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While semaphorins were initially identified as axonal guidance cues for wiring the

neural network, it was then recognized their wide relevance in tissue development

and homeostasis. Notably, semaphorin activities were also extensively studied in many

types of solid tumors; however, their relevance in hematological malignancies is far from

understood. In this mini-review, we surveyed the current knowledge about semaphorins

and their receptors in leukemias, lymphomas, andmultiple myeloma. Noteworthy, current

data support a promoting role for Semaphorin 4D and Neuropilin-1 in these tumors,

while Semaphorin 3A seems to consistently act as oncosuppressor in leukemias and

multiple myeloma. The expression levels and functional activities of SEMA3B, SEMA3F,

and Neuropilin-2 have furthermore been investigated in leukemias and lymphoma cells.

Herein, we reviewed the state of the art and highlighted some of the open questions to

be addressed in the field.
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INTRODUCTION

The first Semaphorin was identified as repelling molecule for axonal guidance in the developing
nervous system (1). Thereafter, the functional diversity of semaphorin family members beyond the
wiring of neuronal network has beenwidely explored, ranging from the regulation of cardiovascular
development and angiogenesis, to bone homeostasis and immune response (2, 3). Furthermore,
while semaphorin activities have been extensively studied in many types of solid tumors (4, 5),
their relevance in hematological malignancies is far from understood. The semaphorin family
includes both secreted and transmembrane proteins, which can signal in autocrine/paracrine
manner or upon cell-cell contact, respectively. Notably, semaphorin receptors (especially found in
Neuropilin and Plexin families) can form a range of diverse complexes with distinctive signaling
cascades, and interact with other growth factor receptors, making semaphorin activities highly
cell-context dependent (6). Moreover, transmembrane semaphorins can mediate bidirectional
signals, acting both as ligands and as receptors (7). In this mini-review, we summarized the current
knowledge about semaphorins and their receptors in hematological malignancies, including
leukemia, lymphoma and multiple myeloma, and highlighted the main research trends and open
questions to be addressed in the field.
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SEMAPHORINS IN LEUKEMIAS

Leukemias are a group of life threatening malignant disorders
of the blood and bone marrow (BM), presenting with increased
numbers of leucocytes and BM precursors. The dominantly
presenting leukemia cells may be mature such as in chronic
lymphocytic leukemia (CLL), or precursor cells of various lineage
such as in the acute leukemias, or both precursor and mature
cells as in chronic myeloid leukemia (CML) (8). The first
report about semaphorins and their receptors in leukemias
concerns transmembrane Semaphorin 4D (SEMA4D/CD100)
and dates back in 2003 (9) (Table 1). SEMA4D/CD100 was
found to be expressed in B-cell chronic lymphocytic leukemia
(CLL) cells and in normal CD5+ B lymphocytes, and its high-
affinity receptor Plexin-B1 was found in BM stromal cells,
follicular dendritic cells, and activated T lymphocytes. This
expression pattern led to explore a potential interaction in
trans between CD100+ lymphocytes/CLL cells and neighboring
Plexin-B1+ cells in the microenvironment. It was discovered
that this interaction enhanced the proliferation and extended
the life span of both leukemic and normal CD5+ B cells (9).
Consistent with these findings, a subsequent independent study

TABLE 1 | Summary of the expression profile of semaphorins and receptors in

hematological malignancies.

Semaphorins,

receptors

Target cells

SEMA3A ↓acute lymphoid and myeloid leukemia (ALL/AML)

cells (18)

↓chronic myelogenous leukemia (CML) cells (18)

↓the serum of ALL and AML patients (19)

↓bone marrow endothelial cells isolated from

patients with multiple myeloma (40)

↓the serum level of multiple myeloma patients (19)

SEMA3B ↑the circulating blood of AML patients (33)

Neuropilin-1 (NRP1) ↑bone marrow biopsies of AML patients (25)

↑CLL cells (26)

SEMA3F and its receptor,

Neuropilin-2 (NRP2)

↑human T-cell acute lymphoblastic

leukemia/lymphoma primary cells (35)

SEMA4D/CD100 ↑ B-cell chronic lymphocytic leukemia (CLL) cells (9)

↑ normal CD5+ B lymphocytes (9)

↑T-cell non-Hodgkin’s lymphoma (NHL) (37)

↓B-cell lymphomas (small lymphocytic

lymphoma-SLL, follicular lymphomas, marginal zone

lymphoma, mantle cell lymphoma, and diffuse large

B-cell lymphoma) (37)

↑bone marrow and the serum of multiple myeloma

patients (40)

High-affinity

Sema4D-Receptor,

PLEXIN-B1

↑bone marrow stromal cells (9)

↑follicular dendritic cells (9)

↑activated T lymphocytes (9)

↑bone marrow and the serum of multiple myeloma

patients (40)

Low affinity

Sema4D-Receptor, CD72

↑acute myelogenous leukemias (AMLs) cell line

(Kasumi-1) (11)

↑, increased levels or prominent basal expression; ↓, decreased expression (compared

to normal).

demonstrated that an upstream CD31-CD38 signaling axis in
trans between stromal and leukemic cells of CLL patients actually
led to SEMA4D/CD100 up-regulation, promoting leukemia cell
viability through Plexin-B1 found in stromal cells, as well as
a concomitant decrease in the expression of CD72 negative
regulator of immunity (10). In both studies, however, it remained
undetermined the identity of pro-survival factors produced
by stromal cells in response to SEMA4D/Plexin-B1 signaling.
Another study assessed the growth-suppressing activity of CD72,
the low affinity receptor of SEMA4D, in acute myelogenous
leukemia (AML) cells (11). In fact, CD72 ligation by an agonistic
antibody, or by its natural ligand SEMA4D/CD100, suppressed
the proliferation of the AML Kasumi-1 cells and induced
apoptotic cell death. The implicated molecular mechanism
depends on CD72 phosphorylation and SHP-1 recruitment,
leading to de-phosphorylation of Src family kinases and JNK (11).
Thus, multiple data support a pro-tumorigenic role of SEMA4D
in leukemias, consistent with the current knowledge about this
semaphorin in solid tumors (12).

Notably, SEMA4D-targeting agents for prospective
application in clinical trials have been developed (13).
VX15/2503 is a humanized IgG4 monoclonal antibody that
binds specifically to SEMA4D and blocks the binding of
SEMA4D to its receptors, plexinB1, plexinB2, and CD72
(14, 15). A total of 42 patients with advanced refractory solid
tumors were enrolled, weekly i.v. doses were administered on
a 28-day cycle, and safety, immunogenicity, pharmacokinetics
(PK), efficacy, cSEMA4D expression and saturation, soluble
SEMA4D (sSEMA4D) serum levels, and serum biomarker
levels were evaluated (15). Patients experienced well tolerances
for VX15/2503, one patient (20 mg/kg) experienced a partial
response, 45.2% (19/42) of patients exhibited stable disease
for 8 weeks, and 19% (8/42) of patients exhibited stable
disease for 16 weeks (15). Recent studies in mouse models
also demonstrated that targeting SEMA4D improved response
to immune checkpoint blockade via attenuation of myeloid-
derived suppressor cells (MDSC) recruited in the tumor
microenvironment (16, 17).

The expression of the secreted semaphorin SEMA3A was
reported to be lower in acute lymphoid and myeloid leukemia
(ALL/AML) and chronic myelogenous leukemia (CML) cells,
compared to hematopoietic cells found in the normal BM
(18). In a recent study, it was also reported that SEMA3A
levels in the serum of ALL and AML patients are significantly
reduced compared to healthy individuals (19). Consistent
with a putative suppressor role of this semaphorin, it was
interestingly shown that SEMA3A (via receptor complexes
including Neuropilin-1/NRP1 and Plexin-A1) can promote Fas
translocation into membrane rafts, thus sensitizing leukemic
cells to Fas-mediated apoptosis (20). In an independent study,
SEMA3A was also found to induce apoptosis in leukemia
cells, via NRP1 co-receptor (14). It was furthermore shown
that SEMA3A may partially reverse VEGF-induced proliferation
of acute myeloid leukemia (AML) cells, and the combined
administration of VEGF inhibitors and recombinant SEMA3A
was suggested as potential treatment for AML patients (21).
Notably, the potential application of recombinant SEMA3A
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(or derived molecules) in cancer therapy has been studied in
multiple pre-clinical models of solid tumors, mainly focusing
on its ability to inhibit endothelial cells sustaining aberrant
angiogenesis (22–24).

Interestingly, the levels of the semaphorin receptor
Neuropilin-1 (NRP-1) in BM biopsies of patients with newly
diagnosed, untreated, AML were significantly increased
compared those found in normal controls; and in fact higher
level of NRP-1 were associated with poor overall survival (25).
NRP1 was found to be highly expressed also in CLL cells, and
its expression was upregulated by VEGF (26). Interestingly, it
has been shown that NRP1 transcripts are targeted by miR-9
that was found to be downregulated in ALL cells; indeed miR-9
forced re-expression could inhibit leukemia cell proliferation
and cell cycle progression (27). In addition, clinical studies
revealed high NRP1 levels to be an independent risk factor for
poor overall survival of AML patients, as well as a predictor
of shorter recurrence-free survival after complete therapeutic
response in AML (28). Moreover, it was demonstrated that a
cell-internalized oligopeptidic molecule targeting NRP1 displays
potent anti-leukemia cell effect (29). In general, NRP1 expression
has been associated with cancer progression in multiple types
of solid tumors (30), and diverse NRP1-targeting agents have
been demonstrated to have tumor suppressing activity in mouse
preclinical models (31, 32).

Different from SEMA3A, the levels of SEMA3B in the
circulating blood of AML patients were significantly increased
compared with those of healthy controls (33). Actually, the
role of SEMA3B in cancer is controversial, being considered
as a suppressor or as a promoter in different studies (34).
Moreover, SEMA3F and its receptor Neuropilin-2/NRP2 were
found to be highly expressed in human T-cell acute lymphoblastic
leukemia/lymphoma primary cells, but SEMA3F was shown to
inhibit the migration of malignant cells induced by CXCL12 and
S1P (35).

SEMAPHORINS IN LYMPHOMAS

Lymphoma is a heterogeneous group of hematological
malignancies derived from lymphocytes, with various underlying
etiological factors, clinical manifestations, histopathological
features, and genetic/molecular profiles; they may thus be
subject to different therapeutic strategies. Lymphomas can be
divided into two major categories: Hodgkin’s lymphomas and
non-Hodgkin’s lymphomas (NHL). The latter constitute around
90% of the lymphoid neoplasms, and can be classified into
B and T/natural killer (NK)-cell lymphomas (36). Dorfman
and coworkers examined SEMA4D/CD100 expression
pattern in 138 cases of non-Hodgkin’s lymphoma (NHL)
by immunohistochemistry (37); most of T-cell NHL cases
were positive for SEMA4D, whereas B-cell lymphomas were
consistently negative for SEMA4D, including cases of small
lymphocytic lymphoma (SLL)/chronic lymphocytic leukemia
(CLL), follicular lymphomas, marginal zone lymphoma, mantle
cell lymphoma, and diffuse large B-cell lymphoma. These
results were further confirmed by analyzing gene expression at

mRNA level, however, the signaling mechanism and functional
role of SEMA4D in T-cell lymphoma cells was not clarified in
this study.

SEMA3F was shown to inhibit normal thymocytes as well as
T-cell lymphoblastic lymphoma (T-LBL) primary cells migration
induced by CXCL12 and S1P (35). Notably T-LBL samples were
found to express high levels of both SEMA3F and its receptor
Neuropilin-2 (NRP2), although the functional relevance of these
molecules was not addressed by loss-of-function experiments,
in this study. SEMA3F is generally considered as a tumor
suppressor gene and its expression is often downregulated in
solid tumors (34), but its function could be different in leukemia
and lymphomas, and awaits clarification. NRP2 is considered a
potential therapeutic target in certain solid tumors, and blocking
antibodies and other targeting tools have been validated for
this purpose in preclinical mouse models (38, 39). Notably,
the homologous semaphorin co-receptor NRP1, was successfully
targeted in lymphoma cells with an oligopeptidic drug candidate
for cancer therapy (29).

SEMAPHORINS IN MULTIPLE MYELOMA

Despite improvements in the therapeutic protocols, multiple
myeloma (MM) remains an incurable disease, due to the
proliferation of malignant plasma-cells in the bone marrow
(BM), and accumulation of monoclonal antibodies in the blood
and urine, with associated organ dysfunction (19, 39, 40).
MM is thought to evolve from a monoclonal gammopathy of
undetermined significance (MGUS) (19). SEMA3A was the first
family member found to have a functional role in MM (40).
In fact, BM endothelial cells isolated from patients with MM
showed higher levels of VEGF and lower levels of SEMA3A
compared to normal controls, consistent with the loss of
endothelial inhibitory activity attributed to SEMA3A (40). These
results underscored the potential usefulness of SEMA3A as
anti-angiogenic molecule to restore the physiological regulation
in the microenvironment. Consistently, a subsequent study
demonstrated that the concentration of SEMA3A in serum
of MM patients was strongly reduced, compared to healthy
individuals, and the extent of this reduction was significantly
associated with disease progression (19). In a preclinical
experimental model in mice, it was demonstrated that forced
SEMA3A overexpression in MM cells could inhibit disease
progression, reduce the incidence and severity of bone lesions,
and prolong overall survival.

Another study reported about increased levels of SEMA4D
and its receptor Plexin-B1 in both BM and the serum of MM
patients (41). Notably, elevated SEMA4D levels correlated with
increased bone resorption, hypercalcemia, and higher stage,
providing a potential target for novel therapeutic approaches in
MM (41). It was then mechanistically investigated the relevance
of SEMA4D in myeloma cells by knock down experiments
(42); notably, SEMA4D expression was found to mediate
paracrine signaling preventing the induction of the pivotal
differentiation factor Runx2 in osteoprogenitor cells. Moreover,
myeloma cell-conditionedmedium induced SEMA4D expression
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in osteoclasts, featuring an additional paracrine mechanism to
inhibit osteoblasts activity. Thus, SEMA4D signaling in myeloma
cells seems to act both directly and indirectly to hinder bone
formation (42). In sum, as discussed above with reference to
leukemias, SEMA4D could be a promising therapeutic target also
for the treatment of multiple myeloma.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Accumulating evidences underscore the multifaceted activities of
semaphorins and their receptors in hematological malignancies
(Table 1). Different from solid tumors, the regulation of
leukemia and lymphoma cells may occur in the circulation,
as well as in BM and lymphoid organs, which are poorly
understood tumor microenvironments. Thus, future studies are
warranted to elucidate the molecular mechanisms of semaphorin
activity in this context, and validate the potential clinical
application of these molecules as prognostic/predicting factors,
as well as novel targets for therapy. Notably, a SEMA4D-
targeting monoclonal antibody, VX15/2503, is under validation
in clinical trials for patients with advanced solid tumors
refractory to therapy. Indeed, targeting SEMA4D with this
antibody in murine models fostered a shift toward pro-
inflammatory signals and anti-tumor immune response within
the microenvironment; and the combination of anti-SEMA4D
and anti-CTLA-4 antibodies achieved synergistic progress of

tumor rejection and mice survival (16, 17). These data open
perspectives for future application of anti-SEMA4D antibodies
(or other semaphorin-targeting molecules) in the fight to cure

hematological malignancies.
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