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Background:Multiple myeloma (MM) is one of the most common types of hematological

malignance, and the prognosis of MM patients remains poor.

Objective: To identify and validate a genetic prognostic signature in patients with MM.

Methods: Co-expression network was constructed to identify hub genes related with

International Staging System (ISS) stage of MM. Functional analysis of hub genes was

conducted. Univariate Cox proportional hazard regression analysis was conducted to

identify genes correlated with the overall survival (OS) of MM patients. Least absolute

shrinkage and selection operator (LASSO) penalized Cox proportional hazards regression

model was used to minimize overfitting and construct a prognostic signature. The

prognostic value of the signature was validated in the test set and an independent

validation cohort.

Results: A total of 758 hub genes correlated with ISS stage of MM patients were

identified, and these hub genes were mainly enriched in several GO terms and

KEGG pathways involved in cell proliferation and immune response. Nine hub genes

(HLA-DPB1, TOP2A, FABP5, CYP1B1, IGHM, FANCI, LYZ, HMGN5, and BEND6) with

non-zero coefficients in the LASSO Cox regression model were used to build a 9-gene

prognostic signature. Relapsed MM and ISS stage III MM was associated with high

risk score calculated based on the signature. Patients in the 9-gene signature low risk

group was significantly associated with better clinical outcome than those in the 9-gene

signature high risk group in the training set, test, and validation set.

Conclusions: We developed a 9-gene prognostic signature that might be an

independent prognostic factor in patients with MM.

Keywords: multiple myeloma, weighted co-expression network analysis, prognostic signature, LASSO Cox

proportional hazards regression model, survival

INTRODUCTION

Multiple myeloma (MM), originated from malignant plasma cells secreting monoclonal M
protein, represents the second most common malignancy in hematological malignancies (1–3).
MM is differentiated from monoclonal gammopathy of undetermined significance (MGUS) and
smoldering multiple myeloma (SMM) by the presence of end-organ damage (4, 5). The clinical
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symptoms of MM range from asymptomatic forms to
manifestations of anemia, bone pain, and eventually spontaneous
of fractures, renal failure, and frequent infections (6–8). Thanks
to the introduction of novel agents (proteasome inhibitors,
immunomodulatory drugs, and monoclonal antibodies), the
management strategies forMMhave been improved considerably
in the past decade (9–12). Accordingly, the clinical outcomes of
patients with MM have been significantly improved, however,
MM remains an incurable disease and the prognosis of patients
withMM remains poor (with a median survival of approximately
3–4 years) (13).

The International Staging System (ISS) stage of MM, based
on β2-microglobulin (β2M) and albumin (ALB), divides MM
patients into three different stages with significant dissimilar
clinical outcomes. The ISS was a collaborative effort by
investigators from 17 institutions worldwide and from data on
11,171 patients (4, 14). Patients with stage 1, 2, 3 diseases have
median survivals of 62, 44, 29 months, respectively (4, 15).

Weighted gene co-expression network analysis (WGCNA),
a systems biology algorithm that can be applied to describing
the correlation patterns among genes across microarray samples,
finding and summarizing modules of high related genes, and
relating modules to certain clinical phenotype (16, 17), is widely
used to facilitate the screening or identification of candidate
biomarkers or therapeutic targets (18). Therefore, in the present
study, we used WGCNA to screen potentially relevant molecular
biomarkers correlated with the ISS stages of patients with MM.
Moreover, we developed and validated the associated signature
in patients with MM.

METHODS

MM Microarray Data
MM gene expression data and clinical information were
downloaded from gene expression omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/). Affymetrix gene expression
profiles were performed using Affymetrix Human Genome U133
Plus 2.0 (HG-U133 Plus_2.0) [GSE19784 (19) and GSE24080
(20)], Affymetrix Human Genome U133A Array(GSE6477)
(21, 22), and Affymetrix GeneChip Human Gene 1.0 ST
Array[E-MTAB-4032 (23)]. GSE19784, including 328 samples
from patients with newly diagnosed MM, was used to construct
the co-expression network. GSE24080, including 559 untreated
MM samples, was randomly assigned patients in a 3:2 ratio to
a training set and test set to develop and validate a prognostic
signature. GSE6477, including 15 samples of normal donors, 73
samples of newly diagnosed MM, and 28 samples of relapsed
MM, was used to evaluate the risk score calculated based on the
prognostic signature among normal donor, newly diagnosed
MM, and relapsed MM. E-MTAB-4032 (including 151 untreated
MM) was used as an independent validation cohort to evaluate
the prognostic role of the signature. Raw data of GSE19784 and
E-MTAB-4032 were preprocessed using the R/Bioconductor
“affy” package (24) and oligo (25) package, respectively. Robust
Multi-array Average (RMA) (26) normalized data of these two
studies at gene level were analyzed. For GSE6477 and GSE24080,

the raw data had been normalized using MAS5 method and
the expression levels of genes were transformed using the
logarithm function. Purified CD138+ plasma cells (including
myeloma cells and normal plasma cells) in GSE19784, GSE6477,
E-MTAB-4032, and GSE20480 were separated using positive
magnetic cell sorting selection with CD138 magnetic microbeads
and subjected to gene expression profiling (GEP) as mentioned
previously (19–23).

Construction of Co-expression Network
and Identification of Hub Genes
The R package “WGCNA” (27) was used to construct a co-
expression network for genes with highest variances (top 10000)
in GSE19784. Prior to constructing the co-expression network,
we applied sample networks method which was introduced
by Oldham et al to detect outliers (28). A sample was
considered as outlying, if the associated Z.K value was <-
2.5. The soft threshold power β was selected according to the
scale-free topology criterion as introduced previously (16, 17).
Subsequently, Pearson’s correlations between each gene pair was
calculated to generate a matrix of adjacencies, and then the
adjacencies were transformed into topological overlap matrix
(TOM) (29). Next, we conducted average linkage hierarchical
clustering based on the TOM-based dissimilarity. The minimum
module size and medium sensitivity was 30 and 2, respectively,
and other parameters were default. After relating modules to the
ISS stage of MM patients and calculating the associated Gene
Significance (the correlation between the genes and the trait)
and Module Membership (the correlation of the first principal
component of the expression matrix of the corresponding
module and the gene expression profile), we screened hub genes
using a networkScreening function based on Gene Significance
and Module Membership and genes with q.Weighetd value (q-
value (local FDR) calculated fromweighted p-value of association
with the ISS stage of MM)<0.01 were finally treated as hub genes
(30).

Functional Enrichment Analysis of Hub
Genes
To understand the biological function of the hub genes, we
performed gene ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis using the
DAVID (31) online tool. GO and KEGG terms at P < 0.05 and
false discovery rate (FDR)<0.05 were considered significantly
enriched and the significantly enriched GO and KEGG terms
were visualized using R package “ggplot2” (32).

Development of the Prognostic Signature
Based on the Hub Genes
To investigate the associations between the hub genes and
the survival of MM patients, we performed univariate Cox
proportional hazards regression model in GSE24080. Genes
significantly correlating with the overall survival (OS) of MM
patients were included in a Least absolute shrinkage and
selection operator (LASSO) penalized Cox proportional hazards
regression model to minimize overfitting, and a 10-fold cross
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validation was also conducted using the R package glmnet (33,
34). Then, we calculated the risk score for each patient based on
this penalized Cox proportion model in the training set.

Validation of the Predictive Value of the
Prognostic Signature in MM Patients
To validate the predictive value of the prognostic signature,
Kaplan-Meier survival analysis, and univariate and multivariable
Cox proportional hazards regression model were performed in
the training set and test set in terms of OS, and event-free
survival (EFS). Prior to multivariable Cox proportional hazards
regression analysis on the OS, and EFS, we performed a variable
selection based on the LASSO penalized Cox proportional
hazards regression model. The definitions of OS and EFS was
introduced previously (21–23). Meanwhile, we also validated
the performance of the signature in the independent cohort E-
MTAB-4032. The above survival analyses were conducted using
the R packages “survival” (35) and “survminer” (version 0.4.3).
MMpatients in GSE24080 and E-MTAB-4032 were classified into

the prognostic low risk group and the 9-signature high risk group
based on the cutoff calculated through time dependent receiver
operating characteristic (ROC) analysis using the R package
“survivalROC” (36). The risk score of the signature in patients
with ISS I, II, and III disease were evaluated using E-MTAB-4032.
Meanwhile, the risk score of the signature in normal plasma cells,
untreatedMM, and relapsedMMwere evaluated using GSE6477.
The risk scores of the signature in E-MTAB-4032 and GSE6477
were presented as mean± the standard error of the mean (SEM).
Grouped data was analyzed using unpaired T-test, and P < 0.05
was considered statistically significant.

RESULTS

Results of Data Preprocessing,
Co-expression Network Construction and
Hub Genes Identification
No sample was demonstrated to be an outlier after all samples
were clustered based on their Euclidean distances. Meanwhile,

FIGURE 1 | Functional enrichment analysis of hub genes. (A) GO enrichment analysis. (B) KEGG enrichment analysis. GO:0051301∼cell division,

GO:0007067∼mitotic nuclear division, GO:0006956∼complement activation, GO:0006958∼complement activation, classical pathway, GO:0019886∼antigen

processing and presentation of exogenous peptide antigen via MHC class II, GO:0060968∼regulation of gene silencing, GO:0006260∼DNA replication,

GO:0050853∼B cell receptor signaling pathway, GO:0006955∼immune response, GO:0051290∼protein heterotetramerization, GO:0006910∼phagocytosis,

recognition, GO:0006911∼phagocytosis, engulfment, GO:0002504∼antigen processing and presentation of peptide or polysaccharide antigen via MHC class II,

GO:0007062∼sister chromatid cohesion, GO:0050871∼positive regulation of B cell activation, GO:0006898∼receptor-mediated endocytosis, GO:0000281∼mitotic

cytokinesis, GO:0032200∼telomere organization, GO:0060333∼interferon-gamma-mediated signaling pathway, GO:0045814∼negative regulation of gene

expression, epigenetic, GO:0006335∼DNA replication-dependent nucleosome assembly, GO:0006270∼DNA replication initiation, GO:0000082∼G1/S transition of

mitotic cell cycle, GO:0019882∼antigen processing and presentation, GO:0007059∼chromosome segregation, GO:0000183∼chromatin silencing at rDNA,

GO:0045087∼innate immune response, GO:0007052∼mitotic spindle organization, GO:0038096∼Fc-gamma receptor signaling pathway involved in phagocytosis,

GO:0008283∼cell proliferation, GO:0002381∼immunoglobulin production involved in immunoglobulin mediated immune response, GO:0006268∼DNA unwinding

involved in DNA replication, GO:0034080∼CENP-A containing nucleosome assembly; hsa05150:Staphylococcus aureus infection, hsa05322:Systemic lupus

erythematosus, hsa04110:Cell cycle, hsa04612:Antigen processing and presentation, hsa05140:Leishmaniasis, hsa04145:Phagosome, hsa05310:Asthma,

hsa04672:Intestinal immune network for IgA production, hsa05332:Graft-vs.-host disease, hsa05166:HTLV-I infection, hsa05202:Transcriptional misregulation in

cancer, hsa05323:Rheumatoid arthritis, hsa03030:DNA replication, hsa05330:Allograft rejection, hsa05416:Viral myocarditis, hsa04940:Type I diabetes mellitus,

hsa04514:Cell adhesion molecules (CAMs), hsa05152:Tuberculosis.
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β = 12, the lowest power for which the scale-free topology
fit index reaches 0.9, was used for the subsequent adjacency
calculation. After TOM based clustering, 14 gene modules were
obtained. After co-expression network construction, a total of
780 probes were identified based on our screening criteria, 758
of which annotated to gene symbol were treated as hub genes
(Supplementary Table 1). The major process of co-expression
network construction and hub gene identification was shown in
Supplementary Figure 1.

GO and KEGG Pathway Enrichment
Analysis of Hub Genes
In order to have a preliminary understanding of the biological
significance, we conducted GO and KEGG enrichment
analysis. As shown in Figure 1, the hub genes were mostly
enriched in GO terms related to cell proliferation (“cell
division,” “cell proliferation,” “mitotic nuclear division,”
“DNA replication,” “DNA unwinding involved in DNA
replication,” “sister chromatid cohesion,” “mitotic cytokinesis,”
“DNA replication-dependent nucleosome assembly,” “DNA
replication initiation,” “G1/S transition of mitotic cell cycle,”
“chromosome segregation,” and “mitotic spindle organization”)
and immune response (“complement activation,” “antigen
processing and presentation of exogenous peptide antigen
via MHC class II,” “ B cell receptor signaling pathway,” “
immune response,” “phagocytosis, recognition,” “ positive
regulation of B cell activation,” “receptor-mediated endocytosis,”
“interferon-gamma-mediated signaling pathway,” “innate
immune response,” “Fc-gamma receptor signaling pathway
involved in phagocytosis,”and “immunoglobulin production
involved in immunoglobulin mediated immune response”)
(Figure 1A). Furthermore, the results of KEGG pathway
enrichment analysis of the hub genes suggested that these
genes were mainly enriched in infection or immune related
pathways (“Staphylococcus aureus infection,” “antigen
processing and presentation,” “leishmaniasis,” “asthma,”
“intestinal immune network for IgA production,” “graft-vs.-
host disease,” “HTLV-I infection,”and “Rheumatoid arthritis”),
and cell proliferation (“cell cycle,”and “DNA replication”)
(Figure 1B).

Development of a 9-Gene Signature in
Patients With MM
To investigate the prognostic value of the hub genes, we
conducted univariated Cox proportional hazards regression
analysis, and the results suggested that the expression of 325 hub
genes were significantly correlated with the OS of MM patients
in the training set of GSE24080. To avoid overfitting as much
as possible, we conducted LASSO penalized Cox proportional
hazards regression model in the training set in GSE24080,
and the results identified 9 of the 325 hub genes (HLA-
DPB1(major histocompatibility complex, class II, DP beta 1),
TOP2A (topoisomerase 2A), FABP5 (Fatty Acid-Binding Protein
5), CYP1B1(cytochrome P450 family 1 subfamily B member
1), IGHM (immunoglobulin heavy constant mu), FANCI (FA
complementation group I), LYZ (lysozyme), HMGN5 (high

mobility group protein N5 subtype), and BEND6 (BEN domain
containing 6) with non-zero coefficient. Thus, we built the 9-gene
signature on the basis of the coefficients of these 9 hub genes in
the LASSO penalized model (Supplementary Table 2).

Associations Between the 9-Gene
Signature and the ISS Stage of MM and the
Disease Status
Firstly, we calculated the risk score of each MM patients for
the 9-gene signature in GSE6477 and E-MTAB-4032 based on
the coefficients of the 9 hub genes (Supplementary Table 2).
As shown in Figure 2A, the risk score of patients with ISS
stage III disease was significantly higher than that of patients
with ISS stageI (t = −0.362, P = 0.001) and II (t = −0.218,
P = 0.031). Meanwhile, the risk score of patients with relapsed
MM was significantly higher compared with that of normal
donor (t = 5.782, P < 0.001) and patients with untreated MM
(t = 2.977, P = 0.004), and the risk score were higher in
patients with untreatedMM compared with that in normal donor
(t =−4.13, P < 0.001, Figure 2B).

FIGURE 2 | The risk score of the signature in GSE6477 and E-MTAB-4032.

(A) The risk score was increased in MM patients with ISS III disease and ISS

IIcompared with that in MM patients with ISS Idisease. (B) The risk score of

was significantly upregulated in newly diagnosed MM and relapsed MM

compared with that in normal plasma cells. *P < 0.05, **P < 0.01, and

***P < 0.001.
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Evaluation the Prognostic Role of the
9-Gene Signature
The predictive value of the 9-gene signature was evaluated
in the training set, test set and an independent set E-MTAB-
4032. Based on the optimal cutoff (1.939) calculated using
time dependent ROC analysis (Supplementary Figure 1).
The Kaplan-Meier survival analysis suggested that patients in
the 9-gene signature low risk group had better OS compared
with those in the 9-gene signature high risk group in the
training set (HR = 0.2664, 95% CI: 0.1772-0.4007, log-rank
P < 0.001, Figure 3A, Supplementary Table 3) and the test set
(HR = 0.5115, 95% CI: 0.3137–0.8339, log-rank P = 0.0062,
Figure 3B, Supplementary Table 4). Meanwhile, patients
in the 9-gene signature low risk group had with better EFS
compared with those in the 9-gene signature high risk group
in the training set (HR = 0.3321, 95% CI:0.2395–0.4606,

P < 0.0001, Figure 3C, Supplementary Table 5) and test
set (HR = 0.5174, 95% CI: 0.3447–0.7765, P = 0.0015,
Figure 3D, Supplementary Table 6). Based on the results
of variable selection (Supplementary Table 7), age, B2M

(β2-microglobin), CRP (C reaction protein), LDH (lactate
dehydrogenase), BMPC (bone marrow plasma cell), MRI

(magnetic resonance imaging), and the 9-gene signature was
included multivariable Cox proportional hazards regression
analysis which indicated that the 9-gene signature was an

independent prognostic factor in terms of OS and EFS

in the training set and test (Supplementary Tables 3–6).
Moreover, MM patients in the 9-gene low risk group also

had better OS compared with those in the 9-gene signature
high risk group in the independent validation cohort E-
MTAB-4032 (HR = 10.6091, 95% CI: 3.2120–35.0409, log-rank
P = 0.0061, Figure 4). Meanwhile, the results of multivariable

FIGURE 3 | The correlations between the 9-gene signature and the overall survival (OS) and event-free survival (EFS) of patients with MM. (A) OS in the training set.

(B) OS in the test set. (C) EFS in the training set. (D) EFS in the test set.
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FIGURE 4 | The prognostic role of the 9-gene signature in the independent

validation cohort E-MTAB-4032.

Cox proportional hazards suggested that the 9-gene signature
was also an independent prognostic factor in the validation
cohort (HR = 14.8092, 95% CI:1.2282–178.5591, P = 0.0339,
Supplementary Table 7).

DISCUSSION

As stated above, although several novel agents for patients with
MM have been introduced into clinical practice, the disease
remained incurable, and the clinical outcome of patients with
MM is still poor (2, 3). Thus, it is of vital importance to develop
such molecular biomarkers or signature that are significantly
correlated with the clinicopathological features and clinical
outcome of patients with MM. In the present study, a total of
758 hub genes associated with the ISS stage of MM patients
were identified throughWGCNA. Thus, we performed univariate
Cox proportional hazards regression analysis to analyzed the
relations between the expression of hub genes and the OS
of patients with MM, and the results suggested that 325 hub
genes were associated with the OS of MM patients. LASSO (34)
was introduced in order to improve the prediction accuracy
and interpretability of regression models by forcing the sum
of the absolute value of the regression coefficients to be less
than a fixed value, which forces certain coefficients to be set to
zero, effectively choosing a simpler model that does not include
those coefficients. Based on this, we included the above 325
hub genes into a LASSO penalized Cox proportional hazards
regression model, as a result, 9 hub genes with none-zero
coefficients in this model was identified. Thus, we calculated the
risk score of each MM patients, and built the 9 hub genes [HLA-
DPB1(major histocompatibility complex, class II, DP beta 1),

TOP2A (topoisomerase 2A), FABP5 (Fatty Acid-Binding Protein
5), CYP1B1(cytochrome P450 family 1 subfamily B member
1), IGHM (immunoglobulin heavy constant mu), FANCI (FA
complementation group I), LYZ (lysozyme), HMGN5 (high
mobility group protein N5 subtype), and BEND6 (BEN domain
containing 6)] based signature.

Results of functional enrichment analysis of hub genes
suggested that hub genes were mainly enriched in cell
proliferation and immune response related GO terms and
pathways, this was in accordance with the prognostic value
of the 9-gene signature developed based on the hub genes.
MM patients in the 9-gene low risk group was associated
with better OS and EFS compared with those in the 9-
gene high risk group, and the 9-gene signature was shown
to be an independent prognostic signature in patients
with MM.

Actually, most of these hub genes in the signature had
been demonstrated be associated with the proliferation or
invasion of several human cancers. HLA-DPB1, also known
as major histocompatibility complex, class II, DP beta 1,
belongs to the HLA-class IIbeta chain paralogue. Li et al.
demonstrated that genetic variant of HLA-DPB1 increased in
the risk of extranodal natural killer T-cell lymphoma (37).
Liu et al. demonstrated that TOP2A (topoisomerase 2A) and
TOP1 functioned as oncogene in liver cancer (38). Meanwhile,
decreased expression of TOP2A inhibited the proliferation of
invasion of colon cancer cells (39). Kawaguchi et al and Powell
et al. demonstrated that overall expression of FABP5 promoted
the proliferation and metastasis of colorectal cancer cells and
breast cancer cells (40). Gu et al. demonstrated that genetic
variant of CYP1B1 gene was associated prognosis of patients
with prostate cancer (41). Mutation patterns of IGHM was
associated different progression pathways in follicular lymphoma
(42). Chen et al demonstrated that PRC1 could promote
early recurrence of patients with hepatocellular carcinoma by
regulating the expression of FANCI (43). Mariano FV et al
demonstrated that the expression of LYZ could be used to
differentiate mammary analog secretory carcinoma from acinic
cell carcinoma of salivary glands (44). Wu et al demonstrated
that the expression of HMGN5 was increased in bladder cancer
cells and high expression of HMGN5 was associated with poor
prognosis of patients with bladder cancer (45). The results of
the above literature review provided strong support for the 9-
gene signature in the clinical out prediction in patients with
MM.

Limits of our study are as follows. First, our study is
a retrospective analysis based on previously published MM
gene expression studies, although its conclusions have been
confirmed in the test set and independent validation set,
we recommend that the conclusions of this study should
be verified by molecular biology experiments in subsequent
studies. Second, the prognostic performance of the 9-gene
signature should be evaluated through prospective clinical
trials.

Taken together, we developed a 9-gene prognostic signature
based on the hub genes obtained through a co-expression
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network, patients in the 9-gene signature low risk group were
associated with better clinical outcomes compared with those in
the 9-gene signature high risk group.
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