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Moringa oleifera (M. oleifera) is a natural plant that has excellent nutritional 
and medicinal potential. M. oleifera leaves (MOL) contain several bioactive 
compounds. The aim of this study was to evaluate the potential effect of MOL 
polysaccharide (MOLP) on intestinal flora in dextran sulfate sodium (DSS)-
induced ulcerative colitis (UC) mice. DSS-induced colitis was deemed to be a 
well-characterized experimental colitis model for investigating the protective 
effect of drugs on UC. In this study, we stimulated the experimental mice with 
DSS 4% for 7  days and prepared the high dose of MOLP (MOLP-H) in order to 
evaluate its effect on intestinal flora in DSS-induced UC mice, comparing three 
experimental groups, including the control, DSS model, and DSS  +  MOLP-H 
(100  mg/kg/day). At the end of the experiment, feces were collected, and the 
changes in intestinal flora in DSS-induced mice were analyzed based on 16S 
rDNA high throughput sequencing technology. The results showed that the 
Shannon, Simpson, and observed species indices of abundance decreased in the 
DSS group compared with the control group. However, the indices mentioned 
above were increased in the MOLP-H group. According to beta diversity analysis, 
the DSS group showed low bacterial diversity and the distance between the 
control and MOLP-H groups, respectively. In addition, compared with the 
control group, the relative abundance of Firmicutes in the DSS group decreased 
and the abundance of Helicobacter increased, while MOLP-H treatment 
improves intestinal health by enhancing the number of beneficial organisms, 
including Firmicutes, while reducing the number of pathogenic organisms, such 
as Helicobacter. In conclusion, these findings suggest that MOLP-H may be a 
viable prebiotic with health-promoting properties.
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Introduction

The gut is the largest immunological organ and a crucial site for 
digestion and absorption. Animal intestines contain billions of 
intestinal bacteria (1). These microbes serve crucial roles in nutritional 
digestion, absorption, and the body’s immune system, among other 
physiological and biochemical processes (2). Intestinal flora disruption 
not only causes pathological alterations in the intestinal tissue, but it 
can also cause chronic inflammation and the formation of 
carcinogenic compounds, endangering the host’s health (3).

Ulcerative colitis (UC), a frequent complication of inflammatory 
bowel disease (IBD), is a chronic, recurring intestinal condition 
characterized by pain in the abdomen, weight loss, and bloody stools 
(4). Over the past few years, anti-inflammatory medications 
(sulfasalazine or mesalazine), conventional immunosuppressive 
substances (glucocorticoids, azathioprine, methotrexate, and 
cyclosporine A), and biological substances (infliximab and 
adalimumab) have been demonstrated to help improve UC 
symptoms (5, 6). However, these treatments have limitations due to 
potential side effects or significant complications, such as steroid 
dependence and subsequent infection (7). Therefore, establishing 
effective alternative methods for preventing and managing UC 
is important.

Recently, various studies have demonstrated the significance of 
gut microbiota for human health (8–10). Numerous chronic 
conditions and their symptoms, including type 2 diabetes, gout, and 
diseases of the cardiovascular system, have been shown to be strongly 
associated with the composition and function of the gut microbiota 
(11–13). In addition to insisting on appropriate long-term medicine 
for the treatment of various chronic diseases, good dietary practices 
should be implemented to enhance the balance of nutritional intake. 
Numerous studies have demonstrated that dietary prebiotics, 
including plant fiber, polyphenols, and polysaccharides or 
oligosaccharides, can specifically stimulate the growth of beneficial 
bacteria (14, 15).

M. oleifera (MO) is prevalent in tropical and subtropical Asia and 
Africa (16). Because it is highly nutrient-dense, the World Health 
Organization (WHO) has promoted MOL as a substitute for imported 
food supplies in the treatment of malnutrition (17). The leaves can 
be  eaten fresh or cooked as a vegetable. In India, it has been 
incorporated in various herbal formulations, such as ortho herb and 
Septilin, for the treatment of various diseases (18). There is expanding 
interest in the potential use of medicinal plants to treat various 
disorders due to the advantages of their being cheaper, less toxic, and 
having fewer side effects (19). It has been reported that the crude 
aqueous extract of MO leaves (MOL) can reliably reduce the blood 
glucose level in alloxan-induced diabetic mice (20). Recently, 
polysaccharides have garnered a significant amount of interest due to 
their distinct chemical structures and bioactivities. Numerous 
polysaccharides have reportedly been found to possess a range of 
beneficial bioactivities, including anti-aging, antioxidant, anti-tumor, 
anti-inflammatory, hypolipidemic, and hypoglycemic characteristics 
(21, 22).

Polysaccharides have gained interest recently due to their function 
in weight reduction. They are macromolecular polymers composed of 
at least 10 monosaccharides connected together via glycosidic linkages 
(23). Being commonly present in the cells of mammals, plants, algae, 
and microorganisms, they are natural macromolecular active 

molecules (24). In this study, we examine the potential regulating 
effect of MOL polysaccharide (MOLP) on intestinal flora in dextran 
sulfate sodium (DSS)-induced UC mice in order to determine its 
possible prebiotic benefits.

Materials and methods

Plant material

As described in our previous study (25), the fresh green leaves of 
M. oleifera were obtained from Yunnan Ruziniu Biotechnology 
(Yunnan, China). The leaves were cleaned properly by washing and 
drying under shade at room temperature for 4 days. The dried leaves 
were processed to make powder and then stored in airtight containers 
for further use.

Polysaccharide extraction

Polysaccharide was extracted from MOL powder, namely MOLP, 
using the methods reported in previous studies (25, 26). Briefly, 
MOLP was extracted three times using 1:10 (w/v) deionized water at 
70°C for 90 min, and then centrifuged for 20 min at 4,000 rpm. Using 
a rotary evaporator, the collected supernatants are mixed and 
evaporated. After an overnight incubation at 4°C, the concentrations 
were precipitated by adding dehydrated ethanol to a final 
concentration of 80% (v/v). Following centrifugation, the precipitates 
were rinsed with 95% ethanol dissolved in deionized water. The 
dialysate solution was freeze-dried before being deproteinated using 
the savage technique (27) (2 g of freeze-dried crude MOLP was 
dissolved in 100 mL distilled water with Sevage reagent (V chloroform: 
V n-butanol = 4:1) was used). Then, 1:4 polysaccharide solutions were 
added and mixed for 1 h before centrifugation at 3000 rpm for 10 min. 
Repeat the above procedure with the supernatant until there is no 
visible, translucent white precipitate between the organic layer and the 
water layer. The obtained filter residue was washed twice with absolute 
ethanol, petroleum ether, and absolute ethanol, respectively; and the 
obtained powdery precipitation was re-dissolved and then freeze-
dried to produce MOLP.

Animals and experimental design

Male BALB/c mice (6 to 7 weeks old), weighing 20 ± 2 g, were 
obtained from Yangzhou University Laboratory Animal Co., Ltd. 
(Yangzhou, China). Forty-five mice were housed under standard 
laboratory conditions (12 h light-dark cycle, 25 ± 2°C and 60–80% 
relative humidity), and fed standard laboratory chow and sterile, 
distilled water ad libitum in the animal room. All animal experiments 
were conducted under the Animal Care and Use Committee of 
Yangzhou University, as described in our previous study (25). Briefly, 
the mice were randomly divided into three groups (n = 15) after one 
week of acclimation. All experimental groups were administered 
distilled water for the first 3 days; the control group was administered 
0.9% (0.2 mL) sodium chloride (NaCl) from day 4 to day 10. The DSS 
group was administered 4% (w/v) DSS from day 4 to day 10, and the 
DSS + MOLP-H group was given oral administration with MOLP 
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(100 mg/kg/day) along with the oral administration of 4% (w/v) DSS 
from day 4 to day 10 for 7 days.

Fecal samples collection

At the end of the experiment, all mice were injected with 0.1% 
(50 mg/kg, i.p.) pentobarbital sodium and sacrificed after a 10-day 
experimental period. Feces were collected from each individual mouse 
and kept at −80°C. Then samples were sent to Panomix Biotechnology 
Co., Ltd. (Suzhou, China) under dry ice conditions.

Extraction of genome DNA

Total genome DNA from samples was extracted using the CTAB/
SDS method. DNA concentration and purity were monitored on 1% 
agarose gels. According to the concentration, DNA was diluted to 
1 ng/μL using sterile water.

PCR product quantification and 
qualification

Mix the same volume of 1X loading buffer (containing SYB green) 
with PCR products and perform electrophoresis on a 2% agarose gel 
for detection. PCR products were mixed in equidensity ratios. Then, 
mixture PCR products were purified with the Qiagen Gel Extraction 
Kit (Qiagen, Germany).

Library preparation and sequencing

Sequencing libraries was generated using the TruSeq® DNA 
PCR-Free Sample Preparation Kit (Illumina, United States) following 
the manufacturer’s recommendations, and index codes were added. 
The library quality was assessed on the Qubit@ 2.0 Fluorometer 
(Thermo Scientific) and Agilent Bioanalyzer 2100 system. At last, the 
library was sequenced on an Illumina NovaSeq platform, and 250 bp 
paired-end reads were generated.

Microbial analysis

16S rRNA/18SrRNA/ITS genes of separate sections (16S V4/16S 
V3/16S V3–V4/16S V4–V5, 18S V4/18S V9, ITS1/ITS2, Arc V4) were 
amplified using particular primers (e.g., 16S V4: 515F-806R, 18S V4: 
528F-706R, 18S V9: 1380F-1510R, et al.). All PCR reactions were 
conducted using 15 μL of Phusion® high-fidelity PCR Master Mix 
(New England Biolabs); 0.2 μM of forward and reverse primers, and 
approximately 10 ng of template DNA. Sequence analysis was 
performed by the UPARSE software package using (Uparse v7.0.1001, 
http://drive5.com/uparse/) (28). Operational taxonomic units (OTUs) 
were allocated to sequences with ≥97% similarity. For each OTU, 
representative sequences were screened for further annotation. 
Relative abundances of representative bacteria were calculated at the 
phylum, class, order, family, and genus levels. QIIME (Version 1.7.0) 
and presented using R software (Version 2.15.3) were used to calculate 
the Alpha diversity index, including Shannon, Simpson, and observed 

species. To evaluate variations in species variety between samples, the 
QIIME software was used to calculate beta diversity on both weighted 
and unweighted unifrac. Principle Coordinate Analysis (PCoA) 
analysis was presented using R software’s WGCNA program, stat 
packages, and ggplot2 platform (Version 2.15.3). Furthermore, the 
linear discriminant analysis (LDA) effect size (LEfSe) method was 
used to investigate alterations in the microflora community. The LDA 
threshold was set at >3.0 (29). The Venn diagrams were analyzed using 
the R package “Venn Diagram.” The bubble diagram was made using 
the R package “ggplot2.” The functional prediction was investigated 
using Tax4Fun.

Statistical analysis

The statistical analysis was carried out using SPSS Statistics 22.0 
software, and the diagrams were created using GraphPad Prism 
(version 8.0). Data sets with more than two groups were analyzed 
using one-way ANOVA, followed by Duncan’s multiple range tests. 
p-values of <0.05, <0.01, or <0.001 indicate statistical significance.

Results

Structural characterization of MOLP

Our previous study described the molecular weight (Mw), 
monosaccharide composition, and characteristic analysis of MOLP.

Effects of MOLP on the diversity and 
abundance of gut microbiota in 
DSS-treated mice

According to the Venn diagram (Figure 1A), the control, DSS, and 
MOLP-H groups had a total of 4,293 OTUs, with 935, 296, and 430 
unique OTUs, respectively.

The species accumulation curve progressively stabilized as sample 
sizes increased (Figures 1B–D); suggesting that the test samples in this 
study were adequate and the sequencing results were dependable.

Alpha diversity

In the DSS group, the Shannon, Simpson, and observed species 
community richness indices were significantly lower (p < 0.01) 
compared with the control group. However, these indices mentioned 
above were increased (p < 0.05, p < 0.001) in the MOLP-H group, 
compared with the DSS group (Figures  2A–C). These findings 
demonstrated that MOLP had significant regulatory influences and 
that colonic mucosal flora abundance and constancy were significantly 
reduced in UC mice.

Beta diversity

The influence of MOLP-H on the community and composition 
of gut microbiota was investigated using beta diversity (Figure 3A). 
Furthermore, PCoA demonstrated an obvious difference between 
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the control and DSS groups, and MOLP-H treatment caused the 
DSS group’s intestinal microbiota to resemble that of the control 
group (Figure 3B). Overall, MOLP-H administration significantly 
altered the structural microbial diversity of the intestine in 
DSS-treated mice.

UPGMA

UPGMA confirmed the division of the control and DSS groups, 
whereas MOLP-H intervention showed a shift from the DSS to the 
control group (Figures 4A–D). At the phylum level, similarity analysis 

FIGURE 1

Effects of MOLP on the gut microbiota in DSS-treated mice. Venn diagram of OTUs (A), rarefaction curve (B), species accumulation curve (C) and 
hierarchical clustering curve (D).

FIGURE 2

Effects of MOLP on the gut microbiota in DSS-treated mice. Shannon index (A), Simpson index (B), and observed species (C), (n  =  5). **p  <  0.01, DSS vs. 
Control; #p  <  0.05, ###p  <  0.001, MOLP-H vs. DSS.
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revealed an obvious variation between both the control and DSS 
groups. In contrast, there was no variation between the DSS and 
MOLP-H groups. These results suggest that MOLP-H can modulate 
but not completely restore the DSS-induced disturbance of the 
intestinal microbiome.

MOLP enhances the beneficial bacteria in 
DSS-treated mice

To demonstrate the existence of a link between the top 100 genera 
and their abundances in various groups, a phylogenetic tree has been 
created (Figure 5A). It was revealed that the Bacteroides, Alloprevotella, 
and Parabacteroides groups of Bacteroidetes, and the Lactobacillus 
group of Firmicutes were the dominant genera in the intestine, and 
their proportions can play significant roles in the symbiotic connection 
between the host and the gut microbiota.

According to a taxonomic investigation, Firmicutes dramatically 
decreased in the DSS group, whereas Helicobacter increased. However, 
MOLP-H treatment increased Firmicutes and reduced Helicobacter in 
DSS-treated mice. Furthermore, DSS treatment increased 
Bacteroidetes, whereas MOLP-H treatment had no obvious effect on 
Firmicutes and Bacteroidetes in DSS-treated mice (Figure 5B). These 
results suggested that MOLP-H may enhance the beneficial bacteria 
in DSS-induced UC mice.

Effect of MOLP on the composition of the 
gut microbiota in DSS-treated mice

LEfSe demonstrated that the control and DSS groups had 
dominant communities of three and eight bacterial taxa, respectively. 
However, there was only one bacterial taxon found in the MOLP-H 
treatment group, indicating that an obvious variation occurred 
between the control, DSS, and MOLP-H groups. Bacteroides, 
Bacteroidaceae, Campylobacterota, Campylobacterales, 

Campylobacteria, Helicobacter, Helicobacteraceae, and Bacteroides-
acidifaciens were dominant in the DSS group, and Rs-E47-termite-
group, Alistipes, and Rikellaceae were dominant in the control group. 
Firmicutes was dominant in the MOLP-H group, respectively 
(Figures 6A,B).

Effect of MOLP on the bacterial community 
in UC mice

The heat map graphically showed that the dominant bacterial 
community at phylum levels 20, 4, and 11 OTUs were obtained in the 
control, DSS, and MOLP-H groups, respectively. In addition, 12 and 
23 differential OTUs were increased and decreased, respectively, and 
the result of cluster analysis shows that there were variations between 
the DSS and MOLP-H groups (Figure 6C). Furthermore, Helicobacter 
have positive correlations with UC symptoms, which markedly 
increased in DSS-treated mice and even decreased in the MOLP-H 
group (Figure 6D).

In comparison to the control group, the DSS group had lower 
levels of Rickenellaceae, Rs-E47-termite-group, Muribaculaceae, and 
Lactobacillceae and higher levels of Helicobacteraceae, and 
Lacnhospiraceae at the family level (Figure 6E). In contrast, MOLP-H 
treatment increased Muribaculaceae and Rickenellaceae levels while 
decreasing Helicobacteraceae levels in DSS-treated mice (Figure 6F).

Effect of MOLP on the functional 
prediction of gut microbiota in DSS-treated 
mice

Tax4Fun performed the functional prediction of the intestinal 
microbiota. At the first level, metabolism, genetic information 
processing, environmental information processing, cellular processes, 
unclassified human diseases, and organismal systems were evaluated 
(Figure  7A). Carbohydrate metabolism, membrane transport, 

FIGURE 3

Effect of MOLP on the gut microbiota in DSS-treated mice. Beta diversity index (A), PCoA (B), (n  =  5).
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translation, replication, and repair; amino acid metabolism, energy 
metabolism; nucleotide metabolism; glycan biosynthesis and 
metabolism; metabolism of cofactors and vitamins; and signal 
transduction were the top 10 pathways at the second level (Figure 7B). 

The top 10 pathways at the third level included transporters, DNA 
repair and recombination proteins, two-component systems, transfer 
RNA biogenesis, purine metabolism, amino acid-related enzymes, 
peptidases, ABC transporters, and the exosome (Figure  7C). The 

FIGURE 4

Effect of MOLP on the gut microbiota in DSS-treated mice. UPGMA (A), relative species richness at the phylum level (B), and relative species richness at 
the order level (C), and relative species richness at the family level (D), (n  =  5).

FIGURE 5

Effect of MOLP on the gut microbiota in DSS-treated mice. Phylogenetic tree based on top 100 genera (A) and the taxonomy abundances of each 
group (B), (n  =  5).
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top 10 KEGG orthologs at level K were K02014, K06147, K03406, 
K02004, K03296, K05349, K03088, K01190, K00936, and K03701 
(Figure 7D).

Discussion

The pathogenesis of UC is significantly affected by the intestinal 
microbiota (30, 31), and potential medicinal microbiota alterations, 
such as antibiotics, nutrients, food supplements, and microbiota 
implantation, have been demonstrated to be  beneficial (32–35). 
Several herbal products, particularly plant foods and phytochemicals, 
have been shown to be useful in weight management by modifying the 
intestinal flora (35, 36). Our study investigated the influence of 
MOLP-H on the gut microbiota of mice with DSS-induced UC.

Microbial alpha diversity is regarded as a key indicator of gut 
health, and a high bacterial diversity indicates that the gut ecosystem 
is stable and resilient (37). IBD has been associated with a reduction 
in alpha diversity (38, 39). Our results showed that the high dose of 
MOLP increased the diversity indices of gut microbiota, including 
Shannon, Simpson, and observed species. This is in agreement with Li 

et al. (29) showing that crude polysaccharide extracted from MOL 
prevents obesity by modulating gut microbiota in high-fat diet-fed 
mice. Furthermore, PCoA and UPGMA showed that the intestinal 
microbiota in the DSS group was unique from that of the control 
group. However, administration of MOLP-H altered the microbiota 
modifications in UC mice.

The intestinal microbiota of healthy organisms is mainly 
composed of Firmicutes, Bacteroidetes, Actinobacteria, and 
Proteobacteria. The relative abundance of Firmicutes and Bacteroidetes 
in intestinal microorganisms can reach more than 90% (40). In 
addition, Firmicutes and Bacteroidetes are the prevalent bacterial types 
in the digestive system, and the ratio of these two bacteria indicates 
the integrity and health of the intestinal lumen (41). Furthermore, 
Bacteroides is a significant genus in the microbiota of humans that 
may utilize an extensive variety of dietary polysaccharides (41, 42). 
IBD can cause an increase in Bacteroides as reported previously (43). 
According to the reports mentioned above, MOLP-H treatment can 
reduce the pathogenicity of IBD by decreasing the amount of 
Bacteroidetes in the digestive system. This is similar to a previous study 
that found Firmicutes was 40% more prevalent than Bacteroidetes in 
mice fed a high-fat diet (44). Further investigation revealed that some 

FIGURE 6

LEfSe (score >3) was performed to determine statistically signature genera in control and DSS groups (A), MOLP and DSS groups (B). LDA score at the 
log10 scale is shown at the bottom. Heat map at phylum level of differential OTUs (C). Relative abundances of the top 10 bacteria at the family level 
(D); and bubble chart of bacterial composition at the family level of control and DSS groups (E), DSS and MOLP groups (F), (n  =  5).
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Bacteroidetes and a few Firmicutes species, including Bacteroides and 
Lactobacillus, were associated with modifications in physiological 
conditions in DSS-treated mice. Miranda et al. (45) reported that a 
reduction in Lactobacillus was correlated with an increase in UC 
induced by DSS. Thus, Lactobacillus is a beneficial bacterium in the 
gut (46), is crucial for preserving intestinal health, and stimulates the 
production of digestive enzymes. Its metabolites can prevent harmful 
bacteria from proliferating in the intestines, preserve the integrity of 
the intestinal mucosal barrier, and enhance the body’s immunity by 
activating the intestinal autoimmune system. Our study indicated that 
MOLP-H treatment increased the levels of Lactobacillus. Similar to the 
previous study, MO enhanced Lactobacillus levels associated with 
obesity following high-fat diet feeding (46). A positive correlation 
exists between Desulfovibrionaceae and endotoxin, which promotes 
inflammation (47) and may cause intestinal epithelial inflammatory 
factors such as tumor necrosis factor alfa (TNF-α), Interleukin-1 beta 
(IL-1β), and Interleukin-6 (IL-6) to be released (48). Furthermore, 
Muribaculaceae is associated with natural killer cells and the nuclear 
factor-kappa B (NF-κB) signaling pathway (49). A pathogenic 
bacterium called Helicobacter has been linked to stomach issues, and 
higher levels of Helicobacter can make IBD more severe (50). 
Proteobacteria are strongly linked with intestinal inflammation, as 
evidenced by some IBD patients (51). Further immunological 
description reveals colitis induction with certain microbial 
communities or Helicobacter infection (52–54). Our study showed 

that MOLP treatment decreased the level of Helicobacter in 
DSS-treated mice. It has been suggested that the effect of MOLP on 
the gut microbiota may be  extremely focused on some specific 
microbes at higher taxonomic levels.

Generally, MOLP-H treatment improves intestinal health by 
enhancing the number of beneficial organisms, including Firmicutes 
and Lactobacillus, reducing the number of pathogenic organisms, 
such as Helicobacter and Proteobacteria. The above findings 
indicated that MOLP-H can reduce the invasion of UC by inhibiting 
the colonization of intestinal bacteria, while modulating the 
abundance of Firmicutes, and suppressing the abundance of 
Helicobacter. This may be  the reason why MOLP inhibits the 
pathogenicity of UC in mice.

Conclusion

Our study indicated that MOLP-H administration promoted 
intestinal health in DSS-induced UC mice by modulating the 
composition of the gut microbiome. Notably, MOLP-H treatment 
reduced the number of pathogenic bacteria such as Helicobacter, 
which had increased in response to the DSS challenge and correlated 
positively with the symptoms of colitis. This study provides scientific 
evidence that MOLP is extremely useful in the field of functional 
foods and dietary supplements.

FIGURE 7

Effect of MOLP on the function prediction on colonic microbiota. First level (A), second level (B), third level (C) and KEGG orthologues level (D), (n  =  5).
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