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Angiogenesis, the formation of new blood vessels, as well as inflammation with massive
infiltration of leukocytes are hallmarks of various tumor entities. Various epidemiological,
clinical, and experimental studies have not only demonstrated a link between chronic
inflammation and cancer onset but also shown that immune cells from the bone marrow
such as tumor-infiltrating macrophages significantly influence tumor progression. Tumor
angiogenesis is critical for tumor development as tumors have to establish a blood supply
in order to progress. Although tumor cells were first believed to fuel tumor angiogenesis,
numerous studies have shown that the tumor microenvironment and infiltrating immune
cell subsets are important for regulating the process of tumor angiogenesis. These infil-
trates involve the adaptive immune system including several types of lymphocytes as well
as cells of the innate immunity such as macrophages, neutrophils, eosinophils, mast cells,
dendritic cells, and natural killer cells. Besides their known immune function, these cells
are now recognized for their crucial role in regulating the formation and the remodeling of
blood vessels in the tumor. In this review, we will discuss for each cell type the mechanisms
that regulate the vascular phenotype and its impact on tumor growth and metastasis.

Keywords: microenvironment, immune cells, leukocytes, endothelial cells, angiogenesis

INTRODUCTION
Angiogenesis, which is the outgrowth of new vessels from pre-
existing capillaries and post-capillary venules, is crucial embry-
onic development (1). In adults, angiogenesis occurs physio-
logically in the uterus during the menstrual cycle as well as
in pathological conditions, such as the growth of malignant
tumors.

In 1971, Folkman generated the hypothesis that tumor growth
depends on the neoformation of blood vessels and, thus, inhibition
of angiogenesis could prevent tumor progression (2). This work
also defined the concept of “anti-angiogenesis” as the prevention
of blood vessel recruitment to the tumor. The prediction was that
tumors would not grow beyond a minimal size of 1–2 mm3 with-
out perfusion and connection to the newly formed capillary net-
work. Consistently, the majority of pre-clinical studies have shown
effective inhibition of tumor growth by targeting angiogenic fac-
tors. However, the clinical outcome of anti-angiogenic treatment
is rather modest as anti-angiogenic drugs improve survival by only
a few months (3).

The net angiogenic activity depends on the balance of posi-
tive and negative modulators (4) that tightly coordinate the action
of various molecules, including, extracellular matrix-degrading
enzymes, cellular junction proteins, and cell adhesion receptors,
which results in a migratory an invasive behavior of the angiogenic
tumor endothelium. In healthy tissue though, the vasculature
remains quiescent due to the dominance of negative regulators of
angiogenesis (5). Hence, tumor angiogenesis depends on down-
regulation of negative regulators as well as a shift toward posi-
tive regulators, which are mainly released by neoplastic cells and

inflammatory cells that will ultimately lead to the growth of blood
vessels (6).

In addition to their increase in density, tumor blood vessels
are characterized by various structural and functional abnor-
malities including irregularities in size and shape, the absence
of the typical vessel hierarchy or the distinct organization in
arterioles, capillaries, and venules (7). Furthermore, they often
exhibit a decreased mural cell coverage and/or abnormal base-
ment membrane sleeves. The endothelial cells that constitute
the vascular bed of tumors show a dramatically increased pro-
liferation rate compared to normal endothelial cells resulting
in a structurally aberrant and functionally defective vascula-
ture. This distinct vascular phenotype is usually associated with
increased permeability that allows the traffic of tumor cells into
the circulation (8).

The process of angiogenesis involves a cascade of events includ-
ing endothelial cell sprouting, the loss of mural cell-endothelial cell
association as well as increased vessel permeability (8–10), and the
value of vascular density to determine anti-angiogenic activity has
been shown to be of limited use (11). Therefore, changes in the
functionality of the vasculature are likely to be a more important
readout of anti-angiogenic activity than just the presence of a vas-
culature (8). In fact, recent studies have shown that tumor blood
flow and growth are decreased, whereas vessel count is increased
(12–15), which further supports the notion that vascular func-
tion is more important than simple vessel counts. Indeed in most
tumors, despite high vascular density, the blood supply is rather
inefficient. Due to the fact that many features of the aberrant
tumor vasculature are attributable to the abundance of angiogenic
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factors like Vascular Endothelial Growth Factor (VEGF), Jain and
colleagues have hypothesized that anti-angiogenic therapy can
temporarily “normalize” the vascular bed of tumors during the
so called window of normalization. The definition of “vascular
normalization” includes the reversion of vascular abnormalities
(that are, increased permeability, tortuosity, and loss of pericytes)
and redistribution of the blood flow with increased delivery of
cytotoxic agents and oxygen during the normalization window
(8). In fact, in a phase II study with glioblastoma patients, a
VEGF receptor tyrosine kinase-inhibitor led to structural and
functional to normalization of the tumor vasculature, as measured
by MRI (16).

Recent studies gave insight into the causal role of host-derived
soluble factors as well as tumor-associated host cells, for initiation
and/or progression of cancer (17–20). Recent studies identified the
paradox that some leukocytes have the potential to promote, rather
than restrict, tumor growth (21, 22). Histological observations of
multiple solid tumors revealed the presence of leukocytes within
developing tumors as an attempt to eliminate transformed cells.
Growing number of reports have implicated tumor-infiltrating
immune cells as crucial mediators of cancer initiation and progres-
sion (17–19, 23). In addition, type and density of intra-tumoral
immune cells have been validated as a reliable parameter for
patient’s clinical outcome in certain types of cancer (24–26).

Leukocytes comprise diverse subsets of immune cells that can
be separated into cells of the innate and adaptive immunity. The
innate immune system consists of macrophages, granulocytes,
mast cells, natural killer (NK) cells, and dendritic cells (DCs).
Tissue-resident macrophages and mast cells recruit of additional
leukocytes from the circulation into the inflamed tissue in response
perturbed tissue homeostasis by secreting soluble cytokines and
chemokines. Furthermore, DCs have the potential to cross-present
antigens to adaptive immune cells, e.g., CD4+ T cells and B cells,
which in turn undergo clonal expansion resulting in an adaptive
immune response against the presented antigen (21).

However, an efficient immune response also depends on the
appropriate distribution and positioning of immune cells within
dynamic tissue microenvironments. This process is largely con-
trolled by the vascular network and its interactions with circulating
immune cells, particularly during pathological circumstances such
as inflammation (27, 28). In consequence, vasculature modu-
lated by inflammatory triggers, displays increased leakiness and
enhanced leukocyte adhesiveness, resulting in endothelial cell acti-
vation, proliferation, and vascular sprouting (29, 30). Thus, there
is a well-orchestrated interaction between inflammatory infiltrates
and the endothelium. Recent reports further dissected the impact
of different immune subsets for blood vessel neoformation and
remodeling (20, 23, 31). They functionally contribute to tumor
growth and progression by releasing pro-tumorigenic factors
like cytokines and chemokines, extracellular matrix-degrading
enzymes, reactive oxygen species, and other bioactive molecules,
along with angiogenesis and tissue remodeling (20). The apprecia-
tion that immune cell-secreted factors might contribute to tumor
angiogenesis and in consequence, potentially affect efficacy of anti-
angiogenic therapy, identified these cells as a valuable target for
anti-cancer strategies (18, 20, 32, 33). To illustrate the different
forms of immune cell-EC communication, we will focus on each

cell type of the innate and adaptive immunity and their implication
on angiogenesis and vascular remodeling.

INNATE IMMUNITY
MACROPHAGES
Macrophages are specialized phagocytes that are able to incor-
porate invading microbes and cell debris as well as to secrete
release various immunomodulatory cytokines. They have a unique
ability to adapt their phenotype to dynamically changing microen-
vironments that they encounter. The conventional phenotyping
distinguishes M1 (classically activated) or M2 (alternatively acti-
vated) macrophages. The M1 phenotype is characterized as pro-
inflammatory and is associated with T-helper-1 response and the
secretion of bactericidal factors in response lipopolysaccharide
and interferon γ (IFNγ) exposure. M2 macrophages exhibit a
T-helper-2 cytokine expression pattern and are considered to be
rather immunosuppressive (34).

The potential role of tumor-associated macrophages (TAMs) in
modulating tumor angiogenesis was already proposed in the early
90s (35). After that, a variety of studies have shown that TAMs are
often found in the surrounding of blood vessels of solid tumors
(36–38). In addition, studies in human tumors demonstrate a pos-
itive correlation between blood vessel density and the number of
TAMs in vessel areas (39, 40). The pro-angiogenic function of
TAMs was also thoroughly investigated in animal cancer models.
Accumulating evidences show that TAM depletion results in the
decrease of tumor angiogenesis (31, 41), while TAM enhancement
exhibits the opposing effect (42). For example, it has been shown
that genetic depletion of macrophages in PyMT mammary tumor
model delays the angiogenic switch, whereas restoring macrophage
infiltration rescues the vessel phenotype (31).

In addition to the functional studies mentioned above, much
interest has been given to the mechanistic insights on the pro-
angiogenic function of TAMs. Hypoxia occurs quite frequently
solid tumors, and macrophages are often attracted to the hypoxic
areas of tumor site due to the secretion of hypoxia-induced
chemoattractants by tumor cells. Such chemoattractants include
VEGF, endothelin, endothelial monocyte activating polypeptide
II (EMAP II) (43), and CCL2 (6). Once TAMs are attracted to
the hypoxic areas, this microenvironment promotes the meta-
bolic adaptation of TAMs to hypoxia by upregulating hypoxia-
inducible factors (HIF)-1, HIF-2, and VEGF (44–46). VEGF-A
functions as a potent mitogen for endothelial cells by binding to
VEGFR1 and VEGFR2 (47). Genetic studies showed that TAM-
derived VEGF-A is essential for angiogenesis in the PyMT mam-
mary tumors (48). Restoring VEGF-A expression in macrophage-
deficient PyMT tumor model induces the increase of tumor angio-
genesis (48). These data indicate that VEGF is a key regulator of
the pro-angiogenic activity of TAMs.

Interestingly, a study using an in vivo myeloid cell-specific
deletion of VEGF and tested its impact on vessel density and
tumor progression in various murine tumor models in order to
determine the role of myeloid cell-derived VEGF in this context
(49). In the MMTV-PyMT model of mammary tumorigenesis
increased vascular density was found as tumors progressed to
malignancy, consistent with an “angiogenic switch.” However,
in mutant mice with a deletion of VEGF restricted to myeloid
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cells, the malignancy-associated increase in vascularization, thus
the “angiogenic switch,” did not occur. Along with impaired
angiogenesis a decrease in vessel length and reduced vessel tor-
tuosity was observed in the absence of myeloid cell-derived VEGF.
Although, VEGF protein levels did not vary in tumor lysates from
wild type and mutant animals, loss of myeloid-derived VEGF
caused an approximately 50% reduction in VEGFR2 phosphory-
lation, suggesting that myeloid cell-derived VEGF plays an unique
role in tumor vascularization, that cannot be compensated for by
VEGF from other sources within the tumor. Noteworthy, the onset
of tumor growth was not affected by the lack VEGF in myeloid
cells. However, surprisingly mutant mice had a significantly higher
tumor burden at endpoint than their wild type littermates and
along with this a higher number of proliferating cells, indicating
that tumors develop at a more rapid pace in the absence of myeloid
cell-derived VEGF. Furthermore, the loss of VEGF expression in
myeloid cells resulted in a marked increase in the level of peri-
cyte coverage, indicating vascular normalization and suggesting
that VEGF expression from infiltrating myeloid cells is essential
for intra-tumoral loss of vessel pericyte association. Interestingly,
vessel permeability was also reduced in tumors from mutant ani-
mals, representing another indicator of vascular normalization.
Consistent with the vascular changes and the concept of vascular
normalization loss of myeloid-derived VEGF increased the efficacy
of chemotherapeutic treatment (49).

Further studies suggested that hypoxia also upregulates the
expression and secretion of ADM by macrophages (50), which
are often regulated by HIF and VEGF (51, 52). A recent study
showed that TAM-induced endothelial cell migration and tubule
formation are inhibited by treatment with an ADM neutralizing
antibody (53). These findings demonstrate that ADM can function
as a novel pivotal factor of TAMs in facilitating tumor angiogenesis.
TAMs also have the ability to release a number of other pro-
angiogenic factors, including growth factors [such as PlGF, basic-
fibroblast growth factor (b-FGF), M-CSF, PDGF, heparin-binding
epidermal growth factor (HB-EGF),macrophage-inhibitory factor
(MIF), platelet activating factor (PAF), and TGF-β], and cytokines
(such as IL-1, IL-8, TNF-α, and MCP-1) (54, 55). Recent stud-
ies have increased our understanding about TAM-derived factors
involved in angiogenesis. In solid tumors, the hypoxic condi-
tion often induces apoptosis of tumor cells (56). The apoptotic
tumor cells can up-regulate prostaglandin E2 (PGE2) production
from macrophages to promote angiogenesis (57). Semaphorin 4D
(Sema4D) is a pro-angiogenic molecule that acts through its recep-
tor, plexin B1 (58). In the tumor microenvironment, TAMs are the
major source of Sema4D, which is critical for tumor angiogenesis
and vessel maturation, as demonstrated by the impaired angio-
genesis and vessel maturation in Sema4D knockout mice (59). In
addition to producing pro-angiogenic factors in the hypoxic con-
dition, TAMs also promote angiogenesis by downregulating the
expression of angiogenesis inhibitors, such as vasohibin-2 (60).

Apart from the secretion of pro-angiogenic factors, TAMs also
express a number of angiogenesis-modulating enzymes, such as
COX-2, iNOS, and various matrix metalloproteinases (45, 61–64).
For instance, TAM-derived MMP-9 is required for angiogenesis
in a model of human cervical cancer (62). Cathepsin proteases
are also implicated in human tumor progression (65). In the

tumor microenvironment, TAMs represent an important source
of cathepsins in pancreatic cancer and mammary tumor. Ablation
of TAM-derived cathepsin B or S in these tumors impairs tumor
angiogenesis, suggesting their critical roles in mediating TAMs
effects on angiogenesis (66).

Recently, it has also been proposed that circulating monocytes
transdifferentiate into endothelial cells and thereby contributing
to tumor angiogenesis (67). However, whether recruited mono-
cytes/macrophages significantly contribute to the formation of
the tumor vasculature by this mechanisms remains to be further
determined.

In summary, when TAMs are attracted to the hypoxic areas of
tumor site, they produce a large body of pro-angiogenic factors
in addition to angiogenesis-modulating enzymes, under the reg-
ulation of specific signaling pathways (i.e., NF-κB and mTOR)
and transcription factors (i.e., HIFs and Stat3), which contribute
to tumor angiogenesis. On the other hand, targeting angiogenic
factors in TAMs may also promote tumor vessel normalization. A
number of findings support the concept that TAMs are educated
by tumor cells and tumor microenvironment, and “re-education”
of TAMs is now emerging as a novel strategy for cancer therapies
via tumor angiogenesis inhibition and vessel normalization.

NEUTROPHIL GRANULOCYTES
These phagocytes represent the largest population of blood leuko-
cytes and are critical for the initial inflammatory reaction to invad-
ing microbes. Neutrophil infiltration has been reported in various
cancer entities (68) and neutrophils are particularly abundant in
the invasive front of the tumor (69, 70).

The CXC chemokine system plays a crucial role in neutrophil
recruitment and transmigration via activation of the receptors
CXCR1 and/or CXCR2 (68, 71–73). Particular attention has been
paid to CXCL8 (IL-8), which is highly expressed in a large num-
ber of cancer types (74–76). Furthermore, CXCL8 expression in
patients with bronchioloalveolar carcinoma correlates positively
the number of tumor-associated neutrophils as well as with a poor
prognosis for the patients (70). Likewise, in a mouse model of
CXCL8-overexpressing (human) ovarian carcinoma, the tumors
show increase infiltration of neutrophils (77). However, it is
important to mention that there is redundancy within the CXC
chemokine system. Hence, it is likely that a complex crosstalk
between different CXC chemokines and the activation of their cog-
nate CXC regulates the recruitment of neutrophil granulocytes to
the tumor.

Various mouse models have shown that neutrophils are cru-
cially involved in the process of tumor angiogenesis. Antibody-
mediated depletion of neutrophils impaired angiogenesis in mice
inoculated with CXCL8-containing matrigel plugs (78) as well
as in the transgenic RIPK1-TAG2 mouse model of pancreatic
carcinoma (79). Furthermore, tumor-infiltrating neutrophils are
express high levels MMP-9 (80), and therefore could foster angio-
genesis by releasing angiogenic factors from the extracellular
matrix (81).

In addition, neutrophils are able to release angiogenic mole-
cules like VEGF upon activation to induce vascular remodeling.
However, whereas hypoxia induces the upregulation of VEGF
expression in TAMs, neutrophil VEGF-release remains unaffected
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by the oxygen levels (82). In contrast, exposure to TNFα trig-
gers the release of VEGF directly from neutrophils (83) and
furthermore, TNFα induces the production of the angiogenic
chemokines CXCL8 and CXCL1 (84, 85). Finally, CXCL8 can
trigger neutrophil MMP-9 release, which in turn generates a
highly active form of CXCL8 by means of protein cleavage (86),
thereby creating feed forward loop involving release of angiogenic
cytokines and additional neutrophil recruitment.

MAST CELLS
Infiltrates of mast cells have been observed in solid tumors as
well as hematological malignancies (87). Mast cells are able to
release an array of angiogenic factors, including fibroblast growth
factor (FGF)-2 and VEGF (88, 89). In experimentally induced
tumors, mast cell infiltration precedes the angiogenic switch and
the development of carcinomas from dysplastic cells (90–92).

Mast cell recruitment depends on the secretion of tumor-cell-
derived soluble factors of which the stem cell factor (SCF) is
considered to be the most important (93, 94). In addition FGF-2,
VEGF, platelet-derived endothelial cell growth factor (PD-ECGF),
RANTES, monocyte chemotactic protein (MCP)-1, adenosine,
and adrenomedullin have been reported to play a role in mast
cell trafficking (95–97).

In the transgenic mouse model human papilloma virus (HPV)
16-induced carcinogenesis showed mast cell accumulation around
hyperplastic and dysplastic cells that preceded the onset of angio-
genesis and malignant transformation (98). Infiltrating mast cells
were indentified as important sources of MMP-9, tryptase, and
chymase and noteworthy, in this setting angiogenesis was abro-
gated by mast cell-deficiency, highlighting the importance of mast
cell-driven angiogenesis in squamous cell carcinogenesis. (98).

Likewise, in colon carcinomas that develop from premalignant
polyps, the adenomateous polyps are characterized by high num-
bers of mast cells. Remarkably, existing polyps show significant
remission upon mast cell depletion (99). Furthermore, the pres-
ence of mast cell and particularly their ability to degranulate has
been shown to be indispensable for tumor progression in a Myc-
driven model of pancreatic cancer. In contrast, preventing the
degranulation of mast cells within the tumor stroma leads to rapid
apoptosis of tumor cells as well as vascular endothelial cells (100).

Several experiments have shown that the expression of another
important angiogenic factor, angiopoietin-1 (Ang-1) by mast cells
drives neoangiogenesis (101). A close correlation between the
presence of mast cells, neovascularization, and tumor progression
has been shown for various tumor entities, including plasmacy-
toma, in mammary carcinoma (102, 103), colon cancer (104), and
cervical cancer (105). In the latter tumor-associated mast cells
are tryptase-positive and their number increases number along
with vascular density during the transition from cervical dysplasia
to invasive carcinoma of the cervix (106). Furthermore, accu-
mulation of VEGF-expressing mast cells has been documented
in laryngeal, pulmonary neoplasms, and malignant melanoma
(107–114) and in the latter one this correlated with a poor prog-
nosis (115). In esophageal and endometrial cancer as well as in
hematological malignancies including B-cell non-Hodgkin’s lym-
phomas, multiple myeloma, myelodysplastic syndrome, and B-cell
chronic lymphocytic leukemia, the degree of mast cell infiltration

and vascular density have been shown to be of prognostic value
(116–122).

EOSINOPHIL GRANULOCYTES
Eosinophils are specialized in defending the body against parasites
by releasing granules loaded with highly cationic proteins and play
a crucial role during allergies (123).

Accumulation of eosinophils has been documented in vari-
ous tumor types including nasopharyngeal (124) and oral squa-
mous cell carcinomas (125), tumors of the gastrointestinal tract
(104), and lymphomas (126). However, whether the presence of
eosinophils represents a positive or negative prognostic factor is
tumor entity-dependent. Recruitment of eosinophils to the tumor
depends on the chemokine CCL11, which is highly selective for
this cell type (127, 128). Depending on the tumor context, tumor
cells, fibroblasts, and endothelial cells in the tumor stroma as well
eosinophils themselves have been identified as important sources
for CCL11 within the tumor.

With regard to their angiogenic function, it has been sug-
gested that eosinophil-stimulated proliferation and migration of
endothelial cells is at least partially mediated by VEGF (129).
Indeed, in vitro-cultured eosinophils releaseVEGF with their gran-
ules and the secretion of these granules is triggered by IL-5 (130,
131). However, whether this takes place to the same extent in the
tumor microenvironment awaits further experimental evidence.

In addition to VEGF, eosinophil granules contain a diverse array
of molecules that promote angiogenesis, including b-FGF, IL6,
CXCL8, GM-CSF, PDGF, TGFβ (132), and MMP-9 (133). These
angiogenic responses and the release of these molecules occur
upon stimulation with TNF-α and CCL11 (133, 134). Interest-
ingly, eosinophils preferentially infiltrate into hypoxic areas of the
tumor (135). Therefore, degranulation of eosinophils and secre-
tion of angiogenic factors in the tumor microenvironment might
deliver the angiogenic signal specifically the hypoxic regions of the
tumor.

MYELOID-DERIVED SUPPRESSOR CELLS
Myeloid-derived suppressor cells (MDSC) represent a sub-
set of immature progenitor cells for myeloid cells (136).
MDSC can be roughly divided into CD11b+Gr1hi (alternatively
LY6G+LY6Chi), which are reminiscent of immature neutrophils,
and those that are CD11b+Gr1low (LY6G+LY6Clow) and present
a monocyte-like phenotype (137, 138). MDSCs have a strong
immunosuppressive function (137, 139, 140) and potently inhibit
T and NK cell activity as well as DC maturation (141, 142).

Myeloid-derived suppressor cells can be detected in tumors
as well as in the circulation of cancer patients and their num-
bers correlate with cancer stage (142–144). Noteworthy, therapy
with cytotoxic agents can further increase the burden of circu-
lating MDSCs, indicating that this cell type might play a role in
treatment failure (143). Likewise, MDSCs can be found in various
murine tumor models (140, 145–147) where they represent up to
5% of the cells (136).

Upon stimulation with G-CSF, CD11b+Gr1+ cells can directly
contribute to vessel neoformation by releasing the protein Bv8
(146) with and its interaction via its receptors EG-VEGRF/PKR-1
and EG-VEGFR/PKR-2 (148). In addition, Bv8 can stimulate the
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mobilization of granulocytes and monocytes (149). Neutraliza-
tion of Bv8 results in reduced vessel density and impaired tumor
growth in xenograft tumor models as well as in transgenic model
of pancreatic cancer (146, 150). Besides the suppression of the
anti-tumor activity of T and NK cells by means of arginase 1
and inducible nitric oxide synthase (iNoS) (151–153), MDSCs
can foster tumor growth by releasing MMPs that increase the
bioavailability of VEGF within the tumor microenvironment (136,
147). Particularly, MMP-9 seems to play an important role in
tumor vascularization since vessel formation and tumor growth
was impaired in the presence of MMP-9-deficient MDSCs (136).

Interestingly, some MDSC populations are found in jux-
taposition to tumor blood vessels, indicating that MDSC are
actively retained in the perivascular area whereas other MDSCs
seem to transdifferentiate into endothelial cell-like cells including
increased expression of CD31 and VEGFR2 (136) and integrate
into tumor vasculature. Hence, it will be key to identify the mech-
anisms that guide MDSC positioning within the tumor as well as
the signaling pathways that regulate MDSC transdifferentiation.

TIE2-EXPRESSING MONOCYTES
A unique feature of the recently discovered TIE2-expressing
monocytes (TEM) in contrast to other monocyte populations
is that they express the angiopoietin receptor TIE2 (154–157).
However, TEM are different from TIE2-expressing circulating
endothelial cells or endothelial progenitors cells (157). The pres-
ence of TEM has been described in various human tumor entities
(157) as well as in different mouse models of cancer (154). TEM
recruitment is largely regulated by the TIE2 ligand, angiopoietin-2
(ANGPT2) (155, 157). Tumor-infiltrating TEM have been shown
to localize in close proximity to blood vessels and to hypoxic areas
of the tumor (154, 157). However, it is not known whether this dis-
tribution pattern is due to differential ANGPT2 expression (158,
159) within the tumor.

The localization of TEM adjacent to tumor blood vessels indi-
cated that these cells might have profound impact on the process
of tumor angiogenesis. Indeed, selective ablation of TEM from
the tumor microenvironment reduced angiogenesis and impaired
growth in gliomas (154) without affecting the recruitment of TAM
or neutrophils into these tumors. Remarkably, despite the fact that
TEM numbers within the tumor are lower than those of TAM and
granulocytes, TEM showed significant contribution to vessel neo-
formation, further indicating that this cell type is a potent driver of
tumor angiogenesis (154). Recently, it has been shown that TEM
transmit the angiogenic signal at least partially by the expression
of b-FGF (154). However, the mechanisms by which TEM exert
they pro-angiogenic function are still matter of debate and subject
of current studies.

NATURAL KILLER CELLS
Natural killer cells are cells of the innate immunity that arise from
a common lymphoid progenitor cell. These cells are characterized
by a high cytolytic capacity against transformed cancer cells. In
addition to their important role in immunosurveillance, NK cells
can contribute to neovascularization, particularly in the uterus. In
humans, uterine NK cells express high levels of CD56 and low lev-
els of CD16 (CD56bright CD16dim) and can infiltrate the uterus

in large numbers. These uterine NK cells show a highly angiogenic
phenotype and contribute to the physiological vascular remodel-
ing in the uterus during the secretory phase of menstrual cycle as
well as during pregnancy (160).

However, the contribution of NK cells to the process of tumor
angiogenesis has not been thoroughly dissected yet. A recent study
showed that the CD56(+)CD16(−) NK subset in non-small cell
lung cancer patients, which represents the predominant NK sub-
set in tumors, was associated with VEGF, placental growth factor
(PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral
blood CD56(+)CD16(−) NK cells from patients with the squa-
mous cell carcinoma subtype showed higher VEGF and PlGF
production compared to those from patients with adenocarci-
noma and controls. This suggests that NK cells in non-small cell
lung cancer act as pro-angiogenic cells (161).

Furthermore, a recent study identified (NCR) NKp46-
expressing lymphoid tissue inducer cells to play an important role
in IL-12 mediated tumor rejection. Interestingly, tumor rejection
by these cells did neither depend a cytokine response involv-
ing IFN-γ, IL-22, lymphotoxin, or IL-17 nor perforin-dependent
cytotoxic activity. Instead, NKp46+ lymphoid tissue inducer
cells induced the expression of various adhesion receptors by
tumor endothelium thereby facilitating the infiltration of other
pro-angiogenic leukocytes into the tumor (162).

Yet, the precise role for NK cells in tumor angiogenesis remains
to be defined. Given the crucial impact of NK cells on the pheno-
type of the uterine vasculature, it will be important to define the
role of NK cells for vascular remodeling of the tumor vasclature
by combining NK cell-specific deletions of angiogenic factors with
murine models of cancer.

DENDRITIC CELLS
Dendritic cells play a pivotal role in tuning the adaptive immune
response owing to their highly specialized function of antigen pre-
sentation and the ability to trigger both primary T- and B-cell
responses. DC can be roughly divided into two subpopulations:
myeloid DC (MDC) and plasmacytoid DC (PDC) (163, 164).

Myeloid DC in the bone marrow are immature dendritic cells
with a high phagocytic potential. The maturation of these cells
is usually initiated upon antigen processing, which also leads to
homing of DC to secondary lymphoid tissues. In a subsequent
step DC can trigger the activation of antigen-specific T cells. Inter-
estingly, recent studies could show that soluble factors derived
from the tumor can interfere with this maturation process and
impair the development of mature DC (165, 166). Consistent with
this, tumors frequently exhibit an accumulation of immature DC
and only very few mature MDC (167, 168). Among the tumor-
derived factors that potentially recruit immature DC to the tumor,
VEGF (165, 169), β-defensin (170), CXCL12 (171), HGF (172),
and CXCL8 (173) have been suggested.

Tumor-associated DC can directly drive tumor angiogenesis
through the release of pro-angiogenic cytokines such as TNFα,
CXCL8, and osteopontin (171, 173). Moreover, these factors stim-
ulate other cells including monocytes to release pro-angiogenic
molecules such as IL-1 (174–176). Furthermore, recent work
indicates that immature DC which coexpress DC and endothe-
lial markers represent a reservoir of endothelial progenitor cells.
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After transdifferentiation into endothelial-like cells, these cells are
able to integrate into the vasculature and thereby foster tumor
angiogenesis (177). Interestingly, the expression of endothelial cell
markers in DC and the process of transdifferentiation seem to
be controlled by the angiogenic factors VEGF and oncostatin M
(170, 178).

Among the tumor-derived factors that might be responsible for
the angiogenic phenotype of immature DC, VEGF has been most
extensively studied (169, 179). However, other tumor-derived fac-
tors like HGF (172), TGFβ (180), prostaglandin E2 (181), lactate
(182), and osteopontin (183) are also involved in the suppression
of DC maturation and the induction of pro-angiogenic prop-
erties. Conversely, immature DC can increase the expression of
VEGF and CXCL8 upon hypoxic challenge (184), which might
exert pro-angiogenic function in the tumor microenvironment
(169, 173, 185).

ADAPTIVE IMMUNITY
B CELLS
The impact of B cells on inflammation-associated cancer develop-
ment remains to be further explored. High numbers of B lympho-
cytes have been found in aggregates with other immune cells at
the inflammatory site in tumor tissues of various human cancers
(186). The intra-tumoral presence of B cells together with CD8+

T cells has been correlated with enhanced survival in patients
of ovarian (187) and non-small lung cancer (188) in contrast to
tumor tissue with exclusively one cell population, and beneficial
effects of B-cell-mediated antibody production have been shown
to result in better prognosis for patients of medullary breast cancer
(189). Beside the beneficial effect of B cells on anti-cancer immu-
nity, mechanistic in vivo studies also identified a cancer-promoting
role of this cell type. Increased immunoglobulin deposition, trig-
gered by B cells, promote enhanced recruitment of immune cells
into premalignant skin and, in consequence, resulted in malignant
progression during chronic inflammation in experimental skin
cancer models (190, 191). Exemplarily, adoptive transfer of B cells
into B- and T-cell deficient mice has been shown to restore the phe-
notype of activated tumor vasculature (190). Quite recently, Yang
and colleagues identified the interplay between B cells with ECs
via the signal transducer and activator of transcription 3 (STAT3)
(192) an established and critical mediator of tumor angiogenesis
caused by its potential to regulate VEGF expression (193–195). By
using different experimental tumor models they could show that
B cells differ in their function in dependence of STAT3 expres-
sion. STAT3 was persistently activated in tumor-infiltrating B cells
during tumor growth. Adoptive transfer of intrinsic activated
STAT3-expressing B lymphocytes into implanted Rag1−/− mice,
lacking mature T or B cells resulted, contributed to tumor growth
and progression whereas in turn, adding STAT3-deficient B cells
to the tumor microenvironment resulted in reduced tumor devel-
opment. Furthermore, the impact of Stat3 activity in B cells for
tumor progression was accompanied by enhanced tumor angio-
genesis representing increased numbers of tumor-associated blood
vessels (192). Further analyses identified the upregulation of sev-
eral STAT3-downstream pro-angiogenic molecules such as VEGF
in ECs after reciprocal interaction with STAT3-activated B cells
(192). Nevertheless, B cells also have the potential to modulate

tumor angiogenesis via interaction with myeloid cells. It is well
known that in progressing tumors, TAMs generally represent the
M2-like polarization, which is characterized by low inflamma-
tory but high tissue remodeling and pro-angiogenic potential (34,
196). The polarization of TAMs is orchestrated by tumor- and
host-derived cytokines and chemokines (6). In the majority of
human cancers high amounts of TAMs in tumor infiltrates corre-
lates with bad prognosis and reduced overall survival (197, 198).
A recent study using a HPV-driven mouse model of squamous cell
carcinoma indicates that B-cell-produced antibodies have a key
role in macrophage-driven tumor progression by interaction and
activation of Fcγ receptors on both tumor-resident and recruited
myeloid cells. As a result, immune complex-triggered TAMs recruit
myofibroblasts via macrophage-derived IL-1 into the tumor site,
which in consequence, promote tumor angiogenesis (199). These
studies pointed out the significance of B-cell-mediated pathways
for therapeutic intervention in patients with chronic inflamma-
tory disease. Initial clinical trials targeting B cells and IL-1 are
currently running (200, 201) and may provide more insights into
defining the diversity of cancer-related inflammatory response in
humans, as well as may offer new innovative anti-tumor strategies.

T CELLS
Circulating T lymphocytes interact with human vascular ECs that
express class I and II MHC-peptide complexes but also a variety
of different co-stimulatory molecules on their surface by attach-
ment and transmigration through capillaries (202). So, whenever
foreign peptides, such as microbial pathogens, are presented by
endothelial MHC molecules, this contact-dependent interaction
offers the opportunity to trigger circulating T-cell response. Unde-
niable, the MHC expression patterns vary among species and
tissue. Exemplarily, the expression level of MHC molecules in
non-lymphoid tissues has been found to be much higher than
on other cells (203) and also class II MHC molecules have been
detected on ECs throughout the human microvasculature and
veins but its expression varies on arteries dependent on anatomic
location (204). However, T cells can directly regulate the level of
MHC expression via IFN-γ secretion (205, 206) but also influ-
ence the regulatory function of ECs namely the regulation of
blood vessel formation and remodeling, blood flow, permselec-
tivity, blood fluidity, and hemostasis (207). Although T cells are
not a source of classical angiogenic modulators such as VEGF or
angiopoietin-2, they can directly synthesize b-FGF and heparin-
binding epidermal-like growth factor (HB-EGF), acting in a pro-
angiogenic manner (208). On the other hand, also inhibitory prop-
erties of T-cell-derived cytokines such as TNF, TGF-β, and INF-γ
on angiogenic processes have been reported in vitro and in vivo
(209–212). Paradoxically, TNF can also act in a pro-angiogenic
manner through induction of sphingosine-1-phosphate, which in
turn interacts with Edg family receptors on ECs (213). Via surface-
bound molecules like TNF, FasL, or Trail, T cells can also induce
cell-contact-dependent apoptosis of ECs (214). In accordance with
TNF-induced apoptosis, killing via FasL appears to require sensi-
tization of the endothelium, e.g., by IFN-γ-induced upregulation
of Fas and pro-caspase-8 (214).

T-cell-secreted TNF can also influence the blood fluidity by
converting EC from an anti-thrombotic to a pro-thrombotic state
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via production of pro-coagulant proteins such as tissue factor
(TF) and plasminogen activator inhibitor-1 (215). In parallel,
TNF has the potential to diminish thrombomodulin expression by
transcription inhibition (216). The physiological synergy between
activating responses, such as the induction of TF expression, and
dysfunctional responses like the loss of thrombomodulin which,
in consequence, up-regulates fibrin deposition on the surface of
vascular ECs may underlie pathophysiological processes such as
intravascular thrombosis in a variety of vascular diseases.

T-cell-derived cytokines also allow T cells to influence the
cytoskeletal rearrangement in EC by stimulation of gap junc-
tion formation, resulting in reduced vascular permselectivity of
cultured ECs (217), but also cytokine-independent T-cell contact-
dependent vascular leakage has been reported (218) of which the
mechanism behind is already unknown. Heterotypic gap junctions
between T cells and ECs have also been reported during the course
of autoimmune inflammation (219).

Importantly, T-cell-derived TNF, IL-1, and INF-γ have been
implicated in the regulation of the inhibitory molecule programed
cell death-1 ligand (PD-L1) (220). This is of high importance
since a successful anti-tumor immunotherapy requires not only
activated tumor antigen-specific T cells, but also the access of T-
cell to the malignant compartment by a vascular network. Recent
studies suggest that lower dosage of anti-angiogenic treatment

may be pave the way forward a “normalized” tumor vessel sit-
uation, which, in turns, result in a more effective strategy to
recondition the tumor immune microenvironment for anti-cancer
immunotherapies in a clinical setting such as blockage of immune
checkpoints. For example, the ongoing clinical trial using an anti-
PD-L1 antibody in combination with a high dose of bevacizumab
(anti-VEGF antibody) in patients with advanced solid tumors
might shed some light on this interaction (see ClinicalTrails.gov,
NCT01633970).

CONCLUSION
It is now recognized that the immune cell compartment within the
tumor is a major driver of angiogenesis and vascular remodeling
in addition to the tumor cell itself. As summarized in Figure 1,
every immune cell type identified so far has been shown to impact
the process of tumor angiogenesis either directly or indirectly.
Furthermore, many angiogenic signaling pathways like VEGF are
shared by the different cell types (Figure 1) so that targeting the
angiogenic signal in one cell type could be compensated by another
cell type. Similarly, the angiogenic signal can be transmitted by
different factors. Therefore, inhibiting one factor might lead to
the compensatory upregulation of another angiogenic molecule
resulting in a rather modest effect on net angiogenic activity.
Hence, overall angiogenic activity within a tumor is influenced

FIGURE 1 | Reciprocal interactions between different immune cell types and the tumor vasculature in the tumor microenvironment.
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by many different immune cell types and an even larger reper-
toire of angiogenic factors. It will be the future challenge to dissect
out and understand how the interplay between all these different
sources of pro-angiogenic stimuli is orchestrated. On the other
hand, delivery of some angiogenic factors by certain immune cell
subsets seems to play a strictly non-redundant role at least in a
context-dependent manner. It is therefore of utmost importance
to identify the players that provide exclusive angiogenic signals to
the tumor microenvironment.
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