice daily 125 57%

(50%)

NR 11 Neutropenia

27%

FL Bartlett et al. (235) Ibrutinib BTK I Naïve in combination with Rituximab.

Dosing 560mg/day

31 37.5%

12.5%

80.4% (2y) 14 Neutropenia

10%

FL Davids et al. (236) Venetoclax BCL2 I R/R to Bendamustine Rituximab.

Dosing 1.2 g/day

29 38% NR 11 Neutropenia

11%

MZL Noy et al. (237) Ibrutinib BTK II R/R. dosage 560 mg/day 63 48% NR 14.2 pneumonia

8%

B-NHLnos Goebler et al. (109) Blinatumumab CD3/CD19 I R/R maximum dose tolerated 35 69% NR 13,5 ND

B-NHLnos Ansell et al. (238) Ipilimumab CTLA-4 I R/R. 3 mg/kg/mo.s ×4mo.s 18 11% NR 16 ND

iNHL Cheson et al. (45) Obintuzumab CD20 III Randomly comparing to bendamustine

in R/R to rituximab

396 NR NR 22.5 ND

*Grade ≥3 non hematological AEs, only.

ASCT, Autologous Stem Cell Transplantation; B-NHL, B-NHL not otherwise specified; CLL/SLL, Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia; DLBCL, Diffuse Large B cell Lymphoma; FL, Follicular Lymphoma; HG-BCL,

High Grade B-cell lymphoma; IGHV, Immunoglobulin G Heavy Variable chain; iNHL, indolent NHL; IV, intravenous; LBCL Large B-cell lymphoma; MCL, Mantle Cell Lymphoma; mo.s, months; MZL, Marginal Zone Lymphoma;; ND, Not

Documented NR, Not Reached; pts, patients; R/R, Refractory/relapsed; y, years.
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TABLE 3 | Novel agents currently under investigation in Mature B-Cell neoplasms: aggressive and very aggressive histology.

Subtype Author Drug Class/target Phase Setting N◦ of pts ORR% PFS %

(y)

PFS (mo.s) *AEs

DLBCL Ansell et al. (63) Nivolumab Anti-PD1 II R/R Failed to ASCT (87 pts). Ineligible

to ASCT (34 pts)

121
10% failed

3% ineligible

NR Failed 12.2

Ineligible 5.8

24%

DLBCL Armand et al. (239) Pidilizumab Anti-PD1 II R/R ASCT 66 51% NR 16 ND

DLBCL Locke et al. (88) axicabtagene

ciloleucel

CD19 I/II R/R. 1.0 × 106 CAR T cells/Kg 101 83%

(58%)

NR 5.9 11%

DLBCL Shuster et al. (89) tisagenlecleucel CD19 II R/R. 1.0 × 107-6.0 × 108 CAR T cells 93 52% 40% 35% (1 y) NR ND

DLBCL Viardot et al. (110) Blinatumumab CD3-CD19 II escalation dose 9-28-112 ug/day 17 43% NR NR 17%

Neurologic

DLBCL Wang et al. (240) Ibrutinib BTK II R/R 54 28% NR 3 ND

DLBCL Younes et al. (241) Buparlisib PIK3 II R/R 26 11.5% NR 1.8 Hyperglicemia

11%

DLBCL Flinn et al. (158) Fostamatinib Syk I/II Ineligible for ASCT. Dosing 200 mg/day 47 21% (4%) NR 5.3 ND

DLBCL

B-NHL

Rhodes et al. (112) TAK659 Syk/FLT3 II R/R 77 27% NR NR ND

DLBCL Witzens-Harig et

al. (194)

Temsirolimus mTOR II In combination with rituximab. Dosing

24, 50, 75, or 100mg

32 28% (12.5%) NR 2.6 ND

DLBCL Rhodes et al. (112) Vorinostat HDAC I/II In combination to R-CVEP 16 57% NR 9.2 ND

DLBCL FL Batlevi et al. (225) Mocetinostat HDAC II R/R 72 18.9% NR 2.1 ND

DLBCL Oki et al. (242) CUDC-907 HDAC/PIK3 II R/R (14 of them with Myc altered). with

or without Rituximab

37 37% 64% in

Myc altered

NR
11.2

13.6 in

Myc altered

Neutropenia

HG-BCL Dryling et al. (131) Copanlisib PI3K-γ and

PI3Kδ

II CD79b mutations 43 25% NR 2m ND

MCL Wang et al. (243) Lenalidomide PIs II R/R to Ibrutinib 58 29% NR 5 No AEs grade

>2

MCL Younes et al. (241) Buparlisib PIK3 II R/R 22 22.7% NR 11.3 ND

MCL Jerkeman et al.

(244)

Ibrutinib BTK II R/R in combination to Rituximab and

Lenalidomide

50 76% NR 17.8 Neutropenia

38%,

Infection 22%

*Grade ≥3 non-hematological AEs, only.

ASCT, Autologous Stem Cell Transplantation; B-NHL, B-NHL not otherwise specified; CLL/SLL, Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia; DLBCL, Diffuse Large B cell Lymphoma; FL, Follicular Lymphoma; HG-BCL,

High Grade B-cell lymphoma; IGHV, Immunoglobulin G Heavy Variable chain; iNHL, indolent NHL; IV, intravenous; LBCL Large B-cell lymphoma; MCL, Mantle Cell Lymphoma; mo.s, months; MZL, Marginal Zone Lymphoma;; ND, Not

Documented NR, Not Reached; pts, patients; R-CVEP, rituximab, cyclophosphamide, vorinostat, etoposide, and prednisone; R/R, Refractory/relapsed; y, years.
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TABLE 4 | Ongoing trials of immunotherapeutic agents in mature B cell neoplasms.

Drug Target Histologic

subtype

Study phase Schedule Setting (planned enrollment) Current

trials

ANTI-CD mAbs

Camidanlumab Tesirine CD25 B-NHL I Single Agent, Adaptive Dose-Escalation

Study

R/R (140 pts). NCT02432235

Epratuzumab CD22 HG-BCL I/II Randomized: 90Y-Epratuzumab wk 2 3

(days 8 & 15)

R/R (70 pts). Random Veltuzumab vs

Epratuzumab

NCT01101581

Obinutuzumab CD20 B-NHL II Randomized: Single Agent vs. O-ICE R/R (25 pts) NCT02393157

Ofatumumab CD20 CLL/SLL I Dose finding R/R (60 pts) In combination to

rituximab. In addition to

bendamustine

NCT02361346

Polatuzumab Vedotin CD79b DLBCL FL Ib/II Randomized: Pola+Rituximab vs.

pola+Rituximab+Bendamustine

R/R. (314 pts) In combination to

rituximab. In addition to

bendamustine

NCT02257567

Ublituximab CD20 B-NHL I/II 450mg followed by 600mg, 900 or

1,200mg in each cohort

R/R CD20 Directed Antibody Therapy NCT01647971

IMMUNE CHECKPOINT INHIBITORS

Atezolizumab PD-L1 DLCBL II 18 cycles followed by 12 mos of

observation

R/R (114 pts) IPI-score ≥ 3 in patients

to R/R R-CHOP

NCT03463057

Durvalumab PD-L1 CLL/SLL I/II 1,500mg (IV) infusion on Day 1 of Cycles 1

through 13

R/R. (106 pts) In combination to

Bendamustine, Lenalidomide and

Rituximab in 4 arms

NCT02733042

Ipilimumab CTLA-4 DLBCL Ib/II Ipilimumab mg/kg nivolumab 3 mg/kg R/R (13 pts) whom are ineligible for

ASCT.

NCT03305445

Nivolumab PD-1 FL I 240mg IV q2-weekly for four cycle Naive (39 pts). NCT03245021

Pembrolizumab PD-1 DLBCL I/II 200mg IV infusion (day 1), oral CXD101

20mg twice daily.

R/R (45 pts). In combination to

CXD101 HDAC inhibitor

NCT03873025

Pidilizumab PD-1 iNHL I/II Dose safety R/R (109 pts). In combination with

ibrutinib. Three arms

NCT02401048

(CAR) T-CELL THERAPY

lisocabtagene maraleucel CAR-T HG-BCL II Single dose intravenous R/R (50 pts). NCT03744676

Axicabtagene ciloleucel CAR T-4-1BB DLBCL II Single infusion of CAR-T post Fludarabina

and cyclophosphamide.

High risk (40 pts). NCT03761056

Axicabtagene ciloleucel CAR T-4-1BB DLBCL II single infusion of CAR-T R/R (350 pts). Randomized vs.

standard protocols (i.e., R-ICE)

NCT03391466

BISPECIFIC ANTIBODIES

Blinatumomab CD19/CD3 iNHL II Dose escalation 9–28 µg/day R/R (28 pts). Single agent NCT02811679

Mosunetuzumab

(BTCT4465A)

CD20/CD3 iNHL and CLL/SLL I/Ib atezolizumab 1200mg IV infusion in

combination with Mosunetuzumab.

R/R (665 pts) in combination to

Atezolumab

NCT02500407

ASCT, Autologous Stem Cell Transplantation; B-NHL, B-NHL not otherwise specified; CLL/SLL, Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia; DLBCL, Diffuse Large B cell Lymphoma; FL, Follicular Lymphoma; HG-BCL,

High Grade B-cell lymphoma; IGHV, Immunoglobulin G Heavy Variable chain; iNHL, indolent NHL; IV, intravenous; LBCL Large B-cell lymphoma; MCL, Mantle Cell Lymphoma; mo.s, months; MZL, Marginal Zone Lymphoma; ND, Not

Documented NR, Not Reached; pts, patients; R- ICE, rituximab, cyclophosphamide, etoposide; R/R, Refractory/relapsed; y, years.
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TABLE 5 | Ongoing trials of signal transduction pathway inhibitors in mature B cell neoplasms.

Drug Target Histologic

subtype

Study phase Schedule Setting (planned enrollment) Current

trials

BCR INHIBITORS

Acalabrutinib BTK HG-BCL I IV infusion days 1, 3, 5 R/R (42 pts) NCT03527147

Ibrutinib BTK MCL III 1 tablet/day Randomized in combination to Venetoclax

(287 pts)

NCT03112174

Ibrutinib BTK DLBCL Ib Dose Finding 1 tablet/day until disease

progression

R/R (30 pts) in combination to Rituximab and

Venetoclax

NCT03136497

LOXO-305 BTK C481

mutation

CLL/SLL I/II 25 mg/day R/R with C481 mutation in BTK gene. NCT03740529

Copanlisib PI3K B-NHLnos Ib/II Days 1, 8, and 15 of a 28-day

cycle

R/R (25 pts) NCT02342665

Duvelisib PI3Kδ + γ CLL/SLL I/II Orally twice daily R/R (47 pts) in combination with Venetoclax NCT03534323

Idelalisib PI3K δ CLL/SLL iNHL II 1 tablet/day (cycle 21 day) R/R (68 pts). Combination to Pembrolizumab NCT02332980

Cerdulatinib

(PRT062070)

SYKJAK 1-2 FL, DLBCL I/IIa Dose finding R/R (283 pts) NCT01994382

TAK659 SYK/FLT3 FL, MZL I 60–80 mg/day R/R (47 pts). Single agent NCT03238651

PROTEASOME INHIBITORS

Bortezomib PIs B-NHLnos I/II MTD R/R (56 pts). Combination to Gemcitabime

and Rituximab

NCT00863369

Ixazomib 20S subunit iNHL II once weekly × 4 wk naïve iNHL (36 pts). In addition to Rituximab

sd

NCT02339922

mTor- INHIBITORS

Temsirolimus mTor Lymphoblastic

Lymphoma

I Day 1-8 IV R/R (30 pts). in combination to Etoposide

and Cyclophosphamide

NCT01614197

BCL2 INHIBITOR

Venetoclax BH3 domain DLBCL Ib 1 tablet/day (cycle 28 day) R/R (30 pts). In combination with Rituximab

with 17p deletion

NCT03136497

HDAC INHIBITORS

CUDC-907 Class I and II+

PI3K

DLBCL II ND R/R (200 pts) with Myc alteration NCT02674750

Mocetinostat

(MGCD0103)

Class I and IV DLBCL II 70 mg/3 times per week on a 28

day

R/R (7 pts) with mutations of

Acetyltransferase Genes

NCT02282358

Panobinostat Class I, II and IV DLBCL II 30 mg/day R/R (42 pts). Randomized with or without

Rituximab

NCT01238692

Tazemetostat EZH2 DLBCL FL I/II Dose escalation Single agent (420 pts) NCT01897571

Vorinostat Class I and II DLBCL, FL I Days 1–5 and 8–12. Cycle 21

days

R/R (60 pts). In combination to

Pembrolizumab

NCT03150329

ASCT, Autologous Stem Cell Transplantation; B-NHL, B-NHL not otherwise specified; CLL/SLL, Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia; DLBCL, Diffuse Large B cell Lymphoma; FL, Follicular Lymphoma; HG-BCL,

High Grade B-cell lymphoma; IGHV, Immunoglobulin G Heavy Variable chain; iNHL, indolent NHL; IV, intravenous; LBCL Large B-cell lymphoma; MCL, Mantle Cell Lymphoma; mo.s, months; MZL, Marginal Zone Lymphoma; ND, Not

Documented NR, Not Reached; pts, patients; R-CVEP, rituximab, cyclophosphamide, vorinostat, etoposide, and prednisone; R/R, Refractory/relapsed; y, years; MTD, maximum tolerated dose; wk, week; sd, standard dosage.

F
ro
n
tie
rs

in
O
n
c
o
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
5

Ju
n
e
2
0
1
9
|V

o
lu
m
e
9
|
A
rtic

le
4
4
3

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Crisci et al. Emerging Agents for Lymphoma B

CONCLUSION AND FUTURE OUTLOOK

The development of drugs in lymphomas has undergone
substantial changes in the last decade. An endeavor is ongoing
to change conventional chemotherapy, with more targeted
molecules directed against cell complexes and pathways that
are explicitly related to lymphomagenesis. An overview of the
ongoing trials is finally provided (Table 4). While mAbs have
been the first trend of targeted therapies, there is now a
new generation of biological agents, and more of them with
an oral formulation, that takes full advantage of a superior
understanding of lymphomagenesis. In addition, they have
achieved outstanding results especially in subtypes with indolent
behavior. Immune therapy with CIs and other models such as
CAR-T cells and bispecific antibodies have shown promising
results in mature B-cell lymphomas with aggressive behavior
where other targeted agents have unfortunately demonstrated
only modest improvements. Combined targeted therapy and
chemotherapy will be a promising therapeutic strategy and
is currently being exploited in ongoing trials (Tables 4, 5).

However, early identification and appropriate management of

toxicities should represent a significant issue since important
adverse events have been reported, due to both on- and off-
target effects, which have already been demonstrated to be
unpredictable, leading to the early closure of some studies.
Most notably, the occurrence of unforeseen immune events has
highlighted the pitfalls of novel drugs emblematically, either as
a single agent and/or in combination. Immune/inflammatory
toxicities have been reported with checkpoint immunotherapy
and combinations of PI3K/SYK inhibitors while hematologic
toxicities are pronounced with the BCL-2 inhibitors and
standard chemotherapy (245).

With the current knowledge of target therapies, each patient’s
cancer biology may be driven to the best cancer treatment.
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