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The taste for health: the role of 
taste receptors and their ligands 
in the complex food/health 
relationship
Gabriella Morini *

University of Gastronomic Sciences, Pollenzo, Italy

Taste, food, and health are terms that have since always accompanied the act 
of eating, but the association was simple: taste serves to classify a food as good 
or bad and therefore influences food choices, which determine the nutritional 
status and therefore health. The identification of taste receptors, particularly, the 
G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the 
gastrointestinal tract has assigned them much more relevant tasks, from nutrient 
sensing and hormone release to microbiota composition and immune response 
and finally to a rationale for the gut–brain axis. Particularly interesting are bitter 
taste receptors since most of the times they do not mediate macronutrients 
(energy). The relevant roles of bitter taste receptors in the gut indicate that 
they could become new drug targets and their ligands new medications or 
components in nutraceutical formulations. Traditional knowledge from different 
cultures reported that bitterness intensity was an indicator for distinguishing 
plants used as food from those used as medicine, and many non-cultivated 
plants were used to control glucose level and treat diabetes, modulate hunger, 
and heal gastrointestinal disorders caused by pathogens and parasites. This 
concept represents a means for the scientific integration of ancient wisdom 
with advanced medicine, constituting a possible boost for more sustainable 
food and functional food innovation and design.
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Introduction

The “food is medicine” concept and approach has been rooted in humans, as proven by 
the first cookbook published in print around 1,470 by Bartolomeo Platina, “De honesta 
voluptate et valetudine” (“On right pleasure and good health”) (1). It is actually not just a 
cookbook but a systematic treatment of culinary arts, dietetics, warnings about the nature of 
foods, and their nutritional and healing power, with indications and contraindications of 
different items and preparations and much more that authors of previous centuries had 
illustrated on the matter. The crucial role of food and food consumption patterns on health 
have been confirmed by scientific research, from earlier to contemporary times, with new 
timely discoveries that go hand in hand with an increasingly complex vision (2). If the initial 
studies concerned a few nutrients and their balance and were addressed to all people, currently 
there are available databases like FooDB that record the presence of more than 70,000 distinct 
biochemicals in food (3). Molecular and personalized nutrition are attempting to unravel every 
organism’s responses to nutrients at a molecular level. Moreover, in the recent decades, diet 
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has been recognized as one of the key factors for the selection and 
development of trillions of microorganisms that constitute our 
microbiota, and growing evidence suggests that the relationship 
between an individual and its microbiota may underlie broad effects 
of diet on human health and disease (4).

The involvement of taste in this scenario has been, for a long time, 
limited to its participation in the control of motivational processes 
that guide eating behavior and food choices, allowing the recognition 
of nutrients, while avoiding potential toxic compounds (5, 6). The 
identification of taste receptors, particularly the G protein-coupled 
receptors (GPCRs) that mediate sweet, umami, and bitter tastes, in the 
gastrointestinal (GI) tract [as well as in many other locations, not the 
subject of this article, (7)] has revealed many more relevant tasks for 
them, from nutrient sensing and consequent hormone release to 
microbiota composition and immune response (8–10).

Taste receptors

In humans, taste is mediated in the buccal cavity by two types of 
specific transmembrane receptors grafted at the apex of the taste 
receptor cells (TRCs): ion channels, which mediate sour and salty 
tastes, and GPCRs, for sweet, umami, and bitter tastes (11). The 
epithelial sodium channel ENaC is a possible receptor for salty taste 
(sensitive to Na+), but still there is no consensus as to whether it is the 
only one (12). Quite recently, there has been an agreement on the 
proton-selective ion channel Otop1 as the detector of acidic stimuli 
(13), as well as of alkali and ions able to modify the pH (14, 15).

Sweetness and umaminess are sensed mainly by two heterodimeric 
receptors: taste receptor type 1 member 2 (T1R2) and member 3 (T1R3) 
for the sweet taste receptor, while T1R1 and T1R3 constitute the 
principal umami receptor (16). T1Rs present a long extracellular 
N-terminal domain, the so-called Venus flytrap module (VFM), 
forming the main binding site of the receptor (for sugars, aspartame and 
sucralose among sweet compounds, and for glutamate and nucleotides 
among umami ones). The recognition of other tastants and taste 
modulators occurs in different domains, like the seven transmembrane 
domain (TMD) and the cysteine-rich domain (CRS) (17–19).

More articulated is the system to perceive bitter taste. To date, over 
1,300 bitter compounds have been isolated and tested on human bitter 
receptors [bitterDB, (20)], approximately 250 of which are of natural 
origin (21), but it is estimated that there may be  up to tens of 
thousands of them. For a comparison, the known sweet compounds 
are in the order of the hundreds [SweetenersDB; (22)]. For this reason, 
vertebrates are equipped with a great number of bitter taste receptors, 
and their number correlates with the fraction of plants in their diet 
(23, 24). In humans, 26 active receptors dedicated to bitter compounds, 
taste receptor type 2 (T2Rs), have been identified, one of them being 
active in some populations only (25, 26). Some of these receptors are 
relatively “specialized,” i.e., capable of responding to a limited number 
of bitter compounds, others, called “promiscuous,” are generalist, i.e., 
capable of recognizing a larger number of even very chemically 
different compounds (24). However, others are “monogamous” and 
hyper-specialized, recognizing only one class of compounds. To date, 
two are still “orphans” T2Rs, which means that they are not activated 
by any bitter compound tested so far. T2Rs are more conserved in 
structure than in sequence, and thus, they are not easy to classify, 
although they are often considered class A GPCRs, presenting a short 

N-terminal extracellular domain (25). Moreover, some compounds 
act as agonists for certain T2Rs and as antagonists for others (27), 
making structure–bitterness relationship studies almost non-feasible. 
When comparing bitter taste receptors from different species, for most 
of them, no one-to-one orthologs are identified as they are organized 
in species-specific gene expansion groups (28, 29), and therefore, it is 
not straightforward to draw conclusions about their functionality in 
humans from animal studies. In addition, the interpretation of bitter 
taste as a means of rejecting potentially toxic compounds is certainly 
too simplistic since bitter compounds are not necessarily toxic, nor all 
toxic compounds taste bitter (30). Indeed, many bitter compounds, 
which include phenolics, terpenoids, alkaloids, and glucosinolates, 
have proven to have beneficial health effects (31, 32), and diets 
including higher amounts of bitter-tasting plants or phytochemicals 
have been associated with better health (33, 34).

Taste receptors and nutrient sensing 
in the GI tract

Most of the nutrients perceived as taste stimuli (particularly the 
macronutrients) are also under homeostatic control, and therefore, 
their introduction has to be  detected to start and regulate their 
uptake. Not surprisingly, the GI tract is the largest hormone-
producing organ in the body, with enteroendocrine cells (EECs) 
representing only 1% of the intestinal epithelium, yet capable of 
producing more than 20 hormones (35). These cells, scattered from 
the stomach to the rectum, make direct contact with what is present 
in the GI tract—food (both nutrient and non-nutrient compounds), 
its digestion products and residues, molecules produced by the 
microbiota, etc.—and release gut hormonal responses able to convey 
nutrient-related information to the brain, where they are integrated 
with other endocrine and neural inputs, generating responses that 
ultimately control feeding behavior and energy homeostasis through 
efferent outputs (gut–brain axis) (36).

Among the sensors that account for the ECCs capability to 
respond to the variety of nutrient stimuli, sweet umami and bitter taste 
receptors have been identified (37–39): upon activation, these taste 
receptors trigger the release, among others, of cholecystokinin (CCK) 
and glucagon-like peptide-1 (GLP-1). CCK has a central effect via the 
vagal afferents, slowing gastric emptying and therefore reducing food 
intake, and a GI effect, increasing pancreatic enzymes secretion and 
gallbladder contraction (35). GLP-1 has its target in pancreatic β-cells, 
indicating a directly promoted insulin secretion (and inhibition of 
glucagon) with a relevant effect on glucose control. GLP-1 is the main 
hormone with “incretin effect” (the increased insulin response after 
oral ingestion of glucose, compared to that observed when the same 
glucose load is administered parenterally). With the incretin effect 
accounting for 50–70% of insulin secreted in response to oral glucose, 
GLP-1 and its analogs became an effective therapeutic strategy to treat 
type 2 diabetes (35, 40). GLP-1 receptors are also expressed in the 
ganglion of the vagus nerve, suggesting a potential gut–vagus–
pancreatic islet neural loop. Its release is also followed by slower 
gastric emptying.

While the contribution of sweet and umami receptors to the 
regulation of glucose blood level and feeding control could be intuitive 
since they respond to nutrients, it is surprising that this effect is also 
mediated by bitter taste receptors due to the fact that, most of the 
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times, the ligands of these receptors are not macronutrients and, 
therefore, do not provide energy to the body.

The metabolic roles of bitter taste 
receptors

Over the centuries, various bitter medicinal plants (most of them 
non-cultivated) have been used in traditional medicines and bitterness 
intensity as a food/medicine watershed (41). In particular, for plants 
used in different folk medicines worldwide to treat diabetes, the bitter 
connection is obvious. In recent years, for many of them, the glucose 
control activity has been explained at the molecular level through 
bitter taste receptor activation by some of their components and 
subsequent GLP-1 release (42–47).

The alkaloid berberine, produced by several plants growing in 
different continents and used in traditional medicines to treat diabetes 
(in the midst of other diseases), has been proven to release GLP-1 
(also) through bitter taste receptor pathways (48). Bitter melon 
(Momordica charantia L.) is a food/medicine widely consumed 
throughout sub-tropical countries (China, India, Thailand, East 
Africa, and Central and South America), particularly in the 
management of diabetes. It is a hallmark of Okinawa diet, with goya 
champuru being Okinawa’s signature dish. It is very likely that its 
activity in glycemic control is due to several mechanisms, with the 
release of GLP-1 via bitter taste receptor activation being one of them 
(49). In the context of glycemic control via nutrition, particular 
interest should be given to steviosides, secondary metabolites sharing 
the common aglycone steviol (ent-13-hydroxykaur-16-en-18-oic acid) 
but different in the number and types of sugar residues, extracted from 
the leaves of the Stevia rebaudiana Bertoni. This plant is native to 
Paraguay, where it has a long history of use for its sweetness and to 
treat several diseases, with diabetes being one of the most relevant 
(50). Currently, steviosides are widely used as intensive sweeteners and 
still the only ones of natural origin allowed in Europe. A recent study 
(51) demonstrated that their activity on glucose control is due to 
GLP-1 release triggered by the activation of bitter taste receptors 
(T2R4 in particular) while excluding any participation by sweet taste 
receptors in the process. Another reason why steviosides are of 
particular interest is that they enhance pancreatic β-cell function by 
potentiation of TRPM5 channel activity (52). As TRPM5 is also 
expressed in EEC cells, the activity of steviosides as modulators of 
GLP-1 also through this route has not been excluded (51).

Another specific example of traditional use of plants in metabolic 
control, explained at molecular level via a bitter taste receptor 
expressed in the gut (T2R14), is the anti-hunger activity of Hoodia 
gordonii, an indigenous plant of South  Africa, Botswana, and 
Namibia (53).

Bile acids (BAs) are produced in the liver during the catabolism 
of cholesterol and then conjugated with glycine or taurine to make 
them amphipathic and therefore able to work as emulsifiers, 
exerting a key role in intestinal absorption and transport of dietary 
lipids. Through multiple and complex pathways, only partially 
unraveled, they have a role also in incretin secretion, glucose and 
energy metabolism, endoplasmic reticulum stress, and GI 
microbiota composition (55). The activation of several human 
bitter taste receptors by physiological concentrations of bile acids 
has been proven (54), and it has been hypothesized that this 

activation might contribute to the role of BA in glucose control (55, 
54). Moreover, this finding indicates the role of bitter taste 
receptors as chemosensors for endogenous ligands, thus opening 
new fields of discoveries.

The activation of T2Rs and their involvement in digestion and 
satiety has also been shown at gastric level. Caffeine, which is able to 
activate five bitter taste receptors in humans, induces gastric acid 
secretion, known to have a role in satiation, as well as an important 
signal to initiate gastric protein digestion (56). Interestingly, a similar 
effect was proven for bitter amino acids (57) and peptides produced 
during the gastric digestion of caseins (58), demonstrating the 
participation of bitter taste receptors in the well-known satiety 
properties of proteins and amino acids.

Bitter taste receptors in innate 
immunity and in shaping the 
microbiota

One of the first, and apparently less logical to explain, location 
in which extra-oral bitter receptors were identified were the airways. 
In fact, while their expression in the digestive apparatus can still 
be inherent to food and its components, this is not at all the case for 
the respiratory tract. However, since the first evidences of their 
presence in solitary chemosensory cells in the nasal epithelium it was 
first brilliantly intuited and then proven their function to respond to 
acyl-177 homoserine lactones (AHLs) produced by Gram-negative 
bacteria as quorum-sensing signals (59). This intuition was absolutely 
endorsed by the following studies, proving that bitter taste receptor 
activation by AHLs triggers the release of nitric oxide (NO), a toxic 
defense molecule against pathogens, and increases ciliary beating 
(60). Similar cells in the gut, tuft cells, detect parasite and bacterial 
homeostatic dysregulation and initiate a type II immune response, 
therefore having a role in microbiota composition and, finally, in 
maintaining gut barrier integrity (61). It has been demonstrated that 
they monitor intestinal contents using succinate (the main 
microorganisms and helminths parasite metabolite) as well as sweet 
and bitter taste receptors (62, 63). In particular, bitter taste receptors 
activation has been related with their role in repairing gut barrier 
integrity compromised by obesity and dysbiosis (64).

The effect on T2R38 bitter taste receptor-mediated immunity of 
the bitter agonist allyl isothiocyanate (AITC), one of the most 
abundant phytochemicals in plants of the genus Brassica (produced 
from the precursors glucosinolates in a degradation reaction catalyzed 
by myrosinase), has also been proven at the systemic level using 
human peripheral blood, demonstrating that a single intake of an 
AITC-containing food product resulted in its concentration at plasma 
levels able to trigger bitter taste receptor-dependent immune cell 
responses (65).

With microbiota emerging as one of the key components in health 
status and in the genesis of many diseases, including cancer (in 
particular colorectal cancer), the modulation of bitter receptors in the 
GI could also be exploited to develop targeted microbial therapies or 
as chemopreventive agents though the diet, to promote overall health 
and against tumorigenesis (66, 67).

To underline their role in monitoring endogenous compounds 
and microbiota metabolites, it is noteworthy that bitter taste receptors 
are the only chemosensory receptors from intronless genes, usually 
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associated with rapidly changing expression levels in response to 
stress (68).

Conclusion

Taste receptors, given their broad extra-oral expression, have relevant 
and extensive chemoreception roles, and are much more than simply 
gatekeepers of food ingestion and data providers for perception. For this 
reason, some authors even suggested addressing them with a different 
name rather than simply “taste receptors” (68, 69). Indeed, the discovery 
of extra-oral taste receptors and their functions gave them the role of 
ecological sensors in inter-kingdom communication, working at the 
interface between us and the outside world and also between us and our 
inner world. In particular, bitter taste receptors in the GI tract, which have 
been proven to be involved in metabolic responses to food molecules, 
their metabolites, and endogenous compounds, as well as in 
immunological response and in microbiota composition, became an 
important factor in shaping the health and unraveling the complex diet/
health relationship, as well as in the gut–brain axis, emerging as potential 
new drug targets (and their ligands new medications).

During the revision process of this perspective, a nutraceutical 
formulation based on Cinchona bark, chicory, and Gentian roots has 
been presented in an open article after having being patented (70), 
with indications for appetite and weight management. Interestingly, 
the combination of plants has been appropriately designed to 
simultaneously target and stimulate several different T2Rs, proving 
the validity of the proposed approach in this perspective.

The information about the most advanced knowledge on bitter 
taste receptors and the function of their ligands should be spread to 
food producers: the growing demand in dietary proteins, especially 
plant protein ingredients and their derived final products, coincides 
with the problem of undesirable sensory properties, among which 
bitterness is often reported. Attention should be paid to debittering 
through bitter taste receptor inhibition since this action could affect 
the described metabolic roles and the microbiota composition. In 
addition, the knowledge on bitter taste receptors should be spread to 
consumers so that they can realize, or better to say, regain, the value 
of taste as a tool of knowledge (a form of intelligence) to identify 
bioactive compounds in food, and this understanding could contribute 
to their sensory acceptability.

Finally, due to the recent discoveries and the rooted role of 
bitterness in the food–medicine continuum in traditional 

knowledge, bitter taste receptors and their ligands could represent 
a tool for the scientific integration of ancient wisdom with 
conventional and advanced medicine, constituting a boost also for 
sustainable and functional food innovation and design.
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