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Solid tumors, whether in vitro or in vivo, are not an undifferentiated mass of cells. They
include necrotic regions, regions of cells that are in a quiescent state (either slowly growing
or not growing at all), and regions where cells proliferate rapidly. The decision of a cell to
become quiescent or proliferating is thought to depend on both nutrient and oxygen avail-
ability and on the presence of tumor necrosis factor, a substance produced by necrotic cells
that somehow inhibits the further growth of the tumor. Several different models have been
suggested for the basic growth rate of in vitro tumor spheroids, and several different mech-
anisms are possible by which tumor necrosis factor might halt growth.The models predict
the trajectory of growth for a virtual tumor, including proportions of the various compo-
nents during its time evolution. In this paper we look at a range of hypotheses about basic
rates tumor growth and the role of tumor necrotic factor, and determine what possible
tumor growth patterns follow from each of twenty-five reasonable models. Proliferating,
quiescent and necrotic cells are included, along with tumor necrosis factor as a potential
inhibitor of growth in the proliferating pool and two way exchange between the quiescent
and proliferating pools. We show that a range of observed qualitative properties of in vitro
tumor spheroids at equilibrium are exhibited by one particular simple mathematical model,
and discuss implications of this model for tumor growth.

Keywords: tumor spheroid, mathematical oncology, mathematical biology, tumor models, necrosis, quiescence,
tumor simulation

1. INTRODUCTION
Tumor spheroids cultured in vitro play an important role in can-
cer research. Various authors have pointed out that spheroids are a
better representation of many types of in vivo tumors than mono-
layer culture, and less expensive than in vivo studies, as described
by Santini et al. (2000) and Hirschhaeuser et al. (2010).

Spheroid growth is observed to cease spontaneously, with a
characteristic long term anatomy and a variety of terminal vol-
umes for any given cell line. At the earliest stage the spheroid may
be an undifferentiated mass of proliferating tumor cells. At an
intermediate stage the proliferating cells form a shell around the
outside of the spheroid and the inner core will consist of live cells
that are not actively dividing, which we will refer to as “quies-
cent.” These have been observed in tumor spheroids via imaging
techniques (Sherar et al., 1987) and through isolation and stain-
ing (Preisler et al., 1977; Bauer et al., 1982). At later stages the
inner core of the spheroid will be necrotic tissue, surrounded by
a shell of quiescent cells, and an outermost layer of live, prolif-
erating cells (Folkman and Hochberg, 1973; Sherar et al., 1987).
Proliferating cells are the target of most cancer therapies. The
quiescent cell population has been implicated as a population
resistant to some of these therapies, playing an important role
in tumor regrowth (Potmesil and Goldfeder, 1980; Kallman et al.,
1982).

Numerous models for tumor spheroids, quiescence, and necro-
sis, are in the literature, and these exhibit the observed phenomena
to greater or lesser degree. Models range from extremely complex

to simple with an enormous range in between. Simple models only
attempt to match total tumor size (Marusic et al., 1994; Demi-
denko, 2006). These find a reasonably good match with logistic
and Gompertz equations, which postulate a known bound on
spheroid size.

The necrotic core is a feature of all but the simplest models.
Tumor necrosis factor has been implicated as the cause of the even-
tual cessation of growth in spheroids (Freyer, 1988). Greenspan
(1972) is possibly the earliest such model, employing numerous
simplifying assumptions to arrive at differential equations that can
be solved explicitly. Menchon and Condat (2008, 2009) come to the
conclusion, based on mathematical models, that some inhibitory
factor is necessary for growth cessation in spheroids. This has
been a general observation for mathematical models that do not
include an a priori known bound for the size of the spheroid in
the governing equations, as is the case for logistic or Gompertz
models.

Some models take diffusion of nutrients into account, produc-
ing the characteristic distribution of proliferating, quiescent and
necrotic cells, relying on a variation of the diffusion equation and
parameters for a variety of nutrients (Venkatasubramanian et al.,
2006). An early example is by Gyllenberg and Webb (1990), whose
model includes both quiescence and necrosis to arrive at a growth
trajectory that resembles the observed Gompertz curve, but which
drives the proliferating cell population to zero. To this scenario,
some authors add cellular motion (Stein et al., 2007), a consid-
eration of the forces that determine the shape of the tumor mass
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(Frieboes et al., 2006), and mechanisms for the onset of necrosis
(Menchon and Condat, 2008). Others achieve the similar struc-
ture through a combination of models at different level of structure
(Jiang et al., 2005).

A series of models by Adam (1986, 1987a,b) dating back to
the 1980s uses one dimensional diffusion with nutrient source
and a time independent source of unspecified mitotic inhibitor
responding to a switch. The continuously growing necrotic core
observed in experiment suggests that the production of mitotic
inhibitor is neither time independent nor switched discontinu-
ously. Adam notes in his third paper that the necrotic core would
have to be taken into account in future models, such as those
presented in this paper, in order to match the observations in
Folkman et al. (Folkman and Hochberg, 1973; Adam, 1987b). The
more sophisticated treatment in Maggelakis and Adam (1990)
yields the observed Gompertz curve but does this paper does
not give information about the composition of the tumor at
equilibrium. A similar series of models by McElwain and coau-
thors (McElwain and Ponzo, 1977; McElwain, 1978; McElwain
and Morris, 1978) consider the diffusion process in a spheroid
in detail.

The advantage of complex models is that they produce a range
of outcomes, some of which are similar to observed growth pat-
terns. The disadvantage is that they require knowledge of many
specific parameters, some of which are hard to obtain. The mod-
els we consider in this paper are similar to the one developed
by Landry et al. (1982), which over a limited time agreed with
data from Folkman and Hochberg (1973) but did not include
a quiescent component and did not have the bounded growth
characteristic of tumor spheroids. They are also similar to one
proposed by Piantadosi (1985), which includes all three compo-
nents and places a bound on the reproducing subpopulation.
These are some of the older, simpler models in the literature.
They do not attempt to explain shape, only quantities of var-
ious cell types. They were developed before an understanding
of the potential role of tumor necrosis factor, and deserved
to be revisited with that role in mind. None of these exam-
ples includes the return of quiescent cells to the proliferating
pool.

The goal of this paper is to find the simplest possible system
of ordinary differential equations that produces the qualitative
results observed in Folkman and Hochberg (1973), Sherar et al.
(1987), and Freyer (1988), starting from the assumption that
proliferating, quiescent and necrotic layers exist. As part of this
search, we will rule out a large collection of simple models that,
although conceptually reasonable, do not produce results consis-
tent with these three papers. Simple, as interpreted here, means a
system of ordinary differential equations that has approximately
as many parameters as there are measured quantities. In these
equations, diffusion is assumed to be uniform in the proliferating
compartment and sufficient to produce growth. The movement
of nutrient is not modeled, except as a variation between com-
partments. The image of a spheroid at equilibrium from the
Folkman and Hochberg paper shows a very thin shell of pro-
liferating cells, hardly enough to make the effects of diffusion
prominent. Similarly, tumor necrosis factor inhibiting growth

of proliferating cells is assumed to reach those cells uniformly.
Although clearly a simplification in some respects, such models
are desirable as they allow an approximate fit to measured data
with the correct range of qualitative behaviors, without requir-
ing knowledge of quantities that are not easily measured and
with few enough parameters that the range of possible answers
is small.

These papers describe four quantities at moments in time: the
tumor size in Folkman and Hochberg (1973) and Freyer (1988),
and the amounts of proliferating, quiescent and necrotic cells in
Sherar et al. (1987). The basic qualitative results are summarized
in the following list.

1. Spheroids, no matter what the initial conditions may be,
eventually develop three layers of proliferating, quiescent and
necrotic cells (Sherar et al., 1987).

2. Growth of spheroids eventually stops. (Folkman and Hochberg,
1973).

3. When the growth stops, there remains a thin layer of actively
proliferating cells at the boundary (Folkman and Hochberg,
1973).

4. The final size of the spheroids is correlated with thickness of
the proliferating shell (Freyer, 1988).

5. The final size of the spheroids is correlated with the size at
which necrosis begins (Freyer, 1988).

6. The more spheroids in a flask, the smaller the average size when
growth ends (Folkman and Hochberg, 1973).

1.1. DEVELOPMENT OF MODELS
The models developed for this study track the dynamics of a three
part tumor spheroid growing in vitro. The quantities tracked are

1. Proliferating cells, which after time form a concentric shell at
the exterior of the spheroid, as observed in numerous imag-
ing studies, including those of Freyer (1988), Folkman and
Hochberg (1973), and Sherar et al. (1987). These are exposed to
the nutrient solution. They may become quiescent or they may
die and be shed from the spheroid. In early stage spheroids the
proliferating cells may constitute the entire spheroid and grow
at an intrinsic rate. A fraction of proliferating cells may also be
shed into the surrounding medium.

2. Quiescent cells, which form a secondary, and usually thicker,
shell inside the outer layer of proliferating cells. These arise as
proliferating cells pass to a quiescent state. They may return to
a proliferating state or experience cell death due to necrosis.

3. Necrotic cells, which form the core of the spheroid. These can
be absent in small spheroids or constitute the majority of the
spheroid mass in older cultures. They arise as quiescent cells die.
Necrotic cells may also undergo dissolution and be removed
from the system entirely.

4. Total spheroid size.

The basic system of three non-linear ordinary differential equa-
tions coming from items 1 to 3 above is shown in full generality
below, with explanations of the individual terms following. Note
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that 25 variations result from our considerations, each labeled with
a number from 1 to 5 and a letter from A to E.

dP

dt
= G(P)− bP ,QP + cQ,P Q − F (P , Q, N )− dP (1)

dQ

dt
= bP ,QP − cQ,P Q − eQ,N Q +H (P , Q, N ) (2)

dN

dt
= eQ,N Q −mN (3)

1.1.1. Growth of proliferating cells, G(P)
Growth of tumor spheroids is observed to cease. Thus there is
some limiting factor on the growth of P. However, there is debate
about the nature of this factor. A limit can be imposed directly by
using logistic or Gompertzian growth for P, both of which have
similar qualitative properties. However the access of proliferating
cells to nutrient is likely to be dependent on the surface area of
the spheroid, with any limitation to growth due to other factors
such as tumor necrosis. Models 3, 4, and 5 below have different
versions of this hypothesis. Yet another alternative is to assume
simple exponential growth of P. We look at five variations of the
function G(P). All models include a death rate of proliferating
cells, dP, that are assumed to be shed into surrounding medium
and lost from the model.

1. Model 1 uses a logistic term to limit the growth of P :
G(P)= aP(1− P) We could have used a Gompertzian model
with similar qualitative results.

2. Model 2 assumes exponential growth: G(P)= aP, as in Pianta-
dosi (1985).

3. Model 3 assumes that growth is proportional to the surface area
of the spheroid: G(P)= a(P +Q+N )2/ 3.

4. Model 4 assumes that growth is jointly proportional to both
surface area and volume of P: G(P)= aP(P +Q+N )2/ 3.

5. Model 5 uses the surface area of the spheroid as the limiting
factor in a logistic growth term: G(P)= aP(1− P(P +Q+
N )−2/ 3).

1.1.2. Transition from proliferating to quiescent, bP,QP, cQ,PQ and
quiescent to necrotic, eQ,NQ

Tumor spheroids exhibit a layer of quiescent cells (Sherar et al.,
1987) which are thought to arise as proliferating cells lose access
to nutrients. Similarly, quiescent cells die after sufficient lack of
nutrient. In addition, it is known that quiescent cells may become
proliferating cells again (Potmesil and Goldfeder, 1980), and so
a return loop is included in the model, with a proportion of Q
returning to the proliferating pool. These terms remain the same
across all the models studied here. In in vivo tumors, the loca-
tion of quiescent cells (and also necrotic cells) would depend
on the geometry of this access, including the location of blood
vessels, and the growth of these classes of cells is difficult to mea-
sure. For simplicity we use linear terms to describe this transition.
There are two justifications for this. First, if we assume that pas-
sage to the quiescent state is a result of the limits of diffusion of
nutrients, then as P approaches a limiting thickness the amount
of proliferating cells transitioning to quiescent is proportional
to the surface of the inside of the proliferating shell. Near the

limiting thickness surface area is approximately proportional to
volume of P. Second, whatever rule governs the transition from
P to Q may be expressed as a Taylor series in P whose lead-
ing term must be the linear one. For both of these reasons, a
good first approximation to this process is linear dependence on
P given by bP,QP. Similar arguments may be made for the other
terms, cQ,PQ and eQ,NQ. Thus we assume that constant propor-
tion of P becomes Q, and a constant proportion of Q dies to
become N.

1.1.3. The effect of tumor necrosis factor, F(P, Q, N) and H(P, Q, N)
Extract of necrotic tumors is known to reduce the growth of
tumor spheroids (Freyer, 1988), but the mechanism is unclear.
It is possible that as quiescent cells become necrotic they release
a substance that slows growth of proliferating cells. It is possible
that the necrotic cells themselves continue to release such a sub-
stance. Finally, it is possible that some substance increases the rate
at which proliferating cells become quiescent, and perhaps this is
enough to stop growth. We have looked at all of these hypotheses,
and summarized them in five cases.

(A) Model A assumes that the proliferation of P is slowed when
proliferating cells come in contact with substances released
as quiescent cells die. F is thus proportional to both P and
the rate of necrosis, cQ, so that F(P, Q, N )= fQP. This term
can be interpreted as slower growth or as death and shed-
ding of P cells; mathematically it makes no difference. The
interesting feature of this model is that the growth reduc-
ing effect of necrosis is determined by the size of Q and
thus is bounded in models where Q approaches equilib-
rium. In this model no extra rate of quiescence is assumed, so
H (P, Q, N )= 0.

(B) Model B only assumes that the passage of cells from prolifer-
ating to quiescent is increased in proportion to the number
of proliferating cells. In this model, F(P, Q, N )= 0 and H (P,
Q, N )= hP, so there is effectively no tumor necrosis factor
that depends on Q or N.

(C) Model C includes features of both Model A and Model B, so
F(P, Q, N )= fQP and H (P, Q, N )= hP.

(D) Model D assumes that the proliferation of P is slowed when
proliferating cells come in contact with substances released
by all cells in the necrotic pool. F is thus proportional to both
P and N, so that F(P, Q, N )= fNP. This term can be inter-
preted as slower growth or as death and shedding of P cells;
mathematically it makes no difference. However, in models
where P and Q do not go to zero, N can get arbitrarily large,
unlike in models A and C. This model includes increased
passage of proliferating cells to the quiescent pool, so
H (P, Q, N )= hP.

(E) Model E assumes only that the proliferation of P is slowed
when proliferating cells come in contact with substances
released by all cells in the necrotic pool, so F(P, Q, N )= fNP
and H (P, Q, N )= 0.

1.1.4. Dissolution of necrotic cells, mN
A cell that is dead long enough may dissolve and its contents be
removed from the system. Indeed, this may be the very source of
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substances that retard growth. For our initial numerical experi-
ments, m was taken to be zero. In the results section we discuss the
various growth patterns that result from these experiments, a few
of which have good properties of the P and Q compartments, but
which have constantly increasing values for N. This is reasonable
because the system is live and dynamic, so there is always some
death taking place. Taking m to be any positive constant allows
N to reach equilibrium in these cases. Unless otherwise stated,
however, we take m= 0.

1.1.5. Constants
Default constants for all runs are a= 0.01, bP,Q= 0.01,
cQ,P= 0.005, d = 0.002, eQ,N= 0.002, f= 0.01, h= 0.001, m= 0.
These constants always give tumors that grow, at least initially.
Clearly, for each of these models we could choose sufficiently slow
growth (or fast death) so that the tumor size decreases, but this
is the less interesting case. Note that the constants were chosen
for the purposes of comparing models and do not represent any
particular cell line or data set. The constants chosen for these runs
may all be scaled to a different time frame. A more realistic growth
parameter, a, would be about 70 times larger than the one we chose
here if the time unit is 1 day. Scaling all constants together results in
faster growth but keeps equilibrium values the same. Data on how
the volumes or cell counts of the P, Q, and N pools change over
time for a particular type of spheroid is not available, so it is not
possible to infer the constants in the model with any certainty. The
results in this paper concern qualitative observations that depend
on equilibrium values only, and therefore do not depend strongly
on the exact constants chosen, as long as the system arrives at
equilibrium.

2. MATERIALS AND METHODS
All twenty-five models were run with default settings using Mat-
lab ODE 45 solver to compare qualitative outcomes. Subsequent
comparisons and graphs for all figures in this paper were run on
BGDEM software developed by Brian Reed. Adobe Photoshop was
used to format all graphs for publication.

The twenty-five models under consideration fall into three
broad groups when m= 0:

1. Models where P and Q approach a non-zero equilibrium: 1A,
1B, 1C, 2A, 2C, 3A, 3C, 3D, 3E, 5A, 5C. These models exhibit
the basic qualitative behaviors of P and Q described in the
literature.

2. Models in which P and Q approach zero: 1D, 1E, 2D, 2E, 4A,
4B, 4C, 4D, 4E, 5D, 5E. In these models total tumor growth
stops as this occurs, as the growth of N stops. Introducing a
small value for m does not change this behavior. It is possible
that other behaviors would appear if m were large enough, but
those behaviors would then depend on a parameter for which
there is, as yet, no estimate.

3. Models in which P and Q grow without bound: 2B, 3B, 5B.

These results are summarized in Table 1, where ∗ denotes a
non-zero equilibrium, 0 denotes cases where P and Q approach
zero, and u denotes unbounded growth.

A typical run from each of the first two categories is shown in
Figure 1.

Table 1 | Summary of model behaviors for all cases.

1 2 3 4 5

A * * * 0 *

B * u u 0 u

C * * * 0 *

D 0 0 * 0 0

E 0 0 * 0 0

* denotes a non-zero equilibrium, 0 denotes cases where P and Q approach zero,

and u denotes unsounded growth.

FIGURE 1 | Proliferating pools from models 3E and 1E compared.
a= 0.01, bP,Q =0.01, cQ,P = 0.005, d =0.002, eQ,N =0.002, f =0.01, h=0,
P 0 = 0.01, Q0 =0, N0 =0.

2.1. SOME COMMENTS ON THE EQUATIONS
The equation for Q′ is a simple linear relationship between P and
Q. Thus, if P reaches an equilibrium, so will Q in corresponding
proportion, for all twenty-five models. Similarly, for all models N ′

is positive if m= 0, and will continue to increase as long as Q (and
therefore P) is positive. Models for which P and Q go to non-zero
equilibrium will thus still have N increasing. However this is a
problem that can be easily solved by taking m to be any positive
number, forcing N to an equilibrium. For models in which tumor
growth depends on N (Models D and E), this has the effect of cre-
ating a non-zero equilibrium in cases that would otherwise have P
and Q going to zero.

Model 3E, which we examine further in this paper, has non-zero
equilibrium points given by the following equations.

Q =
b

c + e
P (4)

N =
e

m
Q (5)

0 = wX 4
− vX − u (6)

Here X = P1/ 3,u= a(1+α+β)2/ 3,v = (−b+ cβ − d),w = fα,
α = eb

m(c+e) , β =
b

(c+e) . The derivative of the right hand side
of equation (6) has at most one real root, thus equation (6) has
at most two real roots. By DesCartes’ rule of signs (for positive
parameters w, v, u) equation (6) has at most one real root. Thus,
the non-zero equilibrium, if it exists, is unique.
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3. RESULTS
3.1. MODEL B
These are the models in which necrotic factor plays no role. Of
these, only 1B, which has logistic growth, reaches a non-zero equi-
librium for P and Q, and that equilibrium is independent of initial
conditions. The same would hold if we replace the logistic term
with a Gompertz equation. The criticism of this model is concep-
tual. If there is a limit to growth, what is causing it? The limits of
diffusion explain uniform spheroids of proliferating cells, but not
actual spheroids, which grow to have a necrotic core that does not
require nutrient. The thin shell of proliferating cells is within the
range of diffusion, and should therefore not be limited in growth.
As the spheroid grows, the surface with its thin layer of proliferat-
ing cells resembles a plate culture, which is known to grow in an
unlimited fashion.

In model 4B, P and Q go to zero. This gives a spheroid of lim-
ited size, but it is dead. Models 2B, 3B, and 5B display unlimited
growth.

3.2. MODELS A AND C
Models 1A, 1C, 2A, 2C, 3A, 3C, 5A, and 5C all show P and Q going
to a non-zero equilibrium. This equilibrium may be calculated
directly from the equations and does not depend on N, which
continues to grow in these models. Thus, adding extra necrotic
factor to these models (by increasing the initial quantity of N, for
example) will have no effect on the eventual size of the proliferating
and quiescent pools. It would be difficult to duplicate the results
in Freyer (1988), which display a dependence of spheroid size on
various factors related to the quantity N, using these models.

3.3. MODELS 3D AND 3E
These models represent the best fit with qualitative observations.
The growth term reflects the assumption that diffusion is the dri-
ving supplier of nutrients. The only difference between these two
models is the rate at which proliferating cells become quiescent.
In both of these, P and Q stabilize as N continues to grow, but
the equilibrium values of P and Q cannot be deduced from the
equations, which depend on N. By adjusting the value of m to be
positive, we can arrange for N to arrive at any equilibrium value
(depending on the equilibrium value of Q).

The hypothesis of growth that is dependent on surface area
(Model 3) gives the best representation of experimental data
among the various models tested. Model 3E will always include
a non-trivial equilibrium for quiescent cells, as observed in Sherar
et al. (1987). Furthermore, this model only arrives at equilibrium
in the presence of a tumor necrotic factor that depends on the
actual quantity of necrosis that has occurred (Models D and E).
Finally, the extra feature of faster passage of proliferating cells to
quiescent does not play an important role here, with the caveat that
only a very simple form of this extra feature was tested. Figure 2
shows a typical run of Model 3E.

3.4. A CLOSER LOOK AT EXPERIMENTAL RESULTS
We notice the following phenomena in Model 3E, which mirror
the results of Folkman and Hochberg (1973):

1. Figure 2 shows a typical run of Model 3E, displaying the pro-
liferating pool and the total spheroid size. In early stages of

FIGURE 2 | A typical run of Model 3E. a=0.01, bP,Q =0.01, cQ,P =0.005,
d =0.002, eQ,N =0.002, f =0.01, h=0, m=0.0001, P 0 =0.01, Q0 =0,
N0 =0.

growth, the proliferating pool is a large fraction of the spheroid,
while at equilibrium the proportion of the tumor accounted for
by proliferating cells is much smaller. This phenomenon was
observed by Folkman and Hochberg (1973), with proliferating
cells being as much as 60% of the spheroid volume in early
stages and dropping to 14% at equilibrium.

2. The data displayed in that same paper show a distinctive early
overshoot of both the total volume and the proliferating pool,
followed by a slight drop as the spheroid approaches equilib-
rium. That overshoot is also present in Figure 2 of this paper,
Model 3E.

3. Figure 3 shows a late stage version of the 3E spheroid, in which
the growth rate of proliferating cells is reduced drastically. Note
that the growth term for this model is proportional to surface
area, whereas the removal of P is linear. The two processes
are not symmetric. The spheroid volume is seen to drop in
a linear fashion. This was observed in vitro by Folkman and
Hochberg when dormant spheroids were exposed continuously
to a substance that prevented mitosis.

We now turn to the experiments done by Freyer (1988), in
which a variety of cell lines were cultured as spheroids in flasks.
Several features of this experiment are particularly important from
the modeling standpoint. First, cell lines were cultured separately.
Second, flasks were renewed with added nutrient and by remov-
ing excess spheroids to ensure a steady supply of nutrient to each
spheroid. Third, multiple spheroids of varying sizes were in each
flask. Freyer observes that the only parameter of the spheroids that
he measured which was positively correlated with saturation size
was the thickness of the viable cell rim. From the point of view of
our models, this is the statement that the equilibrium values of P
and total spheroid size at equilibrium were positively correlated.
We show one scenario that results in the correlation observed by
Freyer.

Freyer proposes that the variation in final size could be the
result of variation in parameters associated to cell growth or decay.
We can model this as a variation in the growth parameter a.
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FIGURE 3 | Approximate terminal values at t = 10,000 for the run
shown in Figure 2 are starting values in this run of Model 3E. Only total
spheroid size is plotted. The growth rate of P was drastically decreased.
a=0.0001, bP,Q = 0.01, cQ,P =0.005, d = 0.002, eQ,N =0.002, f =0.01, h=0,
m=0.0001, P 0 =0.426, Q0 =0.681, N0 =10.4.

In Figures 4A,B we compare three runs of revised model 3E at
a= 0.04, 0.02, 0.01 respectively. The figure shows that the equi-
librium values of both the spheroid size and the size of the pro-
liferating pool are positively correlated. Further, one can compare
the equilibrium values of the proliferating pool with the equilib-
rium values of the spheroid size raised to the 2/3 power, which
correlates with surface area of the tumor. This ratio increases with
tumor size in the example shown, indicating a thicker rim of pro-
liferating cells in larger tumors, as observed in experiment. For
the runs pictured, the ratios are 0.11, 0.096, and 0.067 respectively
from the largest to the smallest spheroid. We can also deduce this
result from equation (6) for the equilibrium values. The parameter
a scales the constant u in that equation, lowering the graph of the
quartic and raising the value of the positive root. However, Freyer
also reports that the basic growth rates of the cell lines (either in
spheroids or monoculture) did not correlate with final spheroid
size. However, there could be an interplay of parameters at work
to mask such a correlation. Altering other parameters may give a
similar result. The model offered here at least shows the possibility
of a positive correlation between final size and thickness of the
proliferating cell layer.

A second observation of Freyer is that spheroid equilibrium size
is correlated with the size of the spheroid at the onset of necrosis.
His paper shows data in which the spheroid size at the onset of
necrosis is estimated from data and the eventual spheroid size is
inferred by fitting data to a Gompertz curve. This observation is
thus more of an expectation based on models than an actual pair
of measurements. Nonetheless, we ask whether Model 3E in this
paper can support this expectation. In continuous models such
as this one, there is an instantaneous start of necrosis, although
the quantity may be quite small. If one spheroid exhibits the start
of necrosis at a larger size than another, it could be due to dif-
ferent rates of transition from the quiescent to the necrotic pool,
described by parameter e in our model. The moment at which
necrosis becomes visible in the spheroid would be earlier for the
model with the higher value of e. In Figure 5, we see the growth of
two versions of Model 3E with different values of the parameter e.

FIGURE 4 |Three runs of Model 3E with different growth factors as
labeled. (A) Shows the total spheroid size and (B) shows the proliferating
pool. As in Figure 2, bP,Q = 0.01, cQ,P =0.005, d = 0.002, eQ,N =0.002,
f =0.01, h=0, m= 0.0001, P 0 = 0.01, Q0 =0, N0 =0.

This difference does indeed produce spheroids of different sizes.
The spheroid that has the higher rate of necrosis is the smaller one,
consistent with Freyer’s observations.

The possibility that tumor necrosis factor affects not only the
spheroid producing it, but also others in the same flask, also helps
explain the observation (Folkman and Hochberg, 1973) that the
average size of spheroids in a flask was inversely proportional
to the number of spheroids in the flask. In Figure 6 we see the
comparison of two systems: one represents a system with two iden-
tical spheroids. However, the necrosis factor used was the sum of
the necrosis of both spheroids. That is, both spheroids suffer the
effect of all of the toxin in the combined system. These two grow
identically and reach a terminal size of approximately 27 units at
t = 20,000. A third spheroid is grown in isolation, with the same
initial conditions. It gets much larger, reaching about 45 units at
t = 20,000. Thus neighboring spheroids limit each others’ growth,
creating the result observed by Folkman and Hochberg (1973).

4. DISCUSSION
We have shown that a simple model with compartments repre-
senting proliferating, quiescent and necrotic cells, can explain a
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FIGURE 5 |Two runs are shown with different rates of necrosis:
eQ,N = 0.002 (top) and eQ,N = 0.004 (bottom). a=0.01, bP,Q =0.005,
cQ,P =0.005, d =0.0002, f =0.001, h= 0, m=0.0001, P 0 =0.01, Q0 = 0.01,
N0 =0.

FIGURE 6 | Here we see two graphs of total tumor size. The larger, A, is
a single spheroid in isolation. The smaller, B, is two graphs superimposed of
identical spheroids grown together as in Figure 5, where the necrosis
factor of both spheroids affects each system. a=0.01, bP,Q =0.005,
cQ,P =0.005, d =0.0002, eQ,N =0.002, f =0.001, h=0, m=0.0001,
P 0 =0.01, Q0 =0.01, N0 =0.

variety of observations on the growth and development of tumor
spheroids in vitro. The successful model includes a growth term
proportional to surface area, and a death term for proliferating
cells that depends on the amount of tumor necrosis present. It
also includes linear transitions between the proliferating and qui-
escent pools, and between the quiescent and necrotic pools. It
includes a linear term for dissolution of necrotic cells as well. With
these few ingredients we have a system that produces spheroids
that eventually develop three layers of proliferating, quiescent and
necrotic cells. Growth of these spheroids eventually stops. When
the growth stops, there remains a thin layer of actively proliferating
cells at the boundary. Under some assumptions about what might
create spheroids of different sizes, we see that the final size of the
spheroids is correlated with thickness of the proliferating shell.

FIGURE 7 | Here we see two graphs of total tumor size in 7A and size
of the proliferating pool, 7B. The larger spheroid in 7A has the lower
removal rate of N, set at m=0.0001. The smaller spheroid has m=0.0002.
Note the reversal of size of the proliferating component of the spheroid.
a=0.01, bP,Q = 0.005, cQ,P =0.005, d = 0.0002, eQ,N =0.002, f =0.0001,
h=0, P 0 =0.01, Q0 =0.01, N0 =0.

Under the assumption of differing rates of necrosis we see spher-
oids of different terminal sizes, corresponding to a later appearance
of visible necrosis. Under the hypothesis that multiple spheroids
in the same flask share tumor necrosis factor with each other,
we have a model in which the more spheroids are in a flask, the
smaller the average size when growth ends. In short, the model we
have selected fits a variety of qualitative observations about tumor
spheroid growth.

Although more complex than the Gompertz model, the model
presented here is not so complex that it becomes computationally
unfeasible to match it to the development of a given tumor spher-
oid. It would be useful to modelers to have some data sets that
track P, Q, and N over time for several cell lines. A model such as
the one presented here will only be of practical use if it is tuned to
a specific type of cell. The potential then exists for building more
realistic models of in vivo tumors that are based on parameters
solidly gained from the simpler in vitro spheroid.

Tumor spheroids are supposed to be a reasonable proxy for
tumors in vivo before the onset of angiogenesis. However, exist-
ing models of angiogenesis do not take tumor necrosis factor
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into account, even though it affects the growth of the prolifer-
ating cells. Using a model such as the one developed here as the
basis for a more complex one that includes angiogenesis has the
potential to illuminate one function of circulation currently left
out of these models: the ability of blood flow to remove toxins.
Figure 7 elucidates this observation. Here we see two spheroid
models that are identical except for one small change: N, along
with the toxin it represents, is being removed from one of them
at a steady rate of 0.0001N in one of them and 0.0002N in the
other. The spheroid with the greater clearance rate of necrosis has
a smaller total size, but it has a greater quantity of proliferating
tissue. This observation adds to the complexity of angiogenesis.

One purpose of this study is eventually to develop a simple
model incorporating both necrosis and angiogenesis. With data
on the time development of both plate and spheroid cultures of a
given cell type one, could easily find best fit parameters for model
3E as well as a few of the others. A model that is a good approxi-
mation of spheroid behavior may be extended by coupling it with
a simple model of angiogenesis, as in Hahnfeldt et al. (1999),
Komorova and Mironov (2005), or with a version of a more com-
plex model as in Stamper et al. (2007) that has been reduced via a
sensitivity analysis (as in Wallace and Winsor, 2012) to a simpler
situation. One would do this be extending the spheroid model in
two ways. First, the growth term would be replaced by an expres-
sion approximating contact area between proliferating cells and
nutrient supply. Second, the clearance of necrosis factor would

become a function of contact between necrotic tissue and blood
supply. Numerous papers have explored the nature of the contact
regions between tumor and nutrient through the development
of the geometry of both tumor and vasculature (as in Sansone
et al., 2001), competition among cell types (as in Scalerandi et al.,
2001), and other features. A simple model, however, might approx-
imate the situation through mutual dependence of blood supply,
volumes of the three quantities discussed here, and a fixed or
evolving fractal dimension of contact. A model with few para-
meters may then be fitted to data sets for various cell lines to
give a crude characterization of growth properties for cell types
that goes beyond the basic growth rate determined from plate
culture.

Hirschhaeuser et al. (2010) survey the uses of in vitro spheroids
to study the interaction of tumors with their microenvironment,
including various therapies. They point out the potential role
of spheroids in selecting the most promising interventions at an
early, and less expensive, stage of research. Mathematical models of
spheroids that extend the simple model presented in this paper to
include therapies or other interactions would be useful for select-
ing optimal delivery protocols to be tested in vivo as therapeutic
interventions. Models in silico allow quick exploration of the result
of variations in timing and dosage of therapies. Studies of cancer
therapies in vivo could be doubly informed by in vitro spheroid
studies that suggest which therapies work and why, combined with
in silico models suggesting best strategies for delivery.
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