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Acanthopanax senticosus (AS) is a geo-authentic crude medicinal plant that 
grows in China, Korea, Russia, and Japan. AS contains bioactive compounds 
such as eleutherosides, polysaccharides, and flavonoids. It is also a key 
traditional herb in the Red List of Chinese Species. AS is mainly distributed in 
Northeast China, specifically in Heilongjiang, Jilin, and Liaoning provinces. 
Its active compounds contribute to significant biological activities, including 
neuroprotective, antioxidant, anti-fatigue, and antitumor effects. However, the 
extraction methods of active compounds are complex, the extraction efficiency 
is poor, and the structure–activity relationship is unclear. This study focused 
on the nutrients in AS, including protein, carbohydrates, and lipids. Particularly, 
the active ingredients (eleutherosides, polysaccharides, and flavonoids) in AS 
and their extraction and purification methods were analyzed and summarized. 
The biological activities of extracts have been reviewed, and the mechanisms of 
anti-oxidation, antitumor, anti-inflammation, and other activities are introduced 
in detail. The applications of AS in various domains, such as health foods, 
medicines, and animal dietary supplements, are then reported. Compared 
with other extraction methods, ultrasonic or microwave extraction improves 
efficiency, yet they can damage structures. Challenges arise in the recovery of 
solvents and in achieving extraction efficiency when using green solvents, such 
as deep eutectic solvents. Improvements can be made by combining extraction 
methods and controlling conditions (power, temperature, and time). Bioactive 
molecules and related activities are exposited clearly. The applications of AS 
have not been widely popularized, and the corresponding functions require 
further development.
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1 Introduction

Acanthopanax senticosus (AS), commonly known as “Ci-wu-jia” 
in China, originates from the dried root and rhizome or stem of AS 
(Rupr. et Maxim.) and belongs to the Araliaceae family (1). AS is a 
shrub that grows in forests or shrub areas, typically ranging from 1 to 
4 m in height (Figure 1). It is also known as “Siberian ginseng” and is 
found across China, South Korea, Japan, and Russia (2). In China, it 
mainly grows in Northeastern provinces, such as Xiaoxing’anling in 
Heilongjiang, the Changbai Mountains in Jilin, Shenyang in Liaoning, 
and Hebei and also Shanxi provinces in North China.

The medicinal effect of AS, which has a bitter and astringent taste, 
is mild. It is considered to nourish the spleen and stomach and 
stimulate appetite (3). Its active ingredients include glycosides, 
polysaccharides, flavonoids, lignans, triterpenoids, and organic acids 
(4). Modern pharmacology has revealed that AS can regulate 
immunity, treat cardiovascular system diseases, and has anti-
inflammatory, antitumor, and anti-oxidation effects (5). Glycosides 
repel insects, have antibacterial properties, and can improve sleep (6). 
Polysaccharides and their derivatives considerably affect the treatment 
of malignant tumors and improve human immunity due to their 
unique biological activities (7). Moreover, flavonoids have been 
reported to slow down human aging (3). Previous research involving 
a systematic study on Araliaceae plants has shown that AS and ginseng 
have similar pharmacological effects and clinical efficacy (8).

In terms of food supplements, the tender stems and fresh leaves 
of AS contain carotene, riboflavin, ascorbic acid, and rich vitamins. Its 
stem flavor is unique, aromatic, and slightly bitter. AS can be used as 
an ingredient in cooking and soups, and it can also be used to make 
packaging cans. Its leaves can be processed to produce a light-brown 
tea with a distinctive aroma and sweet taste.

In this study, the nutritional components, active components, 
extraction and purification methods, biological activities, and 
applications of AS are presented and discussed to expand its 
application range. Figure  2 presents a schematic diagram of the 
study structure.

2 Nutritional compounds

AS contains numerous nutrients, such as polysaccharides, 
essential amino acids, lipids, and vitamins, which are necessary for 
humans in regulating metabolism (Table 1). Table 2 summarizes the 
benefits of AS for humans in different countries. The results showed 

that there was a dose-dependent relationship between carbohydrate 
accumulation and the nitrogen application rate in AS (19). 
Furthermore, this content is related to environmental factors such as 
soil, altitude, moisture, sunshine, and topography (20). Processes such 
as decoction and fermentation increase the content of soluble solids 
and polysaccharides (21).

2.1 Carbohydrates

The carbohydrates in AS mainly consist of monosaccharides, 
disaccharides, polysaccharides, reducing sugar, and crude fiber. 
Carbohydrates accounted for 72.33% of the total composition in AS 
(11). The major monosaccharides in AS leaves are glucose, xylose, and 
rhamnose. Reduced sugar and polysaccharides in AS leaves are more 
accumulated during the growth and deciduous periods compared to 
other periods (13). The content of reduced sugar and polysaccharides 
is approximately 6.24–20.80% (9) and 2.21–5.74% (15), respectively, 
of the total composition in AS.

2.2 Proteins and amino acids

The protein content in AS ranges from 2.08 to 2.74% (9). The 
category, content, and ratio of essential amino acids are important 
indicators for evaluating plant nutrition (10). Su et al. found that the 
content of amino acids was the highest in seeds. Moreover, amino 
acids in AS leaves accumulate more during the flourishing and 
declining stages of growth than in other periods (13). AS consists of 
amino acid varieties, including alanine, glutamic acid, and aspartic 
acid. Researchers have identified approximately 13 different amino 
acids (6 essential amino acids) in AS, with 4 major acids such as 
glutamic (11.40–15.54% of the total amino acids), aspartic acid 
(10.08–11.16%), and lysine acids (7.46–12.22%) (10).

2.3 Lipids

Lipids are the main components of plant cell organ membranes 
and provide energy for metabolism. The fatty acids of leaves 
accumulate in the growth period to obtain energy (13). Crude fat 
compromises 2.07% ± 0.09% of fatty acids in AS, including 12.98% 
saturated fatty acids, 33.13% unsaturated fatty acids, 27.46% 
unsaturated alcohols, and 15.76% diolefins (9). Zhao et al. isolated and 

FIGURE 1

The (A) overview, (B) fruits, (C) leaves, and (D) barks of Acanthopanax senticosus.
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characterized eight fatty acids from the AS root bark extract, including 
oleic acid methyl acetate, oleic acid ethyl acetate, 10,13-octadecadienoic 
acid methyl acetate, 10,13-octadecadienoic acid ethyl acetate, myristic 
acid, palmitoleic acid, 9, 11-octadecadienoic acid, and 
hexadecatrienoic acid (18).

2.4 Minerals

The mineral content in AS varies with the species, origin, and 
climate. Previous research has identified the major and trace 
elements of AS (10), including minerals such as potassium, 
calcium, sodium, magnesium, iron, copper, zinc, manganese, 
and selenium.

2.5 Vitamins

AS is rich in vitamins such as VB1, VB2, VB3, VB6, VB12, and VC (9), 
providing the ability to stimulate cells and enhance immunity.

3 Active compounds

3.1 Polysaccharides

Polysaccharides are polymers linked by multiple glycosidic bonds. 
The structural analysis of polysaccharides focuses on their primary 
structure, such as monosaccharide composition, relative molecular 
mass, and chain conformation analysis. Understanding the structural 
features of polysaccharides is essential for assessing their functions in 

biological systems and their macroscopic properties in 
industrial applications.

The hydrolysis of polysaccharides is typically performed using 
trifluoroacetic acid (TFA) or specific enzymes to treat the 
polysaccharide chain and obtain the main chain and fragment 
structure. These are then combined with techniques such as 
monosaccharide composition, methylation, and nuclear magnetic 
resonance for the structure resolution of degraded products (36). 
Chen et  al. extracted crude polysaccharides with antioxidant and 
immunological activities and subsequently hydrolyzed them with TFA 
to obtain water-soluble polysaccharides with a relative molecular mass 
of 14.57 kDa (12). As shown in Table 3, the molecular weights of the 
polysaccharides of AS range between 5.24 and 169 kDa. The diversities 
in the molecular weights may be due to the differences in the sources 
of raw materials, extraction temperatures, and deproteinization 
methods. The structure and type of polysaccharides in the stem of AS 
are more complex than those in the leaves, and the fibrous structure 
of the stem protects the plant cells from damage for better bud 
differentiation. The high temperature during extraction and the use of 
dialysis bags during deproteinization will destroy the structure 
of polysaccharides.

3.2 Eleutherosides

Numerous studies have identified eleutherosides as the main 
components of AS with pharmacological effects. AS contains 16 types 
of eleutherosides, compromising 18.59% of the total content, in its 
different components (roots, stems, leaves, etc.). The type and content 
vary with the plant component. In addition, the eleutheroside content 
can also vary within the same plant component. Scholars have 

FIGURE 2

Schematic diagram of extraction, purification, biological activities, and application of Acanthopanax senticosus.

https://doi.org/10.3389/fnut.2024.1391601
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhang et al. 10.3389/fnut.2024.1391601

Frontiers in Nutrition 04 frontiersin.org

TABLE 1 Contents of nutritional compounds (%) in Acanthopanax senticosus of different habitats.

Compounds Content (%) Habitats References

Moisture
7.50–87.9 (fresh 

weight)

Heilongjiang, China

Autonomous, Yunnan, 

China

(9, 10)

Carbohydrate 72.33–89.47
Chuncheon, South 

Korea
(11)

Monosaccharides Liaocheng, China (12)

Glucose 6.05%

Arabinose 13.48%

Xylose 0.72%

Mannose 2.02%

Galactose 5.40%

Rhamnose 18.22%

Disaccharides Heilongjiang, China (13)

β-Gentiobiose -

D-Cellobiose -

Polysaccharide 4.36% Heilongjiang, China (14)

Reducing sugar 6.24–20.80 Heilongjiang, China (9)

Crude fiber 2.21–5.74% Jilin, China (15)

Protein 2.08–2.74 Liaocheng, China (16, 17)

Free amino acid

Alanine 0.12–0.64

Lysine 0.17–1.62

Aspartate 0.23–1.48

Glutamate 0.26–2.06

Valine 0.23–0.62

Isoleucine 0.12–0.63

Phenylalanine 0.13–0.61

Leucine 0.21–0.94

Threonine 0.08–0.14

Lipid -
Jilin, China

Seoul, Korea
(18)

Unsaturated fatty acid

Methyl oleate -

Ethyl oleate -

Methyl 10, 

13-octadecadienoate
-

Ethyl 10, 13-octadecadienoate -

Saturated fatty acid Myristic acid -

Mineral Jilin, China (10)

K (0.62–480) × 10−3

Ca (0.60–90) × 10−3

Na (5.28–1,000) × 10−6

Mg (0.11–50) × 10−3

Fe (0.12–1) × 10−3

Cu (0.02–0.2) × 10−3

Zn (0.05–0.6) × 10−3

(Continued)
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determined the content of eleutherosides in the roots, stems, and 
leaves as 1.05, 2.49, and 0.75%, respectively (51).

Eleutherosides are sugar or sugar derivatives that include amino 
sugar and uronic acid, along with other non-sugar substances, linked 
through the terminal carbon atoms of the sugar molecules. The 
non-sugar component is aglycone or ligand, and the linked bond is 
aglycone. The roots and rhizomes contain a variety of eleutherosides, 
which can be classified as eleutheroside E, daucosterol, eleutheroside 
B, eleutheroside D, eleutheroside K, songoroside, copteroside B, and 
pinoresinol-4,4′-di-β-O-D-glucoside (Figures 3A–H) (52).

3.3 Flavonoids

Flavonoids are present in all AS components, with the leaves 
containing the highest content. The flavonoid content in leaves is 
affected by factors including the harvest period, producing area, 
storage time, and storage conditions and the highest content levels are 
observed in July. The flavonoid content decreases with the increasing 
storage time and high humidity (53).

Flavonoids are a class of yellow pigments derived from 
2-phenylchromogenone (Figure 3V). Flavonoids have a C6-C3-C6 
structure. Figures 3I–U shows that the main flavonoids isolated from 
AS include epicatechin, wogonin, quercetin, kakaferol, and rutin (54).

4 Extraction and purification of 
bioactive compounds of AS

4.1 Polysaccharides

With the pursuit of high-quality health, the nutritional and 
medicinal values of AS polysaccharides have attracted much 
attention. Various traditional and feasible extraction methods have 
been established and tested. Table 3 summarizes the extraction and 
purification conditions of polysaccharides in AS, as well as the yield 
and structure of polysaccharides from different origins. According to 
the extreme hydrophilicity and alcohol insolubility of AS, water is 
often used as a solvent or precipitant. The advantages of hot water 
extraction (HWE) include practical operation, simple equipment, 
and easy implementation. Crude polysaccharides can be  directly 
extracted by ethanol precipitation, which is suitable for almost all 

water-soluble polysaccharides. This method separates the 
polysaccharide by reducing the dielectric constant of the aqueous 
solution (1). However, HWE also has significant disadvantages, 
including a time-consuming process, low efficiency, large solvent 
consumption, and high temperatures. To improve the extraction 
efficiency, polysaccharides have been extracted by ultrasound-, 
microwave-, and enzyme-assisted extraction. Previous research 
determined the yield of water-soluble polysaccharides from the fruit 
of AS in Gansu as 3.81% ± 0.18%. Compared with HWE, the yield 
increased by 154% (42, 43). However, a difference was observed in the 
molecular weight due to the damaged polysaccharide structure. This 
damage is attributed to the localized excessive vibration and high 
temperatures. The extracted crude polysaccharide of AS contains 
impurities such as proteins, inorganic salts, and pigments, which 
affect the subsequent analysis. The crude polysaccharide of AS is 
typically isolated and purified to remove proteins and pigments. The 
Sevag technique is often applied to remove proteins due to its mild 
conditions and weak influence on the polysaccharide structures. 
However, this type of purification requires repeated treatments, 
which affect the final yield. As a consequence, macroporous resins or 
dialysis bags are usually necessary to repurify crude polysaccharides 
(43, 44).

Chain sequencing and structural domains of carbohydrates have 
been the focus of much in-depth research due to the needs of 
pharmacology, toxicology, and structural modification. According 
to the order and mode of main chain glycosylation and the type of 
monosaccharide, the AS structure can be divided into three types, 
namely, RG-I, XGA, and AG-II. The RG-I type is mainly high in Rha 
and GALA, which are linked by 1 → 4 glycosidic bonds. Thus, most 
polysaccharides belong to the RG-I structure. In addition, 
polysaccharides with Rha/Gala ratios between 0.25 and 0.73 are 
easily induced to pectin. The polysaccharide extracted by Hu et al. 
was composed of glucose, galactose, rhamnose, arabinose, mannose, 
xylose, and glucuronic, with a molar ratio of 8.83:7.90:4.74:4.55:2.8
0:2.39:1.00, belonging to the RG-I type. The XGA structural 
domains represent certain polysaccharides with a high xylose 
content. For example, the polysaccharides extracted by Li et  al. 
contained xylose (12, 38, 42). In addition, the XGA structural 
domain coexists with the RG-I structural domain in other samples 
of AS polysaccharides (55). Lee et al. found that AG-II type Ara and 
Gal are linked by a 1 → 3 glycosidic bond (48). Moreover, the 
purified ALP-1 extracted by Hu consists of galactose, glucose, 

Compounds Content (%) Habitats References

Mn 10−3

Se 0.4 × 10−3

Vitamin VC (7–11, 13, 15, 19–21) 

×10−3

Heilongjiang, China (22, 23)

VB1 0.96 × 10−6

VB2 0.05 × 10−6

VB3 0.67 × 10−6

VB6 2.16 × 10−6

VB12 0.02 × 10−6

TABLE 1 (Continued)
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TABLE 2 The health-promoting effects of Acanthopanax senticosus from different countries.

Health-promoting 
benefits

Part/ingredient In vitro or in 
vivo

Research outcome Country References

Antiaging/hepatoprotective Stem, root/extract In vivo

AS attenuated leukocyte 

telomere length shortening 

and reduce liver biochemical 

parameters

Korea (24)

Immunomodulatory effect
Stems, leaves/

polysaccharide
In vivo

AS promoted lymphocyte 

proliferation, and resist 

immunosuppression induced 

by cyclophosphamide

China (25)

Treat type 2 diabetes Stem/polysaccharide In vivo

AS improved glucose 

tolerance and alleviate insulin 

resistance

China (26)

Nerve protection-learning 

and memory impairment
N.D./polysaccharide In vivo

AS improved learning and 

memory ability in mice and 

inhibited inflammation levels

China (27)

Nerve protection-PD Extract/N.D. In vivo

AS increased the number of 

autonomous movements and 

impacted a key metabolic 

pathway of PD by regulating 

gut microbial structure and 

metabolic disorders

China (28)

Nerve protection-PD Root/extract In vivo

Protein expression changed 

significantly after AS 

treatment

China (29)

Nerve protection-Alzheimer’s 

disease
N.D. Molecular docking

Eleutheroside B, chiisanoside, 

and eleutheroside D1 had 

strong binding abilities to key 

target proteins

China (30)

Treat liver injury/antioxidant Decoction pieces In vivo

AS regulated antioxidant and 

antiapoptotic-related gene 

expression levels

China (31)

Anti-depression N.D. In vivo and in vitro

AS improved depression and 

simultaneously ameliorate 

hepatic metabolomic 

alterations in Chronic 

unpredictable mild stress 

mice

China (32)

Treat radiation-induced brain 

injury

Roots, leaves/

polysaccharide
In vivo

AS protected the neurons of 

irradiated mice and prevent 

the irradiated mice from 

learning and memory ability 

impairment

China (33)

Anti-atherosclerotic N.D. In vivo
AS regulated via the nuclear 

factor-kappa pathway
China (34)

Immunomodulatory effect
Nanoemulsion/

polysaccharide
In vivo

AS induced several cytokines 

(IL-2, IL-6, TNF-α, and 

IFN-γ) involved in the TLR4-

NF-κB signal transduction 

pathway-induced 

immunoregulation signaling

China (35)

a“N.D.” means “not detected”.
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TABLE 3 Summary of the extraction and purification process of polysaccharides from Acanthopanax senticosus.

Extraction Purification

Origin Part Solvent
S/L 
ratio

Power (W)
Temperature 
(°C)

Time 
(h)

Precipitation
Removal of 
protein

Content 
(%)

Molecular 
weight 
(kDa)

Structure References

Shanxi, China
Root, 

stem
Water 1: 50 – – 1 95% ethanol – 1.68

– –
(37)

Zhejiang, 

China
–

Alkali-

extraction 1: 24

– – –

60% ethanol
CHCl3/C4H9OH:

4: 1

6.01
–

Arabinose:xylose: galactose:glucose = 14:34:34:18
(38)

Water – 5.19 – Arabinose:xylose: galactose:glucose = 12:45:33:11

– Root Water 1: 20 – – 1.5 – – 10.14 – – (39)

Hunan, China Leaf Water 1: 14 – 90 6 80% ethanol

CHCl3/

C4H9OH:=3:

1, DEAE-

sepharose Fast 

Flow and dextran 

gel G-75column 

chromatography

1.94 Galactose, rhamnose, glucose (40)

Jilin, China Stem Water

– – – – – Ion exchange 

chromatographic 

columns DEAE-

52

ASP-I:

87.61, ASP-

II: 72.33

ASP-I: Mannose:glucose:galactose:arabinose 

=1:6.63:2.7:0.88

ASP-II: Mannose:rhamnose:galacturonic 

acid:glucose:galactose:arabinose = 1:2.28:4.30:1.18:2.82:2.81

(41)

Gansu, China Fruit Water 1: 15 Ultrasound: 325 47 0.4 85% ethanol
CHCl3/C4H9OH:

4: 1
3.81 11.2–133.5

Glucose:galactose:rhamnose:arabinose:mannose:xylose:gl

ucuronic =8.83:7.90:4.74:4.55:2.80:2.39:1.00
(42)

Gansu, China Stem Water 1: 30 – 60 15 90% ethanol
CHCl3/C4H9OH:

4: 1
1.5 169 Galactose:glucose:mannose:arabinose = 6.1:2.1:1.1:1.0 (43)

–

Bark Water 1: 25 Ultrasound: 85 58 1.2 Water

Dialysis bag:

cut-off molecular 

weight 

(MW) = 7,000 Da

1.53

–

(44)

Heilongjiang, 

China

Stem, 

fruit
Water 1: 50 Ultrasound:100 80 1.25 Water

Dialysis bag:

cut-off 

MW = 3,500 Da

1.1

– –

(45)

(Continued)

https://doi.org/10.3389/fnut.2024.1391601
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Z
h

an
g

 et al. 
10

.3
3

8
9

/fn
u

t.2
0

24
.13

9
16

0
1

Fro
n

tie
rs in

 N
u

tritio
n

0
8

fro
n

tie
rsin

.o
rg

Extraction Purification

Origin Part Solvent
S/L 
ratio

Power (W)
Temperature 
(°C)

Time 
(h)

Precipitation
Removal of 
protein

Content 
(%)

Molecular 
weight 
(kDa)

Structure References

Jilin, China Stem Water

– – –

0.2 80% ethanol

DEAE-52 

Cellulose Ion 

Exchange 

Columns and 

dextran gel G-75 

column 

chromatography

- Mannose, glucose, galactose, arabinose (46)

- Leaf Water

–

90 4 70% ethanol 5.2 14.57

Molar ratio: rhamnose, xylose, glucose, mannose, 

arabinose, galactose and glucuronic 

acid = 7.45:18.63:25.15:0.93:8.35:2.79:5.69

(12)

Sichuan, 

China
Fruit Water 1: 10

–

100 5 Ethanol

–

1.05

AHP-I: 6.2
Arabinose, fucose, mannose, glucose, 

galactose = 1.00:1.40:0.64:3.13:2.09

(47)AHP-II: 64.4
Rhamnose, arabose, mannose, glucose and 

galactose = 0.36:1.00:0.15:0.20:1.10

AHP-III: 12.1
Rhamnose, arabinose, fucose, mannose, glucose and 

galactose = 1.22:1.00:0.40:0.28:0.26:1.03

Yamagata 

Prefecture, 

Japan

Leaf 95% ethanol 1: 1

–

25 16

– –

3.25

ANP: 10.7
L-arabinose, D-mannose, D-glucose and D-galactose 

1.0:2.6:2.5:1.4
(48)

AAP: 84
Larabinose, D-galactose, 4-O-methyl-d-glucuronic 

acid = 5:10:1

Gansu, China
Stem, 

bark
Water 1: 30

–
80 10 50% ethanol

–
1.70 106

Galactose, glucose, rhamnose and galacturonic 

acid = 3.0:2.0:2.0:1.0
(49)

Heilongjiang, 

China
Leaf Water 1: 2 - 90 3 80% ethanol

Dialysis bag: 

cut-off 

MW = 3,500 Da

1.67

ASPB2: 5.24
GalA, Ara, Rha, Man, Glc and 

Gal = 59.9:2.6:8.6:6.4:6.5:16.3
(50)

ASPB3: 

30.51 kDa

GalA, Ara, Rha, Man, Glc and 

Gal = 42.5:2.5:7.6:14.5:15.2:17.7

Structural characterization of polysaccharides isolated from the different parts of Acanthopanax senticosus.

TABLE 3 (Continued)
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mannose, and arabinose in a molar ratio of 6.1:2.1:1.1:1.0, with the 
main chain structure of 1,6-α-D-Galp residue, α-D-manp-(1 → 3)-α-
L-arf residue at the O-3 position, and α-D-Galp residue at the 
O-4 position.

4.2 Eleutherosides

Solvents can be  used to extract eleutherosides (Table  4). 
Eleutherosides have strong hydrophilicity, and water, ethanol, or 
methanol with a high polarity which can be used as the solvent for 
extraction. To enhance eleutheroside B and E yields, Na-Ri Kim 
et al. employed the enzyme Novozyme 33095 culture solution to 

treat AS (78). Enzymes can combine with pectin in the cell walls 
and decrease the adhesion to the active substance, consequently 
increasing the dissolution of eleutheroside. Following treatment 
with Novozyme 33095, eleutheroside B and E yields increased by 25 
and 29%, respectively. The optimal extracting conditions have been 
reported as follows: extraction temperature of 80°C; soaking time 
of 5 h; ethanol volume fraction of 70%; and material-to-liquid ratio 
of 1:6 (60).

The development and utilization of green solvent systems have 
recently become a hot spot. In 2003, researchers reported a new type 
of green solvent denoted as the deep eutectic solvent (DES) (79). DES 
consists of a hydrogen bond acceptor (HBA) and a hydrogen bond 
donor (HBD). The HBAs are mostly quaternary ammonium salts and 

FIGURE 3

The chemical structures of eleutherosides (A–H). (A): Eleutheroside B, (B): Eleutheroside D, (C): Eleutheroside K, (D): Copteroside B, (E): Songoroside A, 
(F): Eleutheroside E, (G): Daucosterol, (H): Pinoresinol-4,4′-di-β-O-D-glucoside. The chemical structures of flavonoids and 2-phenylchromogenon 
(I–V). (I): Epicatechin, (J): Wogonin, (K): Quercetin, (L): Rutin, (M): Quercetin-3-O-glucoside, (N): Kaempferol-3-O-rutinoside, (O): Kaempferol, (P): 
Pachypodol, (Q): Okanin, (R): Hyperoside, (S): Vitexin, (T): Polygonin, (U): Hesperidin, (V): 2-phenylchromogenone.
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TABLE 4 Summary of the extraction and purification processes of eleutherosides from Acanthopanax senticosus.

Extraction Purification

Origin Parts Solvent type S/L ratio Power
(W)

Temperature 
(°C)

Time
(h)

Elution type Flow rate Resinous type Content

Jilin, China Fruit 70% ethanol 1: 20 Ultrasound:450 – 0.8 – – – 3.57 mg/g (56)

Heilongjiang, 

China

–
Ionic liquid 1: 25 Ultrasound:250

–
0.5

– – – Eleutherosides B: 3.3%

，eleutherosides E: 4.6%
(57)

Heilongjiang, 

China

Roots, 

rhizomes
Surfactant 1: 20 Ultrasound:250 50 0.7

– – – Eleutherosides B: 

1.06 ± 0.04 mg/g,

eleutherosides E: 

2.65 ± 0.12 mg/g

(17)

Zhejiang, China Stem Tea saponin 1: 20 Ultrasound:250 50 0.7

Chloroform:methanol:iso

propanol:water:

5:6:1:4

1 mL/min

High speed 

countercurrent 

chromatograph: 

TBE300B

Eleutherosides B 

1.18 ± 0.05 mg/g, 

eleutherosides E 

2.87 ± 0.12 mg/g

(58)

Heilongjiang, 

China
Stem

Betaine:triethanolamin

e:magnesium chloride 

hexahydrate:

1:4:0.08

1: 14
Microwave:600 

ultrasound: 500
59 0.7 95% ethanol 6 BV/h

NKA-9, D101,

HPD-400, ADS-17, 

AB-8

Eleutherosides B 0.16 mg/g, 

eleutherosides E 0.04 mg/g
(59)

Hebei, China Leaf 70% ethanol 1: 6 – 80 5 60% ethanol 27.22 × 10−6 m3/min AB-8 Saponins: 44.1% (60)

Heilongjiang, 

China
Root, stem

– – – – –
30% ethanol 1 BV/h AB-8

Eleutherosides B: 7.95%, 

eleutherosides E: 11.15%
(61)

Heilongjiang, 

China
– Water 1: 6

– –
0.5 60% ethanol 3 BV/h HPD100C

Eleutherosides B: 0.28 mg/g, 

eleutherosides E: 1.49 mg/g
(62)

Heilongjiang, 

China
Stem

Choline chloride: 

fructose: 1:1
1: 20 – 80 2

– – –
eleutheroside E: 1.96 mg/g (63)

Heilongjiang, 

China
Rhizome

Choline chloride: 

ethylene glycol: 1: 3
1: 10 Microwave: 400 75 0.2

– –
AB-8

eleutheroside B: 0.282 mg/g, 

eleutheroside E: 1.486 mg/g
(64)

– Root, stem 70% ethanol 1: 10 – – 1 30% ethanol 3. 5 BV/h D101 18. 35% (65)

Heilongjiang, 

China
Leaf Water

– – –
2

– – – –
(66)

Liaoning, China – 65% ethanol

– – – – – – – eleutheroside E2 1.3 mg/kg, 

tachioside 0.53 mg/kg, 

carotenoside 2.01 mg/kg

(67)

(Continued)
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Extraction Purification

Origin Parts Solvent type S/L ratio Power
(W)

Temperature 
(°C)

Time
(h)

Elution type Flow rate Resinous type Content

Jilin, China Fruit Water 1: 5

– – –

Chloroform-methanol:

10∶1 ~ 1∶1

– – Acanthopanthoside A 

41 mg/kg, 

Acanthopanthoside B 

40 mg/kg

(68)

– –

Methanol

– – –

0.5

– – – Syringin: 3.5 mg/kg, 

Acanthopanthoside E: 4 mg/

kg, cirtrusin A: 2 mg/kg, 

cirtrusin B: 1 mg/kg, 

syringophenol glucoside: 

0.85 mg/kg

(69)

– Stem Water

– – – –
Dichloromethane-

methanol

– – Syrigin: 0.02 mg/g, 

eleutheroside B1: 0.02 mg/g, 

eleutheroside D: 0.02 mg/g

(70)

Liaoning, China Stem 65% ethanol – – – 2 30% ethanol – – Eleutheroside B2: 0.17 mg/g (71)

Gongju, South 

Korea
Fruit Methanol 1: 3

– – –
Chloroform, ethyl acetate, 

n-butanol

– – Carotenin, eleutheroside K, 

pinechinoside A, 

Cephaloside B

(72)

Jilin, China Stem Water
– – – – CHCI3, ethyl acetate, 

n-butanol

– – Eleutheroside B, 

eleutheroside E
(73)

National Institutes 

for Food and 

Drug Control

– 80% ethanol 1: 10

– – – – – –

Eleutheroside B: 7.63% (74)

Sichuan, China
Stem, root 

bark

Water – – – – Water, 15, 25, 75% 

ethanol

– D101 Eleutheroside E: 0.19–

2.86 mg/g

(75)

Heilongjiang, 

China

Root, rhizome 70% ethanol – – – – Water, 10, 30, 50, 95% 

ethanol

– D101 Eleutheroside D: 0.05 mg/g, 

Pinoresinol-4, 40-diethyl-

O-D-glucoside: 0.09 mg/g, 

Eleutheroside E: 0.25 mg/g, 

5-methoxylariciresinol-4-O-

b-D-glucopyranoside: 

0.04 mg/g, Eleutheroside B: 

0.13 mg/g, Eugenol-4-o-b-d-

glucoside: 0.15 mg/g, 

Eleutheroside E2: 0.06 mg/g

(76)

Beijing, China – 80% ethanol – – – – Water, 20, 50, 90% 

ethanol

– – Eleutheroside B: 7.45% (77)

TABLE 4 (Continued)
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zwitterions, while the HBDs are carboxylic acids, amides, and polyols. 
The HBD is the main factor affecting the polarity of DES, and the 
initial polarity of DES is similar to that of 70% of ethanol. DESs are 
non-toxic and produce minimal environmental pollution. They have 
high solvency, high extraction efficiency, high selectivity, and a tunable 
nature compared with traditional organic solvents. The extraction rate 
of isofraxidin by DES (choline chloride and citric acid) has been 
reported as 1.56 mg/g, which is 2–3 times that of conventional solvents 
(80). Ultrasound- and microwave-assisted extraction methods have 
been employed to improve the movement frequency, macromolecule 
speed, and extraction efficiency. Du et  al. applied alternative 
ultrasonic- and microwave-assisted methods to extract isofraxidin 
(81). This method avoids the decomposition and isomerization of 
natural products due to the long extraction time. Eleutheroside E has 
also been extracted by ultrasonic extraction mass spectrometry, with 
DES composed of choline chloride and fructose (1:1) as the extraction 
solvent (63). The content of glycoside E reached 1.96 mg/g, which was 
5–6 times higher than that of 70% of ethanol. Previous research 
combined microwave ultrasound-assisted extraction with 3-element 
DES (betaine, triethanolamine, and MgCl2·6H2O) to extract 
eleutherosides. The yields of isofraxidin, eleutheroside E, eleutheroside 
B, protocatechuic acid, chlorogenic acid, and ursolic acid reached 
18.76, 49.38, 174.82, 2.98, 457.39, and 16.62 μg/g, respectively, 
representing a 1.04- to 3.19-fold increase compared to those obtained 
through conventional extraction methods (59).

Eleutherosides in crude extract often coexist with other active 
ingredients. The separation and purification of eleutherosides are 
generally carried through ethanol precipitation. High-purity 
eleutheroside B, eleutheroside E, and isofraxidin can be  obtained 
using a combination of ionic liquid-loaded (1-butyl-3-methyl-
imidazolium bisulfate) AB-8 macroporous resin and DESs with 
molecularly imprinted separation technology (64). Table 4 shows the 
extraction and purification conditions.

4.3 Flavonoids

The extraction methods of total flavonoids include reflux 
extraction, ultrasonic/microwave extraction, supercritical fluid 
extraction, and rapid solvent extraction (Table  5), with ethanol, 
methanol, enzyme, and DESs typically selected as the solvents. 
Compared with traditional solvent extraction, the extraction rate of 
supercritical CO2 extraction is reported to increase by 33.26% (98). 
This technology is safe, environmentally friendly, has no reagent 
residue, and consumes little energy. Due to the expensive supercritical 
extraction equipment and other factors, the ethanol–water reflux 
extraction of total flavonoids is more suitable for large-scale 
production. Liu et al. employed enzyme-assisted ultrasonication to 
extract total flavonoids (85), determining the optimal extraction 
process as follows: cellulase to pectinase ratio of 3:2; addition of 
6,960 U/g of enzymes; enzyme treatment time of 59.80 min; 
temperature of 53.70°C; and pH of 6.05. Based on these settings, the 
total flavonoid yield was 36.95 ± 0.05 mg/g.

Microporous adsorbent resin can be  applied to separate the 
chemical components of herbal medicines. This technique has the 
advantages of fast adsorption, large adsorption capacity, high elution 
rate, and simple resin regeneration. Commonly used eluents are water, 
methanol, ethanol, acetone, and ethyl acetate. Wang et al. employed 

HPD-600 resin to increase the purity of flavonoids to 50.57% (86). The 
adsorption process was carried out following quasi-secondary 
kinetics, in accordance with the Freundlich adsorption model.

5 Biological activities

5.1 Anti-fatigue properties

Fatigue can be  divided into sports fatigue and mental fatigue 
according to its attributes. The former occurs mostly in people who 
engage in high-intensity physical labor for a long period, while the 
latter denotes the excessive use of the brain (99). Sports fatigue will 
lead to mental instability and an accelerated heartbeat with lactic acid 
accumulation, while central fatigue will produce side effects such as 
memory loss, drowsiness, and emotional instability (100). Increased 
exercise endurance is the most potent macroscopic form of fatigue 
resistance (101).

Studies have reported the anti-fatigue effects of the AS extract 
(102). Fatigued mice fed with the AS extract showed increased 
weight-bearing swimming time, tissue glycogen content, and 
learning memory ability, and decreased blood lactate and urea 
nitrogen contents. Gao et  al. constructed a network diagram of 
“active ingredients–anti-fatigue targets” to screen the critical 
components of AS, including eleutherosides B, B1, C, and E (103). 
The core anti-fatigue targets were predicted to be  HSP90AA1, 
STAT3, VEGFA, and MMP9. Molecular docking predicted that 
both core components and key targets could spontaneously bind, 
and the binding ability was similar to that of the clinical drug 
ATP-2Na. Furthermore, the binding activities of eleutherosides B 
and B1 were higher than those of the key proteins. The anti-fatigue 
effect of eleutherosides is mainly executed by regulating HIF-1, 
PI3K-Akt, insulin signaling pathway, and substance metabolism 
through biological processes such as drug responses and the 
positive regulation of cell proliferation (Figure 4A) (52). Cheng 
et al. established fatigue mouse models to confirm that Erythrina 
saponins E can reduce blood urea nitrogen (BUN) and enhance the 
activity of serum lactate dehydrogenase (LDH) to prolong the 
exhaustion swimming time of mice (104). BUN, the end product of 
protein metabolism, is an important blood biochemical indicator 
related to fatigue. Eleutheroside has the ability to reduce the 
formation of BUN after exercise. Eleutheroside can increase the 
activity of serum LDH, accelerate the body’s ability to clear lactic 
acid, and play a role in delaying fatigue. In addition, eleutheroside 
B regulates the expression of factors associated with the Keap1/
Nrf2/ARE signaling pathway to improve learning memory (105).

5.2 Anti-inflammatory properties

Fan, Kim, Zhang et al. demonstrated that AS has protective and 
ameliorative effects on the gastrointestinal tract (106–108). 
Polysaccharides prevent the lipopolysaccharide-induced amplification 
of inflammatory mediators via a decrease in ileal mRNA abundance 
of TNF-α, inducible NO synthase, and IL-1β concentrations. Protein 
expression of hypoxia-inducible factor-1α, cyclooxygenase-2, and κ-B 
p65 is also reduced in ileal tissues. Moreover, the height of the ileal villi 
and the appearance of the epithelial villi of piglets fed with AS 
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TABLE 5 Summary of the extraction and purification processes of flavonoids from Acanthopanax senticosus.

Origin Parts Extraction Purification Content

Solvent type S/L ratio Power Temperature 
(°C)

Time
(h)

Elution 
type

Flow 
rate

Resinous 
type

– Root
60% ethanol, 

supercritical CO2

–

Supercritical CO2 

extract:

40 Mpa

78/55 2–3 60% ethanol 2 mL/min NKA-9 Flavonoids: 58.1% (82)

– – 55% ethanol 1: 45 Ultrasonic: 300 W 72 1.2 60% ethanol 3 BV/h HPD-600 Flavonoids: 50.57% (83)

Heilongjiang, 

China
Leaf 100% methanol 1: 15 100 Pa 100 0.1

– – – –
(84)

– – Ellulase:pectinase:

3:2
1: 20 Ultrasonic: 300 W 55 0.9

– – – Flavonoids: 

36.95 ± 0.05 mg/g
(85)

– – Glycerol:levulinic acid:

1:1
1: 18 Ultrasonic: 500 W 55 1.2

– –
AB-8 23.93 ± 0.07 mg/g (53)

– –
60% ethanol 1:40 – 60 1.1 60% ethanol 3 BV/h HPD-600

Flavonoids: 

76.4% ± 2.1%
(86)

– – 75% ethanol – – 70 2.5 – – – – (3)

Hunan, China – 95% ethanol 1: 5 – – 3 50% ethanol 5 mL/min D101 Flavonoids: 30.13% (87)

–
–

55% ethanol 1: 45 – 72 1.2
– – – Flavonoids: 

24.11 ± 0.17 mg/g
(88)

Jilin, China Leaf Supercritical CO2 1: 1.6 32 Mpa 45 3 – – – – (89)

Gansu, China Stem, leaf 70% ethanol 1: 35 600 W 60 0.6
– – – Flavonoids: 

28.11 ± 0.19 mg RE/g
(90)

Jilin, China Leaf 70% ethanol

–

Microwave: 

500 W
Ultrasonic: 60

Microwave: 0.02

Ultrasonic: 0.5

– – – Rutin:

ultrasound:

0.39 mg/g

Microwave:

0.38 mg/g

(91)

Jilin, China Leaf 60% ethanol – – – – 60% ethanol 20 mL/ min – Flavonoids: 60% (92)

Hubei, China, 

Seoul, Korea
Leaf 70% methanol

– – – – – – – Rutin: 0.07–

19.33 mg/g, quercetin-

3-O-glucoside: 0.06–

5.30 mg/g, 

kaempferol-3-O-

rutinoside: 0.08–

5.03 mg/g

(93)

(Continued)
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polysaccharides have been reported to improve, and polysaccharides 
can alleviate the reduced average daily feed intake of piglets and 
decrease the incidence of diarrhea and diarrhea index (106). The 
extrusion of AS leaves increases the protection of the gastric mucosa 
and prevents C48/80-induced acute gastric mucosal injury (107). 
Previous research has shown that serum concentrations of 
5-hydroxytryptamine and histamine were reduced in C48/80-modeled 
rats, while the expression of Bax and Bcl-2 was improved. A similar 
effect was observed for 200 mg/kg of AS on famotidine, a histamine 
H2 receptor antagonist, and normalized mucus secretion. These 
polysaccharides significantly increased the survival of flies and 
reduced the proliferation and differentiation of intestinal stem cells in 
response to dextran sodium sulfate through the epidermal growth 
factor receptor, Jun-N-terminal kinase, and Notch signaling pathways 
(108). Sodium dodecyl sulfate can induce the melanin phenotype and 
disrupt epithelial renewal. Therefore, polysaccharides are also effective 
in reducing sodium dodecyl sulfate-induced epithelial cell death and 
the accumulation of reactive oxygen species and antimicrobial 
peptides. AS polysaccharides also have antioxidant effects and 
improve the level of oxidative stress induced by cerebral ischemia–
reperfusion injury (109).

Isofraxidin in AS attenuates the inflammatory response in the 
lung tissue by decreasing the levels of tumor necrosis factor-α, 
interleukin-6, neutrophils, and NF-kB (110). Myeloperoxidase activity 
is also reported to be significantly reduced in the lung tissue. The 
protective effect on the lungs is associated with the inhibition of 
cyclooxygenase-2 protein expression. Eleutherosides E can effectively 
inhibit high-altitude heart injury by regulating NLRP3 inflammatory 
vesicle activation and cellular death in cardiac tissues (111). Song et al. 
applied Edwardsiella ictaluri to reveal that AS extract significantly 
reduced the expression of proinflammatory cytokines including IL-1 
(Figure  4B) (112). Edwardsiella ictaluri infection increased IL-1 
expression and activated the NF-кB/MyD88 pathway. The results 
showed that the expression of the NF-кB/MyD88 pathway 
significantly decreased.

5.3 Antioxidant properties

The excessive production of reactive oxygen species induces the 
development of cardiovascular diseases such as atherosclerosis and 
hypertension. It has been shown that AS can reduce lipid 
peroxidation, with an increase in the activity of superoxide dismutase 
and catalase in cells (Figure  4C) (113). Oxidative stress also 
contributes to the development of diabetic complications. AS 
polysaccharide can significantly reduce the levels of lipid peroxidation 
markers, such as thiobarbituric acid-responsive substances and lipid 
hydroperoxides (114). The activities of enzymatic antioxidants, 
superoxide dismutase, and catalase also significantly increased. Wang 
et al. showed that AS extracts protected against oxidative stress by 
increasing the activities of antioxidant enzymes and GSH/GSSG 
ratios in serum and liver homogenates (115). Both medium and high 
doses of AS aqueous extracts significantly increased Nrf2 and 
antioxidant enzymes. The antioxidant properties of AS 
polysaccharides have been reported as equally effective in zebrafish 
in vivo. The purified polysaccharide can significantly scavenge 
hydrogen peroxide and reduce hydrogen peroxide-induced cell death 
in zebrafish (116).O
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5.4 Antitumor and anticancer properties

AS has good antitumor and anticancer pharmacological effects. 
Cytotoxicity experiments revealed that the cells of colon (SW 620), 
breast (MDA-MB-231, MCF-7), gastric (Kato-III), ductal (BT474), 
bronchial (Chago K-1), prostate (PC-3), and hepatic hepatoblastoma 
(Hep-G2) cancers produced certain toxic responses and inhibitory 
effects under the action of AS (117–121). Syringin from AS can 
inhibit the proliferation and migration of breast cancer cells and 
promote apoptosis by regulating the EGFR-RAS–RAF–MEK–ERK 
and PI3K-AKTCOX-2 signaling pathways (Figure 4B) (117). The 
ethanol extract of AS induced liver cancer cell apoptosis by inhibiting 
nuclear factor-κB activity, with an inhibition rate of 57.55% in HepG2 
cells (121). The extract can also decrease the protein levels of matrix 
metalloproteinase-2 (MMP-2), MMP-9, t-protein kinase B, and 
p-Akt and increase the protein level of E-cadherin. The results 
demonstrated that the number of cells penetrating the basement 
membrane was significantly reduced after the treatment with the 
extract of AS, which suggested that the extract can inhibit the 
invasion of HepG2 cells. Yamazaki et al. found that isofraxidin, a 
coumarin component from AS, significantly inhibited hepatocellular 
carcinoma cell invasion (120). Isofraxidin inhibits terephthalic acid-
induced matrix MMP-7 expression in hepatocellular carcinoma cells 
by preventing ERK1/2 phosphorylation. The IC50 values of the extract 
for Kato-III and SW 620 cells have been determined as 72.9 and 

73.4 μg/mL, respectively (118). Glycoprotein in AS can significantly 
suppress the metastasis of colon cancer 26-M3.1 cells in the lung 
(122). In particular, glycoprotein activates macrophages to produce 
various cytokines and inhibit tumor metastasis or enhance host 
natural immunity (123).

5.5 Neuroprotective effects

AS can protect neurons and thus has important applications in 
drug development for Alzheimer’s and Parkinson’s diseases (PD). 
Mice treated with AS have shown a reduction in climbing time, an 
increase in the number of voluntary movements, and a reduction in 
cognitive and spatial memory deficits (28, 124). Synaptic nucleoprotein 
is the key factor in the pathogenesis of PD (125). In a previous study, 
after the WT-Syn and A53T-Syn transgenic cells were treated with the 
extract, the levels of synapsin, caspase-3, parkin, and other related 
proteins returned to near-normal levels (126). This is consistent with 
the results reported by Liu et al. (127). The neuroprotective effect of 
AS can be mediated by the activation of parkin and HO-1 expression, 
which inhibits caspase-3 activity and concomitantly reduces nitric 
oxide/ROS production, thereby inhibiting neuronal apoptosis. HO-1, 
an inducible enzyme present in most cell lines, is protective against 
glutamate-induced neuronal cell death (128). AS induces HO-1 
expression mainly through the p38-CREB pathway (Figure  4D). 

FIGURE 4

Schematic diagram of anti-fatigue (A), anti-inflammatory, anti-tumor (B), anti-oxidative (C), and neuroprotective (D) mechanisms of Acanthopanax 
senticosus.
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Previous studies has shown that AS may regulate the structural 
composition of the gut microbiota, improve metabolic disorders, 
reduce inflammatory factors, and reverse the PD process (28). Lu et al. 
found a significant increase in Firmicutes and a significant decrease 
in Actinobacteria expression in the intestine of ASH-treated Parkinson 
mice (28). Short-chain fatty acids produced by the fermentation of 
Firmicutes promoted metabolism by acting on G protein-coupled 
receptors (129). Actinobacteria cause damage to dopaminergic 
neurons by producing protease inhibitors (130). These conclusions 
highlight a novel mechanism underlying the effects of AS on the 
“brain–gut axis.”

6 Applications

6.1 Functional food

AS is used in wine, beverages, fruit cakes, tea drinks, yogurt, and 
other products. Zhang et al. employed the rhizome as a raw material 
to prepare a beverage with the characteristic tea fragrance (131). Zhao 
et al. also prepared health-preserving tea, and its raw ingredients were 
AS berries and longan (132). The formula of the health-preserving tea 
is the ratio of AS to longan was 1:4, with 4% sugar and 0.1% citric acid. 
Ma et al. produced nutritional yogurt using fresh leaves and milk as 
the main raw materials. The formulation included 0.2% of xanthan 
gum, 0.3% of sodium carboxymethyl cellulose, 20% of fresh juice, 7% 
of sugar, and 3% of milk powder (133). Moreover, Niu et al. developed 
AS yogurt (134) and He et al. applied AS berries as raw materials to 
produce a fruit cake. The optimum production formula consisted of 
sucrose (37.9%), citric acid (2.95%), xanthan gum (2.1%), sodium 
alginate (2.1%), and agar (1.58%) (135).

6.2 Medicine

AS is a traditional medicinal plant in China. Numerous medicines 
have been developed with AS raw materials, such as injections, tablets, 
granules, and capsules. Chinese researchers have developed AS 
dispersible tablets characterized by a reasonable prescription, a 
feasible process, a high dissolution degree, and good dispersion 
uniformity (136). Such medicines can treat weakness, appetite loss, 
cough, asthma, insomnia, and cardiovascular and cerebrovascular 
diseases (137). Studies have shown that AS delays physical fatigue and 
relieves mental fatigue by improving memory retention and increasing 
spontaneous activity (102). AS is widely used in clinical practice to 
treat transient ischemic attacks, and its injection is a Chinese patent 
medicine often used for treating ischemic heart disease.

6.3 Animal dietary additive

Early weaning of piglets leads to decreased growth performance 
and an increased incidence of diarrhea and disease. Antibiotics are 
traditionally used to prevent and treat intestinal disorders caused by 
weaning stress. However, the continued use of antibiotics results in 
drug and antibiotic residues in the animals. Novel feed additives are 
thus required to replace antibiotics. AS extract, as a promising 

alternative to antimicrobial agents, can effectively enhance the 
digestibility and absorption of amino acids in weaned piglets (138). 
Yin et al. found that AS promoted the diversity of cecal microbiota, 
with the number of lactic acid bacteria increasing (p < 0.05) and 
Escherichia coli decreasing (p < 0.05) as the weaning age progressed.

In summary, the application of AS is mainly centered on 
functional food and medicine. Despite the great progress made by 
recent research, the application of AS is still associated with several 
shortcomings. For example, the development of the product has 
remained in the laboratory stage and cannot be well industrialized. 
This indicates that the research on AS lacks depth. Moreover, the 
product category is simple, which cannot meet the demand of the 
consumers for healthy lives. The lack of standards for the testing 
results in the uneven quality of AS products on the market. In view 
of the aforementioned problems, scholars should focus on the 
transfer of experiments from the small scale to the industrial scale 
to achieve industrialization. Additional AS products should also 
be developed such that consumers can gradually accept them and 
improve their living standards. Furthermore, scholars and experts 
should formulate corresponding production and inspection 
standards to improve the quality of such products and increase 
consumer satisfaction.

7 Conclusion

AS is rich in active ingredients, has a wide range of 
pharmacological effects, and shows great potential for clinical 
applications. However, controversies exist in some areas related to 
whether AS belongs to the category of medicine-food homology. 
Moreover, while emerging extraction technologies can improve 
efficiency, they may decrease the yield, resulting in a greater waste of 
resources. Although DES extraction is environmentally friendly, the 
solvent recovery of DES is difficult and reduces extraction efficiency. 
In terms of application, AS-related health products are limited. There 
is also a lack of quality control standards for AS products. 
Furthermore, in recent years, new delivery systems using biological 
macromolecules as wall materials are developing rapidly, providing 
humans with new directions and technologies in food and medicine 
industries. AS and its active components can be applied as a wall core, 
while biological macromolecules can be adopted as the wall material 
to construct a drug delivery system. However, the application of AS 
in this field is relatively new and requires much work. Thus, further 
research should focus on the following: (1) employing optimized 
extraction methods to improve the yield of bioactive compounds in 
AS; (2) establishing a clear definition of AS and formulating relevant 
quality control indicators; (3) conducting more clinical trials to verify 
the health benefits of AS for humans; (4) exploring the application of 
AS in the prevention and treatment of diseases; (5) developing 
healthcare foods and other products based on AS.

In conclusion, with the development of science and life, health has 
garnered increasing attention. AS is rich in nutrients and holds 
economic and developmental value. Moreover, the promotion of AS 
can maintain, innovate, and develop traditional Chinese medicine 
culture and products. With the further understanding of AS and the 
improvement of technology, AS will soon be widely employed in both 
clinical and functional food sectors.
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