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Cardiac arrest is a leading cause of death globally. Only 25.8% of in-hospital

and 33.5% of out-of-hospital individuals who achieve spontaneous circulation

following cardiac arrest survive to leave the hospital. Respiratory failure and

acute coronary syndrome are the two most common etiologies of cardiac arrest.

Effort has been made to improve the outcomes of individuals resuscitated from

cardiac arrest. Magnesium is an ion that is critical to the function of all cells

and organs. It is often overlooked in everyday clinical practice. At present, there

have only been a small number of reviews discussing the role of magnesium

in cardiac arrest. In this review, for the first time, we provide a comprehensive

overview of magnesium research in cardiac arrest focusing on the effects of

magnesium on the occurrence and prognosis of cardiac arrest, as well as in the

two main diseases causing cardiac arrest, respiratory failure and acute coronary

syndrome. The current findings support the view that magnesium disorder is

associated with increased risk of cardiac arrest as well as respiratory failure and

acute coronary syndrome.
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1 Introduction

Cardiac arrest is a leading cause of death globally. In the United States, according to
the American Heart Association (AHA), 146,942 individuals experience out-of-hospital
cardiac arrest (OHCA) and 292,000 individuals experience in-hospital cardiac arrest
(IHCA) annually (1). A recent report by the baseline investigation of out-of-hospital
cardiac arrest (BASIC-OHCA) registry estimated that emergency medical service-assessed
OHCAs in China have reached more than 750,000 per year (2). The two most common
etiologies of cardiac arrest are respiratory failure and acute coronary syndrome (ACS).
Respiratory failure accounts for the largest proportion (22%) of IHCA and the second
largest proportion (12%) of OHCA. ACS and other cardiac causes account for the largest
proportion (16%) of OHCA and are the third leading cause (8%) of IHCA (1, 3).
Only 25.8% of IHCA and 33.5% of OHCA patients who have a return of spontaneous
circulation (ROSC) following cardiac arrest survive to leave the hospital (4–6). Post-cardiac
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arrest syndrome is responsible for the high mortality rate among
those who achieve ROSC following cardiac arrest. Post-cardiac
arrest syndrome includes the following four components: (1)
brain injury following cardiac arrest, (2) myocardial dysfunction
following cardiac arrest, (3) systemic ischemia/reperfusion
response, and (4) ongoing precipitating pathology (7, 8). There
is currently no effective therapeutic approach to protect against
post-cardiac arrest syndrome.

Magnesium is the second most abundant intracellular cation,
which is essential for every organ in the human body. Magnesium
participates in practically every major cellular metabolic and
biochemical process including polynucleotide binding, enzymatic
reactions, cell signaling, and cell proliferation (9). Research
continues to examine how magnesium affects cardiac arrest. An
early study found that a solution containing high concentrations
of potassium and magnesium along with adenosine triphosphate,
creatine phosphate, and procaine, rapidly induced arrest of isolated
rat hearts and increased the resistance to periods of transient
ischemia (10). Related to this, severe magnesium deficiency induced
by a high-protein diet was associated with cardiac arrest in rats (11).
Since then, increasing evidence has highlighted the importance of
magnesium in cardiac arrest. The objectives of this comprehensive
review are discussing the impact of magnesium on incidence and
prognosis following cardiac arrest. Additionally, we investigate the
role of magnesium in the two main diseases causing cardiac arrest,
respiratory failure and ACS (Figure 1). The mechanisms by which
magnesium exerts its effects are also discussed (Figures 2, 3).

2 Magnesium and cardiac arrest

2.1 Magnesium and the occurrence of
cardiac arrest

Both hypermagnesemia and hypomagnesaemia are associated
with cardiac arrest. Total serum magnesium concentration in
healthy adults ranges from 0.7 to 1.05 mM (9). Hypermagnesemia
usually occurs when creatinine clearance decreases in renal
dysfunction and in instances of excessive magnesium intake
from dietary supplements or magnesium containing medication.
Common causes of hypomagnesaemia include a magnesium-
insufficient diet, reduced intestinal absorption of magnesium, and
the use of diuretics which increases the urinary excretion of
magnesium (12).

Both case reports and clinical studies have discussed the
relationship between levels of serum magnesium and the risk
of cardiac arrest. Indeed, cardiac arrest occurred as a result of
magnesium sulfate overdose for managing eclampsia (13, 14).
Cardiac arrest occurred after laxative-induced hypermagnesemia in
an individual with anorexia nervosa and chronic renal failure (15).
Moreover, cardiac arrest was noted in an individual with emotional
stress and torsade de pointes associated with hypomagnesemia
(16). Clinical studies show that low serum magnesium level is a
risk predictor of cardiac arrest. Results are conflicting concerning
an association between hypermagnesemia and cardiac arrest. The
Atherosclerosis Risk in Communities Study with subjects of 45–
64 years old (n = 14,232) found that the risk of sudden cardiac
death was higher among individuals who were in the lowest

quartile (≤ 1.5 mEq/L) than those who were in the highest
quartile (≥ 1.75 mEq/L) of the normal range of serum magnesium
(17). Supporting these results was a prospective population-
based study with a median follow-up of 8.7 years, with 9,820
participants, that showed low serum magnesium (≤ 0.80 mmol/L)
was associated with an increased risk of sudden cardiac death
(hazard ratio [HR]: 1.54; 95% confidence interval [CI]: 1.12–
2.11; n = 217). The association between sudden cardiac death
and high serum magnesium levels, however, was only marginally
insignificant (HR: 1.35; 95% CI: 0.96–1.89) (18). The relationship
between magnesium and the risk of sudden cardiac death, as
measured by diet and plasma in 88,375 healthy women, was
investigated in another prospective study. According to the results,
higher dietary magnesium intake and plasma concentrations
corresponded to reduced risks of sudden cardiac death (19).
A systematic review that included eight studies encompassing
13,539 individuals with heart failure, examined the relationship
between levels of serum magnesium with cardiovascular and all-
cause mortality (12). An independent risk factor for sudden
cardiac death is hypomagnesemia. Hypermagnesemia (serum
magnesium > 2.4 mg/dl), however, was revealed an indicator for
comorbidities but was not an independent marker of cardiovascular
mortality (12).

The major mechanism of magnesium deficiency related
with occurrence of cardiac arrest is considered to be the
cardiac dysrhythmia, that magnesium deficiency alters the
intracellular/extracellular K+ ratio resulting in a disturbance
in membrane excitability due to an alteration of the resting
membrane potential (20). In turn, this promotes cardiac arrest.
Additionally, low levels of serum magnesium correspond to
disturbances in endothelial function and vascular tone as well
as to inflammation. This also may contribute to atherosclerosis
development and progression, potentially causing increased heart
disease mortality (Figure 2) (18). The discrepancies in the
relationship between hypermagnesemia and cardiac arrest risk
could be from underappreciated effects of kidney function
(18). Hypermagnesemia may encourage hypotension and cardiac
arrhythmias. According to recent evidence, however, increased
mortality may not be attributed to hypermagnesemia as an
underlying cause. It is likely to reveal comorbidities that have an
impact on the prognosis of people with cardiovascular disease (12).

2.2 Magnesium and the prognosis of
cardiac arrest

Considering the severe consequences of magnesium deficiency
in cardiac arrest and the important electrophysiological functions
of normal magnesium concentrations, magnesium treatment
has been explored to improve the prognosis of cardiac arrest,
such as successful resuscitation, short- or long-term survival, and
neurological outcome. Here, we summarize studies on magnesium
and the prognosis of cardiac arrest in basic studies, clinical
studies, and the combined effect of magnesium and hypothermia.
Current basic studies supported potential neuroprotective
effects of magnesium. However, population studies failed
to demonstrate that magnesium sulfate (MgSO4) improved
cardiac arrest short- or long-term survival. Encouragingly, the
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FIGURE 1

The impact of magnesium on the incidence of and prognosis after cardiac arrest. It also discusses the two most common etiologies of cardiac
arrest, which are acute coronary syndrome and respiratory failure. AECOPD, acute exacerbation of chronic obstructive pulmonary disease.

combination of mild hypothermia and magnesium treatment
showed potential synergistic neuroprotective effects for individuals
with cardiac arrest.

In rats, MgSO4 reduced cerebral injury and preserved
neurologic function when administered 2 days before transient
global ischemia (21). Moreover, pre-treatment with MgSO4 was
effective in resuscitation from hypoxia-induced cardiac arrest.
This study showed that MgSO4 was beneficial because of its
antiarrhythmic action during reperfusion by preventing asystole
and ventricular fibrillation (22). Our group examined the single-
dose intramuscular MgSO4 during cardiopulmonary resuscitation
(CPR) in a rat model of asphyxia cardiac arrest. We explored the
dose–response effect on levels of serum magnesium, neurologic
function recovery, long-term survival, and neuronal loss (5).
We assumed that the magnesium reduced neuronal calcium
overload by directly modulating the N-methyl-daspartate receptor,
preventing mitochondrial permeability transition induced by

calcium, and decreasing the overload of mitochondrial calcium.
A two- to fourfold increase in serum levels of magnesium was
achieved within 15 min of ROSC by intramuscular MgSO4 during
CPR. This result did not improve long-term survival, neurologic
function recovery, or loss of neurons in the CA1 hippocampus.
Intramuscular MgSO4, however, did increase the rate of 24-h
survival. This result supports using intramuscular MgSO4 therapy
during cardiac arrest and suggests that a single intramuscular
MgSO4 dose may not be enough to block long-term injury pathway.
In the future, whether repeated dosing strategies of MgSO4 or
in combination therapy with targeted temperature management
(TTM) may provide a more effective level of neuroprotection in
cardiac arrest requires further investigations.

A prospective, placebo-controlled, randomized, double-blind
trial of magnesium in OHCA, the MAGIC trial, found that as a first-
line drug therapy, 5 g MgSO4 did not improve survival significantly
(23). For IHCA, empirical magnesium supplementation (2 g bolus,
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FIGURE 2

Mechanisms of magnesium in the occurrence and prognosis of cardiac arrest.

FIGURE 3

Mechanisms of magnesium in respiratory failure and acute coronary syndrome.

followed by 8 g over 24 h) did not improve the resuscitation
rate, 24-h survival, or survival to leaving the hospital in any
subpopulation of patients with IHCA or overall (24). In particular,
for prehospital individuals suffering cardiac arrest presenting
with ventricular fibrillation, administration of 2 g of MgSO4
intravenous bolus during CPR failed to improve short- or long-
term survival (25). A placebo-controlled, randomized, double-
blind clinical trial featuring a factorial design evaluated whether
diazepam, magnesium, or both could improve neurologic outcomes
when administered immediately following resuscitation from
OHCA. The results did not show a significant difference between

the placebo and magnesium groups, although the people who
received 2 g MgSO4 did experience a higher percentage of
independence in daily living than the placebo controls (26).
The inadequate number of individuals/group (75) was considered
a factor limiting the power to detect a clinically important
outcome difference. Additionally, systematic reviews did not show
positive results (27–29). Therefore, there is currently no established
recommendation that has be made based on these results for
magnesium therapy in cardiac arrest, other than in cases in which
hypomagnesemia is suspected or proven to have caused cardiac
arrhythmias (30).
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Targeted temperature management now has class I
recommendations from the AHA for use in individuals post-
ROSC. Still, significant controversies and questions remain
in its implementation, including timing, target temperature,
duration, method, rewarming, and side effects such as shivering,
hypotension, hyperglycemia, hypokalemia, and infection (31).
Based on the concept that postischemic hypothermia can have
a synergistic effect to boost or unmask the neuroprotective
effect of an agent (32–34), the combination effect of magnesium
with TTM has been investigated in cardiac arrest. In rats, pre-
treatment with magnesium before transient global ischemia
was neuroprotective only in situations of mild hypothermia
(35◦C) (35). The use of a combination of pre- and postischemic
magnesium combined with modest hypothermia (35◦C) at
different intervals has also been explored. Notably, postischemic
treatment with magnesium and modest hypothermia (35◦C)
for 24 h decreased CA1 neuronal death more effectively than
either treatment alone (36, 37). Clinical studies of combination
therapy of magnesium with TTM in cardiac arrest are scant.
Analysis of 438 survivors of cardiac arrest who completed a
therapeutic hypothermia protocol, showed that lower magnesium
levels at presentation and during therapeutic hypothermia were
associated with favorable outcomes of cardiac arrest. Moreover,
magnesium supplementation during the hospital stay was
associated with improved neurological outcomes, suggesting that
magnesium supplementation may potentiate the beneficial effects
of therapeutic hypothermia (38). Several mechanisms explain why
magnesium and hypothermia appear to act synergistically. First,
both have multiple mechanisms of action following ischemia.
Magnesium, for example, may maintain or increase levels of brain
magnesium, thus restoring cellular parameters such as adenosine
triphosphate (ATP) production, intracellular calcium, protein
synthesis, and mitochondrial integrity. Meanwhile, hypothermia
may restrain damage caused by free radical production, blood–
brain barrier breakdown, and inflammation after ischemia (36).
Furthermore, as reported in other studies which combined
pharmacotherapy and hypothermia (32, 34, 39), magnesium
and hypothermia therapy may prolong the therapeutic window,
which supports beginning treatment several hours after cerebral
ischemia. Additionally, magnesium may alleviate the side effects of
hypothermia, such as reducing the shivering threshold, increasing
the cooling rate, and reducing discomfort during surface cooling to
34–35◦C (37, 40, 41). However, whether the combined treatment
of magnesium and hypothermia could provide beneficial effects for
individuals following cardiac arrest remains unclear and deserves
further investigation.

3 Magnesium and diseases causing
cardiac arrest

3.1 Magnesium and respiratory failure

Respiratory failure is the most common etiology of cardiac
arrest (15%), which is the result of primary pulmonary pathology,
including hypercarbia or hypoxia caused by exacerbation of
asthma, chronic obstructive pulmonary disease (COPD), or
multifocal pneumonia (3). The Global Burden of Diseases, Injuries,

and Risk Factors Study (2019) found that chronic respiratory
diseases, with a prevalence of 454.6 million cases globally, were
responsible for 4 million deaths, making it the third leading
cause of mortality worldwide (42). The five most significant lung
diseases globally are asthma, COPD, lung cancer, pneumonia, and
tuberculosis (43). Several treatment strategies have been studied
to ameliorate symptoms, limit adverse outcomes, and increase
quality of life.

Magnesium is proposed as an additive treatment for respiratory
diseases because of a variety of mechanisms. Magnesium takes
part in cellular homeostasis by serving as an enzymatic cofactor
and involving in release of acetylcholine and histamine from
mast cells and cholinergic nerve terminals. Magnesium inhibits
contraction and relaxes smooth muscle by blocking calcium
ion influx into the smooth muscle of respiratory system (44–
46). Moreover, magnesium may regulate anti-inflammatory and
antioxidant responses and assist in the proper functioning of
micronutrients (e.g., vitamin D). Magnesium also plays a role
in activating T cells (Figure 3). Thus, magnesium deficiency
can trigger immunodeficiency, decrease antioxidant responses,
exaggerate acute inflammatory response, and cause oxidative stress
of respiratory system, which has been discussed widely in a recent
review (47). Here, we summarize findings on the role of magnesium
in respiratory failure, as well as in respiratory diseases responsible
for respiratory failure, including asthma, pneumonia, and COPD in
which magnesium is mostly explored.

3.1.1 Magnesium and the occurrence and
prognosis of respiratory failure

Magnesium is involved in the development and prognosis of
respiratory failure. A significant body of research has examined the
relationship between levels of serum magnesium and respiratory
failure. Because magnesium can desensitize the postsynaptic
membrane and inhibit the presynaptic release of acetylcholine
by acting at the neuromuscular junction, it may exacerbate
or cause respiratory failure and muscle weakness (48, 49).
Hypermagnesemia has been responsible for prolonged respiratory
failure and total flaccid paralysis when supplementing oral
magnesium in the case of acute kidney injury. This result has
revealed that electrolyte abnormalities may go underrecognized
and lead to respiratory failure (50). When treated by magnesium
replacement, a patient with hypomagnesemia and myasthenia
gravis developed acute respiratory failure (48). Similarly, in another
situation of myasthenia gravis and atrial fibrillation, intravenous
magnesium replacement induced respiratory failure (49). Although
limited, the results of these studies indicate that magnesium
should be avoided or administered carefully in patients who have
borderline respiratory function or myasthenia gravis.

A retrospective, single-center study examined acute respiratory
failure in the case of mechanical ventilation in patients who had
been hospitalized with different levels of magnesium at admission.
The lowest incidence of acute respiratory failure that needed
mechanical ventilation was found when levels of serum magnesium
were 1.7–1.9 mg/dL. Admission hypomagnesemia (< 1.5 mg/dL)
and hypermagnesemia (> 2.3 mg/dL) were both related to
an increase in the risk of acute respiratory failure (51). The
mechanism that hypomagnesemia causes respiratory dysfunction
is that the amount of acetylcholine released from nerve terminals is
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decreased. Hypermagnesemia diminishes the depolarizing action of
acetylcholine in the neuromuscular junction, therefore causing the
bronchial smooth muscles to weaken and relax (51). The effects of
different levels of magnesium on patients in the intensive care unit
(ICU) with acute respiratory failure have also been studied. Neither
hypomagnesemia nor normomagnesemia had a significant impact
on the duration of stay in the ICU or the duration of mechanical
ventilation. Statistically, however, the mortality rate of patients
who had hypermagnesemia was higher than that of patients with
other levels of magnesium (P = 0.018) (52). Given data limitations,
additional research is needed to confirm these results, and cut-off
values for magnesium should be further evaluated for patients who
have respiratory failure.

3.1.2 Magnesium and asthma
According to the latest report in 2019, asthma was the

most common chronic respiratory disease with 262.4 million
cases worldwide (42). To treat acute asthma, the primary
therapeutic goals include reversing bronchospasm and correcting
hypoxemia. Initial and conventional pharmacologic treatment
of acute asthma calls for administering inhaled short-acting
anticholinergic, β2-agonist and systemic corticosteroids (53). By
blocking parasympathetic tone and inhibiting calcium channels,
magnesium can act as a bronchodilator when administered
intravenously and by inhalation. This treatment may serve as an
adjunct therapy for acute asthma (53). Recent research results
indicate that intravenous MgSO4 may improve acute asthma;
however, inhaled MgSO4 may be less beneficial.

As an adjunct for acute asthma, intravenous magnesium has
been studied with a long history (45, 54–60). To date, intravenous
MgSO4 appears to be safe, and intravenous magnesium sulfate is
considered for use in patients who have severe exacerbations (45,
54, 56, 58, 61, 62). The 2007 Cochrane review by Mohammed and
Goodacre estimated the benefit of adding MgSO4 to β-agonists
and systemic corticosteroids in children and adults who had acute
asthma. They assessed 24 studies with 1,669 individuals, 15 of which
included intravenous treatment and 9 included nebulized treatment
(55). According to the results, intravenous MgSO4 treatment in
adults provided only weak evidence for improving respiratory
function and had no significant effect on hospital admission.
Intravenous MgSO4 treatment in children showed reduced hospital
admission and a significant improvement in respiratory function.
In adults, only weak evidence was found of the effect of nebulized
treatment on hospital admission or respiratory function, and in
children, no significant effect was found on hospital admission
or respiratory function (55). A 2008 review found that, when
considering all studies, in the case of severe exacerbations, adding
MgSO4 improved pulmonary function and reduced hospitalization
(45). Another review focusing on children demonstrated that this
age group was clearly benefited from intravenous MgSO4 (63).

For inhaled magnesium sulfate, a series of updated reviews by
Rowe et al. investigated its effects for treating acute asthma from
2005 to 2017, with consistent results (44, 64, 65). The recent review
including 25 trials and 2,907 randomized individuals examined
whether inhaled MgSO4 had beneficial effects (1) when combined
with ipratropium bromide and inhaled β2-agonist; (2) when added
to inhaled β2-agonist; and (3) when compared with inhaled β2-
agonist (65). However, the results did not demonstrate substantial
benefits of nebulized MgSO4 for improved lung function or

reduced hospital admission for acute asthma. Trial heterogeneity
may limit the strength of the results (65). A meta-analysis of
children who have acute asthma included eight randomized
controlled trials (1,247 children). The findings did not suggest that
inhaled magnesium offered a substantial benefit to improve lung
function, limit hospital admissions, or reduce asthma symptoms
or severity scores (66). A clinical trial recently published in JAMA
also did not support any beneficial effects for children who had
refractory acute asthma. When comparing nebulized magnesium
with albuterol and a placebo with albuterol to treat asthma, the
addition of magnesium did not decrease the hospitalization rate
significantly within 24 h (67). As a result, these findings do not
suggest that nebulized magnesium should be used alone or with
albuterol in children who have refractory acute asthma.

3.1.3 Magnesium and pneumonia
Pneumonia affects hundreds of millions of people globally.

Because of the aging population, the number of hospital admissions
of pneumonia has been increasing over recent decades (68, 69).
The changes in serum magnesium levels in pneumonia and the
impact of magnesium levels on the prognosis of pneumonia have
been studied, with only limited evidence. During pneumonia, the
serum magnesium level deviated markedly from the normal, while
a definite loss of magnesium to the body was observed during
the febrile period of pneumonia (70). Hypomagnesemia was also
common in community-acquired pneumonia in individuals with
type 2 diabetes mellitus. In these individuals, hypomagnesemia
at admission was associated with increased short-term mortality
(71). In elderly patients with community-acquired pneumonia,
abnormal serum magnesium levels corresponded significantly to
in-hospital mortality and 30-day mortality (68, 72). However,
interventional studies are lacking to confirm the effects of
magnesium treatment on pneumonia outcomes.

The coronavirus (COVID-19) pandemic, which is caused
by SARS-CoV-2 infection, has brought a heavy burden to our
economic and healthcare systems (73). As a result, great efforts have
been made to better understand its pathogenesis and to implement
low-cost prophylactic interventions. Given the multiple effects of
magnesium such as anti-inflammatory and antioxidant effects, it
is assumed to play a significant role in COVID-19 development
and mortality (47, 73–76). Results from clinical studies found
that the need for mechanical ventilation and mortality rates were
higher in hypermagnesemia (magnesium levels > 2.4 mg/dL) and
hypomagnesemia (<1.8 mg/dL) patients than in other patients who
were hospitalized with COVID-19 (77, 78). The COMEPA study
found that the low level of serum magnesium was a significant
indicator of the onset of long COVID symptoms, length of stay,
and in-hospital mortality (79). Levels of serum magnesium and
myocardial damage were significantly negatively correlated (80).
These findings indicate that measuring levels of serum magnesium
in patients with COVID-19 may help predict disease-related
complications. A cross-sectional study revealed that taking more
dietary magnesium was inversely correlated with the severity
and symptoms of COVID-19 (81). An observational study of
cohorts found that combining magnesium, vitamin D, and vitamin
B12 decreased the number of older patients with COVID-19
who were experiencing clinical deterioration that needed oxygen,
intensive care, or both (82). Overall, current research supports
the relationship between COVID-19 and imbalanced magnesium
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homeostasis. Therefore, robust studies are needed to investigate the
therapeutic or prophylactic potential of magnesium for COVID-
19 (74).

3.1.4 Magnesium and chronic obstructive
pulmonary disease

The primary cause of death from chronic respiratory diseases
was COPD, with 212.3 million prevalent cases and 3.3 million
deaths in 2019 (42). The potential clinical benefits of intravenous or
nebulized MgSO4 for individuals with acute exacerbations or stable
COPD have been studied; however, existing studies have found
conflicting and inconclusive results for its effectiveness.

In patients who have acute exacerbations of COPD, serum
magnesium levels were a significant predictor of the frequency
of acute exacerbations, emphasizing the importance of detecting
magnesium levels in individuals with COPD (83, 84). The effect of
magnesium treatment on outcomes of acute COPD exacerbations
has been investigated by meta-analyses. One study found that
intravenous MgSO4 corresponded to improving dyspnea scores,
reducing hospital admissions, and limiting hospital length of
stay. However, no significant difference in the necessity for non-
invasive ventilation was indicated, nor was a change in oxygen
saturation or pulmonary function testing found (85). A Cochrane
systematic review showed that magnesium infusion improved
dyspnea scores and decreased the duration of hospital stay. Yet it
was not clear if there was any effect on improving lung function or
oxygen saturation. In contrast, magnesium inhalation, compared
to placebo, did not make a difference in most outcomes of
COPD exacerbations. In addition, when MgSO4 was compared
to ipratropium bromide no differences in outcomes were noted
(86). Several other systematic reviews have found either no benefit
or inconclusive effects of treating acute COPD exacerbation with
magnesium sulfate (87, 88). The conflicting results may be the result
of the limited number of participants in these studies, as well as
clinical heterogeneities in the patient populations and medication
dosages and routes.

For individuals with stable COPD, several studies suggested
benefits in magnesium treatment. One study showed that serum
magnesium levels were associated with quality of life but
not with lung function in individuals with COPD (89). Oral
magnesium supplementation showed potential anti-inflammatory
effects, however, this did not involve influence on lung function,
physical performance, or quality of life in individuals with stable
COPD (90). In patients with stable COPD, intravenous magnesium
loading was correlated with decreased lung hyperinflation and
improved respiratory muscle strength (91, 92). Therefore, the
potential benefits of clinical magnesium supplementation for
COPD warrants further study.

3.2 Magnesium and ACS

Acute coronary syndrome, the acute manifestation of ischemic
heart disease, is a major cause of cardiac arrest (12%). In 2019, there
were an estimated 673,000 ACS principal diagnostic discharges
in the United States (1). Substantial progress has been made to
prevent, diagnose, and treat people with ACS. Still, the burden
of ACS remains unacceptably high. This situation calls for a

reappraisal of the ACS related mechanisms and exploration of
novel treatment therapies (1, 93). Theoretically, magnesium offers
several benefits for the cardiovascular system, such as platelet
aggregation and coagulation, vascular tone, endothelial function,
lipid metabolism, infarct size, and cardiac arrhythmias (Figure 3),
which have been discussed detailly (94–96). Here, we summarize
studies on the association of magnesium with ACS prognosis from
three aspects, including magnesium content in the water supply,
serum magnesium levels, and magnesium administration, on the
prognosis of ACS.

The relationship between magnesium content in the water
supply and the prognosis of individuals with ACS, especially
mortality from acute myocardial infarction (AMI), has found
inconsistent results. According to data of subjects residing in
England, lacked evidence of a relationship between mortality from
AMI and levels of magnesium in drinking water supplies was found
(97). Data from individuals in China indicated that calcium intake
provided a protective effect on AMI mortality. In this case, however,
no significant difference was reported in AMI mortality among the
groups that had different levels of magnesium (98). In Israel, the
30-day and one-year all-cause mortality of individuals with AMI
was higher in the people who were exposed to desalinated seawater,
which lacks magnesium, which may reveal the contribution of
reduced magnesium intake on AMI mortality (99). These people
also had significantly lower levels of serum magnesium than the
people who were exposed to non-desalinated drinking water. These
conflicting findings could be the result of geographic differences,
variance in serum magnesium levels, and confounding factors
such as intake situations of magnesium supplements or medicines.
Therefore, better tracking serum magnesium levels may inform the
role of magnesium in ACS prognosis.

Hypermagnesemia and hypomagnesemia are correlated with
an increase in worsened clinical outcomes among individuals
who experience ACS. A retrospective multicenter study included
more than 10,000 people with AMI and found that levels of
serum magnesium were correlated with in-hospital mortality and
malignant arrhythmias in a U-shaped manner (< 1.8, 1.8–1.9, 1.9–
2.0, and > 2.0 mg/dL vs. 7.4, 4.1, 4.7, and 9.7%, respectively)
(100). These findings show that the optimal range of serum
magnesium in people with AMI may be lower than current
AMI recommendations (> 2.0 mg/dL) (101). Higher serum
magnesium levels at admission in individuals with reperfused
AMI complicated by malignant ventricular arrhythmias were
independently related with in-hospital mortality (HR: 2.68, 95%
CI: 1.24–5.80). Additionally, the number of in-hospital adverse
events, such as extracorporeal membrane oxygenation, cardiogenic
shock necessitating intra-aortic balloon pump, persistent vegetative
state or tracheostomy, and tracheal intubation, was much higher
in patients with higher levels of serum magnesium than in people
who had lower levels of serum magnesium (102). Since only
one individual with hypomagnesemia was included, a U-shaped
relationship was not observed in this study. Similarly, admission
levels of serum magnesium, regardless of other risk factors,
were related inversely to major adverse cardiovascular events
in people who had a drug-eluting stent implantation for AMI
but stable angina. Individuals with the highest levels of serum
magnesium (> 0.94 mmol/L) compared with people with the
lowest levels (< 0.86 mmol/L) had an 8.11-fold higher risk of
major adverse cardiovascular events following implantation of
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a drug-eluting stent (103). A retrospective study assessed the
impact of different levels of serum magnesium at admission on
in-hospital mortality, including sudden cardiac death and QTc
interval, in people who were admitted to the cardiac care unit with
acute decompensated heart failure or a primary AMI diagnosis.
A level of serum magnesium ≥ 2.4 mg/dL independently indicated
an increase in hospital mortality. However, no relationship was
found between levels of serum magnesium and an interval of
QTc or sudden cardiac death (104). The pathophysiologic effects
of hypermagnesemia and hypomagnesemia on the cardiovascular
system are similar to those on cardiac arrest. However, the
pathophysiologic mechanisms of magnesium remain to be
addressed in individuals with ACS with different complications,
including ventricular arrhythmias, drug-eluting stent implantation,
and heart failure. Furthermore, some limitations need to be
considered when elucidating the results: (1) the time between blood
tests and administration of magnesium should be clarified; (2)
measurement of serum magnesium should be uniform to allow for
better comparison of results; and (3) the ability to generalize results
and the statistical power to detect data differences has been limited
by small sample sizes from single-center studies (102, 103).

It is still under debate whether the administration of
magnesium may affect the prognosis of ACS. The Second
Leicester Intravenous Magnesium Intervention Trial (LIMIT-2)
was a double-blind, randomized, placebo-controlled study that
included 2,316 individuals with suspected AMI and verified the
benefits of magnesium (105). Notably, the administration of
intravenous magnesium sulfate significantly decreased the 28-
day mortality of people with AMI versus the placebo group.
The Fourth International Study of Infarct Survival (ISIS-4),
which was a randomized factorial trial of more than 50,000
participants, however, did not find a decrease in five-week mortality
or later survival advantage among the magnesium treatment
group versus the placebo group (both overall or in subgroups)
(106). The proposed explanations for discrepancies between the
two studies included variation in the timing and duration of
treatment, the dose of magnesium, concomitant thrombolysis,
and methodological problems (107). In a meta-analysis of 26
clinical trials, no advantages were found as a result of early
or late magnesium treatment and outcomes (107). Although
magnesium appeared to decrease the incidence of ventricular
tachycardia, ventricular fibrillation, and severe arrhythmia needing
treatment, it may have increased the incidence of bradycardia,
flushing, and profound hypotension (107). Concerning post-ACS
cardiac arrhythmias, several meta-analyses showed significant
fewer reperfusion arrhythmias in the magnesium treatment groups
(108–114). A recent retrospective analysis, however, revealed that
magnesium did not effectively lower the incidence of reperfusion
arrhythmia in people with ST-elevation myocardial infarction, who
underwent primary percutaneous coronary intervention (115).
One explanation for inconsistent results of this work may be the
variety of revascularization techniques employed, including cardiac
surgery, thrombolysis, and percutaneous coronary intervention.

4 Study limitations

This study has potential limitations. First, while the review
covers a broad range of studies, the generalizability of these

findings to different populations (e.g., different age groups, ethnic
backgrounds, or geographic locations) may be limited. This could
be an important limitation to acknowledge. Second, the quality
of the evidence from the studies reviewed might vary. Including
a critical assessment of the quality of the studies (e.g., risk of
bias, methodological strengths and weaknesses) could enhance
the understanding of how robust the current evidence is. Third,
while the review discusses associations between magnesium levels
and cardiac arrest outcomes, it is important to acknowledge that
these associations might be influenced by confounding factors,
such as other underlying health conditions, lifestyle factors, or
concurrent treatments. Additionally, the long-term effects of
magnesium therapy in cardiac arrest patients are not thoroughly
discussed. The review could benefit from addressing the need
for long-term follow-up studies to understand the sustained
impact of magnesium. Finally, while the review outlines potential
mechanisms by which magnesium impacts cardiac arrest, deeper
mechanistic insights or the need for more research in this area
could be a valuable addition.

5 Conclusion

Magnesium is an important intracellular cation that is critical
for the physiological function of multiple organs including the
brain, heart, and skeletal muscles. Magnesium is being tested
as a treatment for cardiac arrest. This review summarized the
role that magnesium can play in cardiac arrest. We assessed
early research and clinical data published to date and found
that a magnesium disorder indicates an increased risk of cardiac
arrest as well as ACS and respiratory failure. This finding
demonstrates the need for daily clinical practice to verify levels
of serum magnesium. Magnesium appears to be mostly safe as
an adjuvant therapy in the setting of cardiac arrest. Early results
of a combination of mild hypothermia and magnesium indicate
that this promising treatment may benefit individuals who are
resuscitated from cardiac arrest. It continues to be controversial,
however, whether or not magnesium should be used in people
who are experiencing cardiac arrest as well as ACS or respiratory
failure. Rigorous large cohort multi-center trials may help to
clarify these issues.
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