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inTRODUCTiOn

One of the most common events in human cancer is hyperactivation of the phosphatidylinositol-
3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, generally 
described as a consequence of genetic alterations of pathway members. The core components of the 
pathway are depicted in Figure 1A. There are four members of the class I PI3Ks, which act upstream 
of this pathway, performing the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into 
phosphatidylinositol-3,4,5-trisphosphate (PIP3). This lipid produced in the inner leaflet of the plasma 
membrane controls a range of cellular actions including cell growth, migration, metabolism, survival 
and proliferation. Class I PI3K activity in vertebrates regulates both physiological and pathological 
processes (1).

Phosphatidylinositol-3-kinase activity has been implicated in a variety of different cancers, hence 
this class of enzymes is a prime drug target for anticancer therapies (5). However, initial phase I/
II clinical trials of small molecule PI3K inhibitors show that the predictive markers of efficiency of 
these drugs need to be improved. The presence of PIK3CA mutation in the primary tumor alone is 
not a sufficient predictive marker of efficiency (6, 7). Signal-targeted therapy would benefit from the 
identification of patients more likely to respond.

A RECEnT MULTiSCALE OMiCS AppROACH MAppED  
pi3K/AKT/mTOR ACTiVATiOn in CAnCER

Zhang et al. analyzed in an unbiased fashion both known molecular mechanisms by which the PI3K/
AKT/mTOR pathway is upregulated in human cancers, as well as other possibly unrelated genetic 
alterations (2). They examined The Cancer Genome Atlas open access omics data (including genomic 
mutations by whole-genome sequencing, gene copy number by single-nucleotide polymorphism 
array, or RNA expression by whole-exome sequencing) across 11,219 human cancers represent-
ing 32 distinct major types. The authors also used reverse-phase protein array (RPPA) analysis to 
assess the level of expression of 166 total proteins and 56 phosphorylated proteins (Figure  1B). 
Phosphoproteome-based PI3K/AKT and mTOR activity signatures (p-AKTS473/T308, p-GSK3S9, 
p-PRAS40T246, p-TSC2T1462 and p-mTORS2448, p-RICTORT1135, p-4EBP1S65/T34/T46/T70, p-S6KT389, p-S6S235/

S236/S240/S244, respectively) by RPPA analysis were found to be correlated. Transcriptomics analysis 
found that the levels of expression of a selected list of members of the PI3K/AKT pathways were not 
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FiGURE 1 | Heterogeneity of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) activation in cancer: global and comprehensive 
mapping by a multiscale integrated approach. (A) Representation of PI3K/AKT/mTOR canonic members. Most omics results use data obtained under treatment 
with pan-PI3K inhibitors which still display relative isoform specificity, or with PI3Kα-selective inhibitors associated with genetic alterations. Usually, only the 
expression of PIK3CA and PIK3CB is studied. Production of PIP3 at the plasma membrane is, however, performed by four enzymes: PI3Kα, PI3Kβ, PI3Kδ, and 
PI3Kγ. They are composed of a regulatory subunit (p85 or p101/p87) and a catalytic subunit (p110α, p110β, p110δ, or p110γ). (B) This schematic summarizes  
the bioinformatic meta-analysis performed in the study by Zhang et al. (2) using two PI3K/AKT/mTOR transcriptional signatures of Creighton et al. and Garnett et al.  
(3, 4). (C) Representation of the molecular alterations found in cancer patients with high PI3K/AKT score. Molecular alterations in patients with reverse-phase protein 
array (RPPA) score values ≥0.5 are shown. These RPPA scores were normalized to SDs from the median across all cancers.
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correlated with the activation of PI3K or mTOR signaling nodes 
by RPPA. However, the authors confirmed a correlation between 
the transcriptional expression and alterations in the copy number 
of the so-called core genes. All mutated residues of members of 
the PI3K/AKT/mTOR pathway resulted in the expected increase 
in activity of the PI3K/AKT/mTOR pathway. Therefore, modifi-
cations to DNA, mRNA expression, and phosphoprotein levels 
were found to be functionally relevant in the hyperactivation of 
the PI3K pathway associated with cancers.

nOT ALL CASES OF inCREASED pi3K/
AKT/mTOR pATHWAY ACTiViTY CAn BE 
EXpLAinED BY THE CAnOniC GEnETiC 
ALTERATiOnS ASSOCiATED WiTH pi3K 
SiGnALinG

In most scenarios, increased AKT activity can be explained by 
genetic or genomic alterations to members of the PI3K/AKT/
mTOR pathway; however, this is not the case for all instances 
of AKT hyperactivation (Figure  1C). In 764 of 7,099 tumors, 
including mostly lower grade glioma, pheochromocytoma and 

paraganglioma, prostate adenocarcinoma, and kidney renal clear 
cell carcinoma, the level of phospho-AKT was increased without 
any of the genetic or genomic alterations described as being 
functionally coupled to this pathway. In addition, upregulation 
of mTOR pathway activity is also associated with non-canonical 
alterations, such as IDH1 (Isocitrate dehydrogenase 1) or VHL 
(Von Hippel-Lindau syndrome) mutations, miRNA modulation, 
and ERK, SRC, and NDRG1 activation. Further work is required 
to understand the complex mechanisms involved in upregulation 
of the PI3K/AKT/mTOR pathway by non-canonical alterations.

CELLULAR ACTiViTY OF THE pi3K/AKT/
mTOR pATHWAY iS A pREDiCTiVE 
MARKER OF SEnSiTiViTY TO pi3K/mTOR 
inHiBiTORS

Analysis of knock-down (shRNAs) data for pathway effectors 
(3, 4) and a correlation matrix of PI3K/AKT/mTOR, MYC and 
active KRAS gene signatures, showed a convergence of MYC and 
KRAS oncogenic signaling pathways with the PI3K/AKT/mTOR 
transcriptomic signature. However, the PI3K/AKT/mTOR 
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transcriptomic signature was not a predictive marker of PI3K/
mTOR inhibitor efficacy, but was associated with patient outcome/
survival. Instead, a list of 146 genes significantly associated with 
tumor cell sensitivity to pathway inhibitors correlated with the 
PI3K/AKT phosphoproteomic signature. Therefore, functional 
assessment of the PI3K pathway was linked with the sensitivity 
to its inhibitors, while its final transcriptomic targets were only 
indicative of the impact of this pathway in the malignancy of each 
cancer (Figure 1B).

BOTH pAn-pi3K AnD iSOFORM-
SELECTiVE COMpOUnDS ARE 
pROGRESSinG in THE CLiniC

There are four members of the class I PI3Ks: PI3Kα, PI3Kβ, 
PI3Kγ, and PI3Kδ, and these have different functions in physi-
opathology (1). PI3Kα and PI3Kβ are ubiquitously expressed, 
whereas PI3Kγ and PI3Kδ are preferentially expressed in leuko-
cytes or the vascular system, but are also overexpressed in some 
primary tumors. This led to the concept that isoform-specific 
functions of PI3K enzymes in non-transformed cells become 
redundant in transformed cells due to a possible dysregula-
tion of upstream signaling. However, several research teams, 
including us, show that certain cancers are solely dependent 
on one isoform of PI3K. For example, a prostate cancer model 
induced by inactivation of the tumor suppressor gene PTEN  
(a phosphatase that negatively regulates the PI3K/AKT signal-
ing pathway—see Figure 1A) depends only on the PI3K activity 
of PI3Kβ. In addition, thyroid tumors induced by inactivation of 
PTEN depend only on PI3Kα activity, suggesting a tissue-context 
phenomenon (8, 9). Selective engagement by receptor tyrosine 
kinases (RTKs) or G-protein-coupled receptors (GPCRs) to 
specific PI3K isoforms when all the RTK-linked (α, β, and δ) 
PI3Ks or all the GPCR-linked PI3Ks (β and γ) are expressed 
in a given cell type remains to be demonstrated (Figure 1A). 
Indeed, the two GPCR-activated class I PI3Ks were found to be 
redundant in various cell systems (10). In the context of tumor 
initiation, evidence clearly shows isoform specificity (11, 12). 
In neoplastic cells harboring high levels of genomic instability, 
isoform selectivity could be transient, because, once specific 
isoforms are inhibited, other class I enzymes can become acti-
vated by other mechanisms (13, 14). For example, inhibition 
of PI3Kβ relieves feedback inhibition of RTKs, thus reactivat-
ing PI3Kα (14). Conversely, inhibition of PI3Kα (in tumors 
harboring RTK activation or an activating oncogenic mutation 
in PIK3CA) leads to the activation of PI3Kβ by inactivation 
of the tumor suppressor PTEN (15). With limited success in 
patients receiving dose-limiting toxicity amounts of pan-PI3K 
inhibitors, literature suggests that a selective inhibition of one 
isoform could lead to a better efficacy/toxicity ratio. Novel, 
isoform-selective inhibitors are currently progressing quickly 
in the clinic (16, 17). Moreover, isoform-sparing compounds 
have been successfully developed to target the oncogenic driv-
ing PI3K and the immune restricted PI3Ks, in particular in the 
highly inflammatory triple-negative breast cancer setting (18). 
These isoform-selective or isoform-sparing inhibitors still have 

serious toxicity issues, as seen with the FDA-approved idelalisib. 
The main resistance mechanism of pan-class I PI3K inhibitors is 
via reactivation of the MAPK pathway. However, most patients 
treated with the pan-PI3K inhibitor buparlisib (BKM120) and 
the MEK1/2 inhibitor trametinib (GSK1120212) experienced 
severe grade 3/4 adverse events, and 31% of them arrested their 
treatment (19). On-target toxicity is also major issue for PI3K 
inhibitors, hence more balanced pan-PI3K, pan-PI3K/mTOR, 
or dual isoform PI3K inhibitors are being developed.

Many questions need to be answered regarding clinically 
relevant PI3K inhibition in cancer. This inhibition can be either 
isoform-specific or pan-PI3K, the later possibly with a selective 
inhibition efficiency for each isoform. Some of the more pertinent 
questions are outlined below:

 i- While it was obvious to hit PI3Kδ in hematological malig-
nancies due to the overexpression of this isoform in this cell 
type, how can we predict the sensitivity to isoform-specific 
drugs for the two ubiquitously expressed yet critical for 
cancerogenesis PI3Ks, PI3Kα, and PI3Kβ?

 ii- Should we take into account the activity of stromal PI3Kγ 
and PI3Kδ in solid cancers?

 iii- Are inter-isoform compensatory mechanisms similar for all 
types of cancers?

 iv- How can we predict which other isoforms are involved in 
resistance mechanisms?

It thus remains critical to delineate for each type of cancer 
and ultimately each individual patient which PI3K isoform(s) 
to target, and the level of inhibition at which each of these 
isoforms needs to be targeted so as to reach an optimal cost 
benefit ratio.

COnCLUSiOn/pERSpECTiVES

Zhang et al. assessed PI3K/AKT and mTOR activity signatures, 
the PI3K/AKT/mTOR transcriptional signature and genetic 
and genomic alterations of canonical members of the pathways, 
to strongly demonstrate the major contribution of PI3K/AKT/
mTOR pathway deregulation to poor survival in different types 
of cancer. Direct mutation of genes of the pathway is not the 
only common mechanism of activation of this pathway in cancer 
cells. It is also necessary to consider other non-canonical mem-
bers of the PI3K/AKT/mTOR pathway to evaluate its activity, 
as well as other apparently unrelated genetic or genomic altera-
tions. Such examples of meta-analysis largely pave the way to a 
better understanding of PI3K oncogenic signaling regulation 
and interconnection with its transcriptional targets in cancers. 
Finally, the first specific PI3K inhibitor to be approved for 
clinical use is a PI3Kδ-selective inhibitor, which has shown 
high efficacy in phase III clinical trials for B  cell lymphoma 
(20). Evidence for PI3K isoform selectivity in tumors should 
not be neglected in these large-scale omics studies. An analysis 
of PI3K signaling taking into account its entire complexity 
(isoform selectivity) is important in order to establish optimal 
antitumoral therapies and select patients likely to benefit from 
PI3K-targeted therapies.
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